Citation: Zeng-Hui LI, Liang HE, Yu-Jun GUO, Ming-Bu LUO, Qi-Pu LIN. A Stable Luminescent MOF Constructed by Bis-(4-pyridyl)thiazolo[5, 4-d]thiazole Containing Multi-electron Donor-acceptor Core[J]. Chinese Journal of Structural Chemistry, ;2021, 40(5): 610-614. doi: 10.14102/j.cnki.0254–5861.2011–2992 shu

A Stable Luminescent MOF Constructed by Bis-(4-pyridyl)thiazolo[5, 4-d]thiazole Containing Multi-electron Donor-acceptor Core

  • Corresponding author: Qi-Pu LIN, linqipu@fjirsm.ac.cn
  • Received Date: 24 September 2020
    Accepted Date: 10 December 2020

    Fund Project: the Strategic Priority Research Program of Chinese Academy of Sciences XDB20000000

Figures(3)

  • Constructed from 2, 5-bis(4-pyridyl) thiazolo[5, 4-d]thiazole (Py2TTz), sulfate anions and metal ions Cd(II), a new 3D luminescent metal-organic framework (LMOF) with good water stability is synthesized under solvothermal condition. [Cd(Py2TTz)(SO4)]n (Py2TTz = 2, 5-bis(4-pyridyl) thiazolo[5, 4-d]thiazole). It crystallizes in tetragonal space group P421m with a = 6.830(3), b = 6.830(3), c = 17.676(12) Å, V = 824.5(8) Å3, Z = 4, Mr = 504.83, Dc = 2.033 g·cm-3, F(000) = 496, GOOF = 1.088, the final R = 0.0434 and wR = 0.0948 for 6301 reflections with I > 2σ(I). Upon excitation at 370 nm, the emission peak of the compound appears at 455 nm, which has a slight redshift compared to the free ligand Py2TTz. The compound has potential to be a luminescence sensing material.
  • 加载中
    1. [1]

      Lustig, W. P.; Mukherjee, S.; Rudd, N. D.; Desai, A. V.; Li, J.; Ghosh, S. K. Metal-organic frameworks: functional luminescent and photonic materials for sensing applications. Chem. Soc. Rev. 2017, 46, 3242–3285.  doi: 10.1039/C6CS00930A

    2. [2]

      Hu, Z.; Deibert, B. J.; Li, J. Luminescent metal-organic frameworks for chemical sensing and explosive detection. Chem. Soc. Rev. 2014, 43, 5815–5840; Lan, A.; Li, K.; Wu, H.; Olson, D. H.; Emge, T. J.; Ki, W.; Hong, M.; Li, J. A luminescent microporous metal-organic framework for the fast and reversible detection of high explosives. Angew. Chem. Int. Edit. 2009, 48, 2334–2338; Che, W.; Li, G.; Liu, X.; Shao, K.; Zhu, D.; Su, Z.; Bryce, M. R. Selective sensing of 2, 4, 6-trinitrophenol (TNP) in aqueous media with "aggregation-induced emission enhancement" (AIEE)-active iridium(III) complexes. Chem. Commun. 2018, 54, 1730–1733; Huang, R. W.; Wei, Y. S.; Dong, X. Y.; Wu, X. H.; Du, C. X.; Zang, S. Q.; Mak, T. C. W. Hypersensitive dual-function luminescence switching of a silver-chalcogenolate cluster-based metal-organic framework. Nat. Chem. 2017, 9, 689–697.

    3. [3]

      Jiang, H. L.; Feng, D.; Wang, K.; Gu, Z. Y.; Wei, Z.; Chen, Y. P.; Zhou, H. C. An exceptionally stable, porphyrinic Zr metal-organic framework exhibiting pH-dependent fluorescence. J. Am. Chem. Soc. 2013, 135, 13934–13938; Li, P.; Yin, X. M.; Gao, L. L.; Yang, S. L.; Sui, Q.; Gong, T.; Gao, E. Q. Modulating excitation energy of luminescent metal-organic frameworks for detection of Cr(VI) in water. ACS. Appl. Nano. Mater. 2019, 2, 4646–4654.

    4. [4]

      Roy, I.; Bobbala, S.; Zhou, J.; Nguyen, M. T.; Nalluri, S. K. M.; Wu, Y.; Ferris, D. P.; Scott, E. A.; Wasielewski, M. R.; Stoddart, J. F. ExTzBox: a glowing cyclophane for live-cell imaging. J. Am. Chem. Soc. 2018, 140, 7206–7212.  doi: 10.1021/jacs.8b03066

    5. [5]

      Woodward, A. N.; Kolesar, J. M.; Hall, S. R.; Saleh, N. A.; Jones, D. S.; Walter, M. G. Thiazolothiazole fluorophores exhibiting strong fluorescence and viologen-like reversible electrochromism. J. Am. Chem. Soc. 2017, 139, 8467–8473.  doi: 10.1021/jacs.7b01005

    6. [6]

      Rizzuto, F. J.; Faust, T. B.; Chan, B.; Hua, C.; D'Alessandro, D. M.; Kepert, C. J. Experimental and computational studies of a multi-electron donor-acceptor ligand containing the thiazolo[5, 4-d]thiazole core and its incorporation into a metal-organic framework. Chem-Eur. J. 2014, 20, 17597–17605.  doi: 10.1002/chem.201405089

    7. [7]

      Wang, K.; Huang, S.; Zhang, Y.; Zhao, S.; Zhang, H.; Wang, Y. Multicolor fluorescence and electroluminescence of an ICT-type organic solid tuned by modulating the accepting nature of the central core. Chem. Sci. 2013, 4, 3288–3293.  doi: 10.1039/c3sc51091c

    8. [8]

      Luo, J.; Hu, B.; Debruler, C.; Liu, T. L. A π-conjugation extended viologen as a two-electron storage anolyte for total organic aqueous redox flow batteries. Angew. Chem. Int. Edit. 2018, 57, 231–235.  doi: 10.1002/anie.201710517

    9. [9]

      Zhai, Z. W.; Yang, S. H.; Cao, M.; Li, L. K.; Du, C. X.; Zang, S. Q. Rational design of three two-fold interpenetrated metal-organic frameworks: luminescent Zn/Cd-metal-organic frameworks for detection of 2, 4, 6-trinitrophenol and nitrofurazone in the aqueous phase. Cryst. Grow. Th. Des. 2018, 18, 7173–7182.  doi: 10.1021/acs.cgd.8b01335

    10. [10]

      Zhai, Z. W.; Yang, S. H.; Luo, P.; Li, L. K.; Du, C. X.; Zang, S. Q. Dicarboxylate-induced structural diversity of luminescent Zn(II)/Cd(II) metal-organic frameworks based on the 2, 5-bis(4-pyridyl)thiazolo[5, 4-d]thiazole ligand. Eur. J. Inorg. Chem. 2019, 2019, 2725–2734.

    11. [11]

      Sheldrick, G. M. A short history of SHELX. Acta Cryst. 2008, A64, 112–122;
      Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Cryst. 2015, C71, 3–8.

    12. [12]

      Hagrman, D.; Haushalter, R. C.; Zubieta, J. Three-dimensional organic/inorganic hybrid materials constructed from one-dimensional copper diamine coordination polymers linked by bridging oxoanion tetrahedra:   [Cu(dpe)(MoO4)] and [Cu(dpe)(SO4)(H2O)] (dpe = 1, 2-trans-(4-pyridyl)ethene). Chem. Mater. 1998, 10, 361–365.  doi: 10.1021/cm9705350

    13. [13]

      Paul, A. K.; Madras, G.; Natarajan, S. Synthesis, structure, transformation studies and catalytic properties of open-framework cadmium thiosulfate compounds. Dalton Trans. 2010, 39, 2263–2279; Carlucci, L.; Ciani, G.; Proserpio, D. M.; Rizzato, S. New architectures from the self-assembly of MIISO4 salts with bis(4-pyridyl) ligands. The first case of polycatenation involving three distinct sets of 2D polymeric (4, 4)-layers parallel to a common axis. CrystEngComm. 2003, 5, 190–199; Xu, Y.; Bi, W. H.; Li, X.; Sun, D. F.; Cao, R.; Hong, M. C. A three-dimensional coordination framework containing μ4-sulfate anions [Cd(μ4-SO4)(bpy)]n (bpy = 4, 4΄-bipyridine). Inorg. Chem. Commun. 2003, 6, 495–497.

    14. [14]

      Ding, B.; Hua, C.; Kepert, C. J.; D'Alessandro, D. M. Influence of structure-activity relationships on through-space intervalence charge transfer in metal-organic frameworks with cofacial redox-active units. Chem. Sci. 2019, 10, 1392–1400.  doi: 10.1039/C8SC01128A

    15. [15]

      Peng, Q.; Peng, J. B.; Kang, E. T.; Neoh, K. G.; Cao, Y. Synthesis and electroluminescent properties of copolymers based on fluorene and 2, 5-di(2-hexyloxyphenyl)thiazolothiazole. Macromolecules 2005, 38, 7292–7298; Knighton, R. C.; Hallett, A. J.; Kariuki, B. M.; Pope, S. J. A. A one-step synthesis towards new ligands based on aryl-functionalised thiazolo[5, 4-d]thiazole chromophores. Tetrahedron. Lett. 2010, 51, 5419–5422; Zhang, Z.; Chen, Y. A.; Hung, W. Y.; Tang, W. F.; Hsu, Y. H.; Chen, C. L.; Meng, F. Y.; Chou, P. T. Control of the reversibility of excited-state intramolecular proton transfer (ESIPT) reaction: host-polarity tuning white organic light emitting diode on a new thiazolo[5, 4-d]thiazole ESIPT system. Chem. Mater. 2016, 28, 8815–8824.

  • 加载中
    1. [1]

      Ting WANGPeipei ZHANGShuqin LIURuihong WANGJianjun ZHANG . A Bi-CP-based solid-state thin-film sensor: Preparation and luminescence sensing for bioamine vapors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1615-1621. doi: 10.11862/CJIC.20240134

    2. [2]

      Jingqi Ma Huangjie Lu Junpu Yang Liangwei Yang Jian-Qiang Wang Xianlong Du Jian Lin . Rational design and synthesis of a uranyl-organic hybrid for X-ray scintillation. Chinese Journal of Structural Chemistry, 2024, 43(5): 100275-100275. doi: 10.1016/j.cjsc.2024.100275

    3. [3]

      Xin DongJing LiangZhijin XuHuajie WuLei WangShihai YouJunhua LuoLina Li . Exploring centimeter-sized crystals of bismuth-iodide perovskite toward highly sensitive X-ray detection. Chinese Chemical Letters, 2024, 35(6): 108708-. doi: 10.1016/j.cclet.2023.108708

    4. [4]

      Xiuwen XuQuan ZhouYacong WangYunjie HeQiang WangYuan WangBing Chen . Expanding the toolbox of metal-free organic halide perovskite for X-ray detection. Chinese Chemical Letters, 2024, 35(9): 109272-. doi: 10.1016/j.cclet.2023.109272

    5. [5]

      Husitu LinShuangkun ZhangDianfa ZhaoYongkang WangWei LiuFan YangJianjun LiuDongpeng YanZhanpeng Wu . Flexible polyphosphazene nanocomposite films: Enhancing stability and luminescence of CsPbBr3 perovskite nanocrystals. Chinese Chemical Letters, 2025, 36(4): 109795-. doi: 10.1016/j.cclet.2024.109795

    6. [6]

      Hong-Jin LiaoZhu ZhuoQing LiYoshihito ShiotaJonathan P. HillKatsuhiko ArigaZi-Xiu LuLu-Yao LiuZi-Ang NanWei WangYou-Gui Huang . A new class of crystalline X-ray induced photochromic materials assembled from anion-directed folding of a flexible cation. Chinese Chemical Letters, 2024, 35(8): 109052-. doi: 10.1016/j.cclet.2023.109052

    7. [7]

      Xuying YuJiarong MiYulan HanCai SunMingsheng WangGuocong Guo . A stable radiochromic semiconductive viologen-based metal–organic framework for dual-mode direct X-ray detection. Chinese Chemical Letters, 2024, 35(9): 109233-. doi: 10.1016/j.cclet.2023.109233

    8. [8]

      Xin Dong Tianqi Chen Jing Liang Lei Wang Huajie Wu Zhijin Xu Junhua Luo Li-Na Li . Structure design of lead-free chiral-polar perovskites for sensitive self-powered X-ray detection. Chinese Journal of Structural Chemistry, 2024, 43(6): 100256-100256. doi: 10.1016/j.cjsc.2024.100256

    9. [9]

      Yan-Jiang LiShu-Lei ChouYao Xiao . Detecting dynamic structural evolution based on in-situ high-energy X-ray diffraction technology for sodium layered oxide cathodes. Chinese Chemical Letters, 2025, 36(2): 110389-. doi: 10.1016/j.cclet.2024.110389

    10. [10]

      Yu PangMin WangNing-Hua YangMin XueYong Yang . One-pot synthesis of a giant twisted double-layer chiral macrocycle via [4 + 8] imine condensation and its X-ray structure. Chinese Chemical Letters, 2024, 35(10): 109575-. doi: 10.1016/j.cclet.2024.109575

    11. [11]

      Shihong WuRonghui ZhouHang ZhaoPeng Wu . Sonoafterglow luminescence for in vivo deep-tissue imaging. Chinese Chemical Letters, 2024, 35(10): 110026-. doi: 10.1016/j.cclet.2024.110026

    12. [12]

      Huijie AnChen YangZhihui JiangJunjie YuanZhongming QiuLonghao ChenXin ChenMutu HuangLinlang HuangHongju LinBiao ChengHongjiang LiuZhiqiang Yu . Luminescence-activated Pt(Ⅳ) prodrug for in situ triggerable cancer therapy. Chinese Chemical Letters, 2024, 35(7): 109134-. doi: 10.1016/j.cclet.2023.109134

    13. [13]

      Chaohui ZhengJing XiShiyi LongTianpei HeRui ZhaoXinyuan LuoNa ChenQuan Yuan . Persistent luminescence encoding for rapid and accurate oral-derived bacteria identification. Chinese Chemical Letters, 2025, 36(1): 110223-. doi: 10.1016/j.cclet.2024.110223

    14. [14]

      Yuanpeng Ye Longfei Yao Guofeng Liu . Engineering circularly polarized luminescence through symmetry manipulation in achiral tetraphenylpyrazine structures. Chinese Journal of Structural Chemistry, 2025, 44(2): 100460-100460. doi: 10.1016/j.cjsc.2024.100460

    15. [15]

      Hailang DengAbebe Reda WolduAbdul QayumZanling HuangWeiwei ZhuXiang PengPaul K. ChuLiangsheng Hu . Killing two birds with one stone: Enhancing the photoelectrochemical water splitting activity and stability of BiVO4 by Fe ions association. Chinese Chemical Letters, 2024, 35(12): 109892-. doi: 10.1016/j.cclet.2024.109892

    16. [16]

      Pan LiuYanming SunAlberto J. Fernández-CarriónBowen ZhangHui FuLunhua HeXing MingCongling YinXiaojun Kuang . Bismuth-based halide double perovskite Cs2KBiCl6: Disorder and luminescence. Chinese Chemical Letters, 2024, 35(5): 108641-. doi: 10.1016/j.cclet.2023.108641

    17. [17]

      Zhao-Xia LianXue-Zhi WangChuang-Wei ZhouJiayu LiMing-De LiXiao-Ping ZhouDan Li . Producing circularly polarized luminescence by radiative energy transfer from achiral metal-organic cage to chiral organic molecules. Chinese Chemical Letters, 2024, 35(8): 109063-. doi: 10.1016/j.cclet.2023.109063

    18. [18]

      Yongjing DengFeiyang LiZijian ZhouMengzhu WangYongkang ZhuJianwei ZhaoShujuan LiuQiang Zhao . Chiral induction and Sb3+ doping in indium halides to trigger second harmonic generation and circularly polarized luminescence. Chinese Chemical Letters, 2024, 35(8): 109085-. doi: 10.1016/j.cclet.2023.109085

    19. [19]

      Junying ZhangRuochen LiHaihua WangWenbing KangXing-Dong Xu . Photo-induced tunable luminescence from an aggregated amphiphilic ethylene-pyrene derivative in aqueous media. Chinese Chemical Letters, 2024, 35(6): 109216-. doi: 10.1016/j.cclet.2023.109216

    20. [20]

      Hui-Juan WangWen-Wen XingZhen-Hai YuYong-Xue LiHeng-Yi ZhangQilin YuHongjie ZhuYao-Yao WangYu Liu . Cucurbit[7]uril confined phenothiazine bridged bis(bromophenyl pyridine) activated NIR luminescence for lysosome imaging. Chinese Chemical Letters, 2024, 35(6): 109183-. doi: 10.1016/j.cclet.2023.109183

Metrics
  • PDF Downloads(2)
  • Abstract views(326)
  • HTML views(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return