Citation: Xiao-Zhong CHEN, Guang-Ping LI, Yan SHEN, Yong HU, Juan WANG, Yuan-Qiang WANG, Zhi-Hua LIN. Docking and 3D-QSAR Studies on the Imidazo[1, 5-c]pyrimidine Derivative as EED Inhibitors[J]. Chinese Journal of Structural Chemistry, ;2021, 40(6): 689-702. doi: 10.14102/j.cnki.0254–5861.2011–2994 shu

Docking and 3D-QSAR Studies on the Imidazo[1, 5-c]pyrimidine Derivative as EED Inhibitors

  • Corresponding author: Yuan-Qiang WANG, wangyqnn@cqut.edu.cn Zhi-Hua LIN, zhlin@cqut.edu.cn
  • Received Date: 25 September 2020
    Accepted Date: 10 November 2020

    Fund Project: the National Natural Science Foundation of China 81171508

Figures(7)

  • Embryonic ectoderm development (EED) has become a novel target for cancer treatment. In this study, a series of EED inhibitors was subjected to a three-dimensional quantitative structure-activity relationship (3D-QSAR) and molecular docking. Accordingly, this is the first of such 3D-QSAR studies in a series of EED inhibitors displaying anti-cancer pharmacological profiles. The CoMFA (q2 = 0.792, r2 = 0.994, rpred2 = 0.74) and CoMSIA (q2 = 0.873, r2 = 0.994, rpred2 = 0.81) models demonstrated good robustness and predictive ability. Moreover, molecular docking suggested that cation-π, π-π stacking and hydrogen bonding interactions were the main factors affecting the activity of these inhibitors. Five new small molecules were designed based on the CoMFA and CoMSIA contour maps. These molecules were then submitted to further ADME studies, in which the ADME properties of the five designed molecules were found to be within a reasonable range. In view of the corresponding findings, this study may provide theoretical guidance for the rational design of novel EED inhibitors.
  • 加载中
    1. [1]

      Levine, S.; Weiss, A.; Erdjument-Bromage, H.; Shao, Z.; Tempst, P.; Kingston, R. The core of the polycomb repressive complex is compositionally and functionally conserved in flies and humans. Mol. Cell. Biol. 2002, 22, 6070-8.  doi: 10.1128/MCB.22.17.6070-6078.2002

    2. [2]

      McCabe, M.; Ott, H.; Ganji, G.; Korenchuk, S.; Thompson, C.; Van Aller, G.; Liu, Y.; Graves, A.; Della Pietra, A.; Diaz, E.; LaFrance, L.; Mellinger, M.; Duquenne, C.; Tian, X.; Kruger, R.; McHugh, C.; Brandt, M.; Miller, W.; Dhanak, D.; Verma, S.; Tummino, P.; Creasy, C. EZH2 inhibition as a therapeutic strategy for lymphoma with EZH2-activating mutations. Nature 2012, 492, 108-12.

    3. [3]

      Bisserier, M.; Wajapeyee, N. Mechanisms of resistance to EZH2 inhibitors in diffuse large B-cell lymphomas. Blood 2018, 131, 2125-2137.  doi: 10.1182/blood-2017-08-804344

    4. [4]

      Qi, W.; Zhao, K.; Gu, J.; Huang, Y.; Wang, Y.; Zhang, H.; Zhang, M.; Zhang, J.; Yu, Z.; Li, L.; Teng, L.; Chuai, S.; Zhang, C.; Zhao, M.; Chan, H.; Chen, Z.; Fang, D.; Fei, Q.; Feng, L.; Feng, L.; Gao, Y.; Ge, H.; Ge, X.; Li, G.; Lingel, A.; Lin, Y.; Liu, Y.; Luo, F.; Shi, M.; Wang, L.; Wang, Z.; Yu, Y.; Zeng, J.; Zeng, C.; Zhang, L.; Zhang, Q.; Zhou, S.; Oyang, C.; Atadja, P.; Li, E. An allosteric PRC2 inhibitor targeting the H3K27Me3 binding pocket of EED. Nat. Chem. Biol. 2017, 13, 381-388.  doi: 10.1038/nchembio.2304

    5. [5]

      He, Y.; Selvaraju, S.; Curtin, M. L.; Jakob, C. G.; Pappano, W. N. The EED protein-protein interaction inhibitor A-395 inactivates the PRC2 complex. Nat. Chem. Biol. 2017, 13, 389-6.  doi: 10.1038/nchembio.2306

    6. [6]

      Rej, R.; Wang, C.; Lu, J.; Wang, M.; Petrunak, E.; Zawacki, K.; McEachern, D.; Fernandez-Salas, E.; Yang, C.; Wang, L.; Li, R.; Chinnaswamy, K.; Wen, B.; Sun, D.; Stuckey, J.; Zhou, Y.; Chen, J.; Tang, G.; Wang, S. EEDi-5285: an exceptionally potent, efficacious, and orally active small-molecule inhibitor of embryonic ectoderm development. J. Med. Chem. 2020, 63, 7252-7267.  doi: 10.1021/acs.jmedchem.0c00479

    7. [7]

      Cramer, R.; Patterson, D.; Bunce, J. Comparative molecular field analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier proteins. J. Am. Chem. Soc. 1988, 110, 5959-67.  doi: 10.1021/ja00226a005

    8. [8]

      Klebe, G.; Abraham, U.; Mietzner, T. Molecular similarity indices in a comparative analysis (CoMSIA) of drug molecules to correlate and predict their biological activity. J. Med. Chem. 1994, 37, 4130-6.  doi: 10.1021/jm00050a010

    9. [9]

      Clark, M.; Iii, R. D. C.; Opdenbosch, N. V. Validation of the general purpose tripos 5.2 force field. J. Comput. Chem. 1989, 10, 982-1012.  doi: 10.1002/jcc.540100804

    10. [10]

      Gasteiger, J.; Marsili, M. Iterative partial equalization of orbital electronegativity-a rapid access to atomic charges. Tetrahedron 1980, 36, 3219-3228.  doi: 10.1016/0040-4020(80)80168-2

    11. [11]

      Kapou, A.; Benetis, N. P.; Durdagi, S.; Nikolaropoulos, S.; Mavromoustakos, T. 3D QSAR/CoMFA and CoMSIA studies on antileukemic steroidal esters coupled with conformationally flexible nitrogen mustards. J. Chem. Inf. Model. 2008, 48, 2254-6.  doi: 10.1021/ci800240m

    12. [12]

      Lu, P.; Wei, X.; Zhang, R. CoMFA and CoMSIA studies on HIV-1 attachment inhibitors. Eur. J. Med. Chem. 2010, 45, 1792-8.  doi: 10.1016/j.ejmech.2010.01.011

    13. [13]

      Politi, A.; Durdagi, S.; Moutevelis-Minakakis, P.; Kokotos, G.; Papadopoulos, M. G.; Mavromoustakos, T. Application of 3D QSAR CoMFA/CoMSIA and in silico docking studies on novel renin inhibitors against cardiovascular diseases. Eur. J. Med. Chem. 2009, 44, 3703-3711.  doi: 10.1016/j.ejmech.2009.03.040

    14. [14]

      Zhang, Y.; Wang, T.; Yang, X. An in vitro and in silico investigation of human pregnane X receptor agonistic activity of poly-and perfluorinated compounds using the heuristic method-best subset and comparative similarity indices analysis. Chemosphere 2020. 240, 124789-8.  doi: 10.1016/j.chemosphere.2019.124789

    15. [15]

      Zhang, S.; Lin, Z.; Pu, Y.; Zhang, Y.; Zhang, L.; Zuo, Z. Comparative QSAR studies using HQSAR, CoMFA, and CoMSIA methods on cyclic sulfone hydroxyethylamines as BACE1 inhibitors. Comput. Biol. Chem. 2017, 67, 38-47.  doi: 10.1016/j.compbiolchem.2016.12.008

    16. [16]

      Iii, R. D. C.; Bunce, J. D.; Patterson, D. E.; Frank, I. E. Crossvalidation, bootstrapping, and partial least squares compared with multiple regression in conventional QSAR studies. Quant. Struct. -Act. Relat. 2010, 7, 18-25.

    17. [17]

      Cross, J. B.; Thompson, D. C.; Rai, B. K.; Baber, J. C.; Fan, K. Y.; Hu, Y.; Humblet, C. Comparison of several molecular docking programs: pose prediction and virtual screening accuracy. J. Chem. Inf. Model. 2009, 49, 1455-1474.  doi: 10.1021/ci900056c

    18. [18]

      Daina, A.; Michielin, O.; Zoete, V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017, 7, 42717-9.  doi: 10.1038/srep42717

    19. [19]

      Golbraikh, A.; Tropsha, A. Beware of q2! J. J. Mol. Graph. Model. 2002, 20, 269-276.

    20. [20]

      Veerasamy, R.; Rajak, H.; Jain, A.; Sivadasan, S.; Varghese, C. P.; Agrawal, R. K. Validation of QSAR models-strategies and importance. Int. J. Drug. Des. Discov. 2011, 2, 511-519.

    21. [21]

      Marcos, L.; Cesar, M. V.; David, V. V.; Juan, A. L.; Javier, C. S.; Jorge, S. D.; Gonzalo, R. G.; Jaime, M. Structure-activity relationships based on 3D-QSAR CoMFA/CoMSIA and design of aryloxypropanol-amine agonists with selectivity for the human β3-adrenergic receptor and anti-obesity and anti-diabetic profiles. Molecules 2018, 23, 1191-5.  doi: 10.3390/molecules23051191

  • 加载中
    1. [1]

      Yue WANGZhizhi GUJingyi DONGJie ZHUCunguang LIUGuohan LIMeichen LUJian HANShengnan CAOWei WANG . Effects of kelp-derived carbon dots on embryonic development of zebrafish. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1209-1217. doi: 10.11862/CJIC.20230423

    2. [2]

      Fang-Yuan ChenWen-Chao GengKang CaiDong-Sheng Guo . Molecular recognition of cyclophanes in water. Chinese Chemical Letters, 2024, 35(5): 109161-. doi: 10.1016/j.cclet.2023.109161

    3. [3]

      Caihong MaoYanfeng HeXiaohan WangYan CaiXiaobo Hu . Synthesis and molecular recognition characteristics of a tetrapodal benzene cage. Chinese Chemical Letters, 2024, 35(8): 109362-. doi: 10.1016/j.cclet.2023.109362

    4. [4]

      Cheng-Da ZhaoHuan YaoShi-Yao LiFangfang DuLi-Li WangLiu-Pan Yang . Amide naphthotubes: Biomimetic macrocycles for selective molecular recognition. Chinese Chemical Letters, 2024, 35(4): 108879-. doi: 10.1016/j.cclet.2023.108879

    5. [5]

      Yanwei DuanQing Yang . Molecular targets and their application examples for interrupting chitin biosynthesis. Chinese Chemical Letters, 2025, 36(4): 109905-. doi: 10.1016/j.cclet.2024.109905

    6. [6]

      Zhimin SunXin-Hui GuoYue ZhaoQing-Yu MengLi-Juan XingHe-Lue Sun . Dynamically switchable porphyrin-based molecular tweezer for on−off fullerene recognition. Chinese Chemical Letters, 2024, 35(6): 109162-. doi: 10.1016/j.cclet.2023.109162

    7. [7]

      Li LinSong-Lin TianZhen-Yu HuYu ZhangLi-Min ChangJia-Jun WangWan-Qiang LiuQing-Shuang WangFang Wang . Molecular crowding electrolytes for stabilizing Zn metal anode in rechargeable aqueous batteries. Chinese Chemical Letters, 2024, 35(7): 109802-. doi: 10.1016/j.cclet.2024.109802

    8. [8]

      Minghao HuTianci XieYuqiang HuLongjie LiTing WangTongbo Wu . Allosteric DNAzyme-based encoder for molecular information transfer. Chinese Chemical Letters, 2024, 35(7): 109232-. doi: 10.1016/j.cclet.2023.109232

    9. [9]

      Chuan-Zhi NiRuo-Ming LiFang-Qi ZhangQu-Ao-Wei LiYuan-Yuan ZhuJie ZengShuang-Xi Gu . A chiral fluorescent probe for molecular recognition of basic amino acids in solutions and cells. Chinese Chemical Letters, 2024, 35(10): 109862-. doi: 10.1016/j.cclet.2024.109862

    10. [10]

      Wei-Jia WangKaihong Chen . Molecular-based porous polymers with precise sites for photoreduction of carbon dioxide. Chinese Chemical Letters, 2025, 36(1): 109998-. doi: 10.1016/j.cclet.2024.109998

    11. [11]

      Dongpu WuZheng YangYuchen XiaLulu WuYingxia ZhouCaoyuan NiuPuhui XieXin ZhengZhanqi Cao . Surface controllable wettability using amphiphilic rotaxane molecular shuttles. Chinese Chemical Letters, 2025, 36(2): 110353-. doi: 10.1016/j.cclet.2024.110353

    12. [12]

      Bingwei WangYihong DingXiao Tian . Benchmarking model chemistry composite calculations for vertical ionization potential of molecular systems. Chinese Chemical Letters, 2025, 36(2): 109721-. doi: 10.1016/j.cclet.2024.109721

    13. [13]

      Kai YeZhicheng YeChuantao WangZhilai LuoCheng LianChunyan Bao . Artificial signal transduction triggered by molecular photoisomerization in lipid membranes. Chinese Chemical Letters, 2025, 36(4): 110033-. doi: 10.1016/j.cclet.2024.110033

    14. [14]

      Yang FengYang-Qing TianYong-Qiang ZhaoSheng-Jun ChenBi-Feng Yuan . Dynamic deformylation of 5-formylcytosine and decarboxylation of 5-carboxylcytosine during differentiation of mouse embryonic stem cells into mouse neurons. Chinese Chemical Letters, 2024, 35(11): 109656-. doi: 10.1016/j.cclet.2024.109656

    15. [15]

      Ziyang YinLingbin XieWeinan YinTing ZhiKang ChenJunan PanYingbo ZhangJingwen LiLonglu Wang . Advanced development of grain boundaries in TMDs from fundamentals to hydrogen evolution application. Chinese Chemical Letters, 2024, 35(5): 108628-. doi: 10.1016/j.cclet.2023.108628

    16. [16]

      Yuehai ZhiChen GuHuachao JiKang ChenWenqi GaoJianmei ChenDafeng Yan . The advanced development of innovative photocatalytic coupling strategies for hydrogen production. Chinese Chemical Letters, 2025, 36(1): 110234-. doi: 10.1016/j.cclet.2024.110234

    17. [17]

      Ali DaiZhiguo ZhengLiusheng DuanJian WuWeiming Tan . Small molecule chemical scaffolds in plant growth regulators for the development of agrochemicals. Chinese Chemical Letters, 2025, 36(4): 110462-. doi: 10.1016/j.cclet.2024.110462

    18. [18]

      Qihan LinJiabin XingYue-Yang LiuGang WuShi-Jia LiuHui WangWei ZhouZhan-Ting LiDan-Wei ZhangtaBOX: A water-soluble tetraanionic rectangular molecular container for conjugated molecules and taste masking for berberine and palmatine. Chinese Chemical Letters, 2024, 35(5): 109119-. doi: 10.1016/j.cclet.2023.109119

    19. [19]

      Zhikang WuGuoyong DaiQi LiZheyu WeiShi RuJianda LiHongli JiaDejin ZangMirjana ČolovićYongge Wei . POV-based molecular catalysts for highly efficient esterification of alcohols with aldehydes as acylating agents. Chinese Chemical Letters, 2024, 35(8): 109061-. doi: 10.1016/j.cclet.2023.109061

    20. [20]

      Jinyan ZhangFen LiuQian JinXueyi LiQiong ZhanMu ChenSisi WangZhenlong WuWencai YeLei Wang . Discovery of unusual phloroglucinol–triterpenoid adducts from Leptospermum scoparium and Xanthostemon chrysanthus by building blocks-based molecular networking. Chinese Chemical Letters, 2024, 35(6): 108881-. doi: 10.1016/j.cclet.2023.108881

Metrics
  • PDF Downloads(3)
  • Abstract views(400)
  • HTML views(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return