Citation: Gai-Mei LIU, Wei-Jia MA, Yan WANG, Yan YANG, Xin-Jian SONG. Computational Insights into the Excited State Intramolecular Proton Transfer Reactions in Ortho-hydroxylated Oxazolines[J]. Chinese Journal of Structural Chemistry, ;2021, 40(5): 540-548. doi: 10.14102/j.cnki.0254–5861.2011–2990 shu

Computational Insights into the Excited State Intramolecular Proton Transfer Reactions in Ortho-hydroxylated Oxazolines

  • Corresponding author: Yan WANG, hbmdwangy@aliyun.com
  • Received Date: 22 September 2020
    Accepted Date: 7 December 2020

    Fund Project: the National Natural Science Foundation of China 21963008the National Natural Science Foundation of China 21767010the Natural Science Foundation of Hubei Province 2018CFB650the Postgraduate Research and Innovation Plan Project of Hubei Minzu University MYK2020001

Figures(5)

  • Excited-state intramolecular proton transfer (ESIPT) reactions of three ortho-hydroxylated oxazolines, 2-(4, 4-dimethyl-4, 5-dihydro-oxazol-2-yl)-phenol (DDOP), 4-(4, 4-dimethyl-4, 5-dihydro-oxazol-2-yl)-[1, 1΄-biphenyl]-3-ol (DDOP-C6H5) and 4-(4, 4-dimethyl-4, 5-dihydrooxazol-2-yl)-3-hydroxy-benzonitrile (DDOP-CN), have been systematically explored by density functional theory (DFT) and time-dependent density functional theory (TDDFT) methods. Two stable configurations (enol and keto forms) are found in the ground states (S0) for all the compounds while the enol form only exists in the first excited states (S1) for the compound modified with electron donating group (-C6H5). In addition, the calculated absorption and emission spectra of the compounds are in good agreements with the experiments. Infrared vibrational spectra at the hydrogen bond groups demonstrate that the intramolecular hydrogen bond O(1)−H(2)···N(3) in DDOP-C6H5 is strengthened in the S1 states, while the frontier molecular orbitals further reveal that the ESIPT reactions are more likely to occur in the S1 states for all the compounds. Besides, the proton transfer potential energy curves show that the enol forms can barely convert into keto forms in the S0 states because of the high energy barriers. Meanwhile, intramolecular proton transfer of all the compounds could occur in S1 states. The ESIPT reactions of the ortho-hydroxylated oxazolines are barrierless processes for unsubstituted DDOP and electron withdrawing substituted DDOP-CN, while the electron donating substituted DDOP-C6H5 has a small barrier, so the electron donating is unfavorable to the ESIPT reactions of ortho-hydroxylated oxazolines.
  • 加载中
    1. [1]

      Chen, M. J.; Runge, T.; Wang, L. L.; Li, R.; Feng, J.; Shu, X. L.; Shi, Q. S. Hydrogen bonding impact on chitosan plasticization. Carbohyd. Polym. 2018, 200, 115−121.  doi: 10.1016/j.carbpol.2018.07.062

    2. [2]

      Zuo, H. Y.; Christopher, J. R.; Wong, T. H. F.; Tong, K. Y.; Chan, J.; Au-Yeung, H. Y. Activity-based sensing of ascorbate by using copper-mediated oxidative bond cleavage. Chem. Eur. J. 2020, 26, 1−8.  doi: 10.1002/chem.201905547

    3. [3]

      Dalchand, N.; Cui, Q.; Geiger, F. M. Electrostatics, hydrogen bonding, and molecular structure at polycation and peptide: lipid membrane interfaces. ACS Appl. Mater. Inter. 2020, 12, 2149−2158.

    4. [4]

      Sessler, C. D.; Rahm, M.; Becker, S.; Goldberg, J. M.; Wang, F.; Lippard, S. J. CF2H, a hydrogen bond donor. J. Am. Chem. Soc. 2017, 139, 9325−9332.  doi: 10.1021/jacs.7b04457

    5. [5]

      Yang, Z. G.; Cao, J. F.; He, Y. X.; Yang, J. H.; Kim, T.; Peng, X. J.; Kim, J. S. Macro-/micro-environment-sensitive chemosensing and biological imaging. Chem. Soc. Rev. 2014, 43, 4563−4601.  doi: 10.1039/C4CS00051J

    6. [6]

      Brovarets', O. O.; Yurenko, Y. P.; Hovorun, D. M. Intermolecular СН···О/N Н-bonds in the biologically important pairs of natural nucleobases: a thorough quantum-chemical study. J. Biomol. Struct. Dyn. 2014, 32, 993−1022.  doi: 10.1080/07391102.2013.799439

    7. [7]

      Liang, S. Z.; Hammond, G. B.; Xu, B. Hydrogen bonding: regulator for nucleophilic fluorination. Chem. Eur. J. 2017, 23, 17850−17861.  doi: 10.1002/chem.201702664

    8. [8]

      Crabtree, R. H. Hypervalency, secondary bonding and hydrogen bonding: siblings under the skin. Chem. Soc. Rev. 2017, 46, 1720−1729.  doi: 10.1039/C6CS00688D

    9. [9]

      Robertson, C. C.; Wright, J. S.; Carrington, E. J.; Perutz, R. N.; Hunter, C. A.; Brammer, L. Hydrogen bonding vs. halogen bonding: the solvent decides. Chem. Sci. 2017, 8, 5392−5398.  doi: 10.1039/C7SC01801K

    10. [10]

      Wen, Z. C.; Jiang, Y. B. Ratiometric dual fluorescent receptor for anions under intramolecular charge transfer mechanism. J. Cheminform. 2005, 36, 11109−11115.

    11. [11]

      Kumari, N.; Jha, S.; Bhattacharya, S. Colorimetric probes on anthraimidazolediones for selective sensing of fluoride and cyanide ion via intramolecular charge transfer. J. Organomet. Chem. 2011, 76, 8215−8222.

    12. [12]

      Khrenova, M. G.; Nemukhin, A. V.; Domratcheva, T. Photoinduced electron transfer facilitates tautomerization of the conserved signaling glutamine side chain in BLUF protein light sensors. J. Phys. Chem. B 2013, 117, 2369−2377.  doi: 10.1021/jp312775x

    13. [13]

      Hankache, J.; Hanss, D.; Wenger, O. S. Hydrogen-bond strengthening upon photoinduced electron transfer in ruthenium-anthraquinone dyads interacting with hexafluoroisopropanol or water. J. Phys. Chem. A 2012, 116, 3347−3358.  doi: 10.1021/jp300090n

    14. [14]

      Xu, W. J.; Liu, S. J.; Sun, H. B.; Zhao, X. Y.; Zhao, Q.; Sun, S.; Cheng, S.; Ma, T. C.; Zhou, L. X.; Huang, W. RET-based probe for fluoride based on a phosphorescent iridium(III) complex containing triarylboron groups. J. Mater. Chem. 2011, 21, 7572−7581.  doi: 10.1039/c1jm00071c

    15. [15]

      Barman, N.; Singha, D.; Sahu, K. Fluorescence quenching of hydrogen-bonded coumarin 102-phenol complex: effect of excited-state hydrogen bonding strength. J. Phys. Chem. A 2013, 117, 3945−3953.  doi: 10.1021/jp4019298

    16. [16]

      Chang, D. H.; Ou, C. L.; Hsu, H. Y.; Huang, G. J.; Kao, C. Y.; Liu, Y. H.; Peng, S. M.; Diau, E. W. G.; Yang, J. S. Cooperativity and site-selectivity of intramolecular hydrogen bonds on the fluorescence quenching of modified GFP chromophores. J. Org. Chem. 2015, 80, 12431−12443.  doi: 10.1021/acs.joc.5b02303

    17. [17]

      Cao, H.; Liu, G. M.; Cai, J.; Wang, Y. Excited-state intramolecular proton transfer mechanisms of thiazole-based chemosensor: a TD-DFT study. Chin. J. Struct. Chem. 2020, 11, 1993−1940.

    18. [18]

      Yang, D. P.; Yang, G.; Jia, M.; Song, X. Y.; Zhang, Q. L. Comparing the substituent effects about ESIPT process for HBO derivatives. Comput. Theor. Chem. 2018, 1131, 51−56.  doi: 10.1016/j.comptc.2018.03.016

    19. [19]

      Li, Y. Q.; Ma, Y. Z.; Yang, Y. F.; Shi, W.; Lan, R. F.; Guo, Q. Effects of different substituents of methyl 5-R-salicylates on the excited state intramolecular proton transfer process. Phys. Chem. Chem. Phys. 2018, 20, 4208−4215.  doi: 10.1039/C7CP06987A

    20. [20]

      Berbigier, J. F.; Duarte, L. G. T. A.; Zawacki, M. F.; Araújo, B. B.; Santos, C. M.; Atvars, T. D. Z.; Gonçalves, P. F. B.; Petzhold, C. L.; Rodembusch, F. S. ATRP initiators based on proton transfer benzazole dyes: solid state photoactive polymer with very large stokes shift. ACS Appl. Polym. Mater. 2020, 2, 1406−1416.  doi: 10.1021/acsapm.0c00102

    21. [21]

      Padalkar, V. S.; Seki, S. Excited-state intramolecular proton-transfer (ESIPT)-inspired solid state emitters. Chem. Soc. Rev. 2015, 45, 169−202.

    22. [22]

      Kwon, J. E.; Park, S. Y. Advanced organic optoelectronic materials: harnessing excited-state intramolecular proton transfer (ESIPT) process. Adv. Mater. 2011, 23, 3615−3642.  doi: 10.1002/adma.201102046

    23. [23]

      Sedgwick, A. C.; Wu, L. L.; Han, H. H.; Bull, S. D.; He, X. P.; James, T. D.; Sessler, J. L.; Tang, B. Z.; Tian, H.; Yoon, J. Excited-state intramolecular proton-transfer (ESIPT) based fluorescence sensors and imaging agents. Chem. Soc. Rev. 2018, 47, 8842−8880.  doi: 10.1039/C8CS00185E

    24. [24]

      Zhang, Q. L.; Zhao, Z. J.; Cheng, S. B.; Yang, G.; Zhang, T. J.; Jia, M.; Song, X. Y. A theoretical investigation on the excited state intramolecular single or double proton transfer mechanism of a salicyladazine system. J. Chin. Chem. Soc. 2019, 66, 1416−1421.  doi: 10.1002/jccs.201800490

    25. [25]

      Zhang, Y. W.; Sun, Q. K.; Li, Z. P.; Zhi, Y. F.; Li, H.; Li, Z. P.; Xia, H.; Liu, X. M. Light-emitting conjugated microporous polymers based on an excited-state intramolecular proton transfer strategy and selective switch-off sensing of anions. Mater. Chem. Front. 2020, 4, 3040−3046.  doi: 10.1039/D0QM00384K

    26. [26]

      Sugiyama, K.; Tsuchiya, T.; Kikuchi, A.; Yagi, M. Optical and electron paramagnetic resonance studies of the excited triplet states of UV-B absorbers: 2-ethylhexyl salicylate and homomenthyl salicylate. Photochem. Photobiol. Sci. 2015, 14, 1651−1659.  doi: 10.1039/c5pp00138b

    27. [27]

      Kanamori, D.; Okamura, T. A.; Yamamoto, H.; Ueyama, N. Linear-to-turn conformational switching induced by deprotonation of unsymmetrically linked phenolic oligoamides. Angew. Chem. Int. Ed. 2005, 44, 969−972.  doi: 10.1002/anie.200461842

    28. [28]

      Yan, C. C.; Wang, X. D.; Liao, L. S. Organic lasers harnessing excited state intramolecular proton transfer process. ACS Photonics. 2020, 7, 1355−1366.  doi: 10.1021/acsphotonics.0c00407

    29. [29]

      Zhao, Y.; Ding, Y.; Yang, Y.; Shi, W.; Li, Y. Fluorescence deactivation mechanism for a new probe detecting phosgene based on ESIPT and TICT. Org. Chem. Front. 2019, 6, 597−602.  doi: 10.1039/C8QO01320A

    30. [30]

      Kaur, I.; Sharma, V.; Mobin, S. M.; Khajuria, A.; Ohri, P.; Kaur, P.; Singh, K. Aggregation tailored emission of a benzothiazole based derivative: photostable turn on bioimaging. RSC Adv. 2019, 9, 39970−39975.  doi: 10.1039/C9RA08149F

    31. [31]

      Duarte, L. T.; Germino, J. C.; Berbigier, J. F.; Barboza, C. A.; Faleiros, M. M.; Simoni, D. A.; Galante, M. T.; Holanda, M. S.; Rodembusch, F. S.; Atvars, T. D. Z. White-light generation from all-solution-processed OLEDs using a benzothiazole-salophen derivative reactive to the ESIPT process. Phys. Chem. Chem. Phys. 2019, 21, 1172−1182.  doi: 10.1039/C8CP06485G

    32. [32]

      Watwiangkham, A.; Roongcharoen, T.; Kungwan, N. Effect of nitrogen substitution and conjugation on photophysical properties and excited state intramolecular proton transfer reactions of methyl salicylate derivatives. J. Photoch. Photobio. A Chem. 2019, 389, 112267−11.

    33. [33]

      Berbigier, J. F.; Duarte, L. T.; Zawacki, M.; Araújo, B.; Santos, C.; Atvars, T. Z.; Goncalves, P. F. B.; Petzhold, C. L.; Rodembusch, F. S. ATRP initiators based on proton transfer benzazole dyes: solid state photoactive polymer with very large stokes shift. ACS Appl. Polym. Mater. 2020, 2, 1406−1416.  doi: 10.1021/acsapm.0c00102

    34. [34]

      Wang, R. J.; Liu, D.; Xu, K.; Li, J. Y. Substituent and solvent effects on excited state intramolecular proton transfer in novel 2-(2-hydroxyphenyl) benzothiazole derivatives. J. Photochem. Photobio. A Chem. 2009, 205, 61−69.  doi: 10.1016/j.jphotochem.2009.03.025

    35. [35]

      Mutai, T.; Sawatani, H.; Shida, T.; Shono, H.; Araki, K. Tuning of excited-state intramolecular proton transfer (ESIPT) fluorescence of imidazo[1, 2 a]pyridine in rigid matrices by substitution effect. J. Org. Chem. 2013, 78, 2482−2489.  doi: 10.1021/jo302711t

    36. [36]

      Tong, J. L.; Zhang, K. X.; Wang, J.; Li, H.; Zhou, F.; Wang, Z. M.; Zhang, X. J.; Tang, B. Z. Keto-salicylaldehyde azine: asymmetric substituent effect on their optical properties via electron-donating group insertion. J. Mater. Chem. C 2020, 8, 996−1001.  doi: 10.1039/C9TC05822B

    37. [37]

      Göbel, D.; Clamor, N.; Lork, E.; Nachtsheim, B. J. Aerobic C(sp2)-H hydroxylations of 2-aryloxazolines: fast access to excited-state intramolecular proton transfer (ESIPT)-based luminophores. Org. Lett. 2019, 21, 5373−5377.  doi: 10.1021/acs.orglett.9b01350

    38. [38]

      Becke, A. D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648−5652.  doi: 10.1063/1.464913

    39. [39]

      Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision B. 01, Gaussian, Inc., Wallingford CT 2009.

    40. [40]

      Mennucci, B.; Cancès, E.; Tomasi, J. Evaluation of solvent effects in isotropic and anisotropic dielectrics and in ionic solutions with a unified integral equation method: theoretical bases, computational implementation, and numerical applications. J. Phys. Chem. B 1997, 101, 10506−10517.  doi: 10.1021/jp971959k

    41. [41]

      Cammi, R.; Tomasi, J. Remarks on the use of the apparent surface charges (ASC) methods in solvation problems: iterative versus matrix-inversion procedures and the renormalization of the apparent charges. J. Comput. Chem. 1995, 16, 1449−1458.  doi: 10.1002/jcc.540161202

    42. [42]

      Miertuš, S.; Scrocco, E.; Tomasi, J. Electrostatic interaction of a solute with a continuum. A direct utilizaion of ab initio molecular potentials for the prevision of solvent effects. Chem. Phys. 1981, 55, 117−129.  doi: 10.1016/0301-0104(81)85090-2

    43. [43]

      Tian, L.; Chen, F. W. Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580−592.  doi: 10.1002/jcc.22885

    44. [44]

      Humphery, W.; Dalke, A.; Shulten, K. VMD: visual molecular dynamics. J. Mol. Graph. 1996, 14, 33−38.  doi: 10.1016/0263-7855(96)00018-5

    45. [45]

      Zhao, G. J.; Han, K. L. Hydrogen bonding in the electronic excited state. Acc. Chem. Res. 2012, 45, 404−413.  doi: 10.1021/ar200135h

    46. [46]

      Zhao, G. J.; Han, K. L. pH-Controlled twisted intramolecular charge transfer (TICT) excited state via changing the charge transfer direction. Phys. Chem. Chem. Phys. 2010, 12, 8914−8918.  doi: 10.1039/b924549a

    47. [47]

      Zhao, G. J.; Han, K. L. Early time hydrogen-bonding dynamics of photoexcited coumarin 102 in hydrogen-donating solvents: theoretical study. J. Phys. Chem. A 2007, 111, 2469−2474.  doi: 10.1021/jp068420j

    48. [48]

      Zhao, G. J.; Han, K. L. Time-dependent density functional theory study on hydrogen-bonded intramolecular charge-transfer excited state of 4-dimethylamino-benzonitrile in methanol. J. Comput. Chem. 2008, 29, 2010−2017.  doi: 10.1002/jcc.20957

    49. [49]

      Johnson, E. R.; Keinan, S.; Mori-Sanchez, P.; Contreras-Carcis, J.; Cohen, A. J.; Yang, W. Revealing noncovalent interactions. J. Am. Chem. Soc. 2010, 132, 6498−6506.  doi: 10.1021/ja100936w

  • 加载中
    1. [1]

      Qinghong ZhangQiao ZhaoXiaodi WuLi WangKairui ShenYuchen HuaCheng GaoYu ZhangMei PengKai Zhao . Visible-light-induced ring-opening cross-coupling of cycloalcohols with vinylazaarenes and enones via β-C-C scission enabled by proton-coupled electron transfer. Chinese Chemical Letters, 2025, 36(2): 110167-. doi: 10.1016/j.cclet.2024.110167

    2. [2]

      Mei PengWei-Min He . Photochemical synthesis and group transfer reactions of azoxy compounds. Chinese Chemical Letters, 2024, 35(8): 109899-. doi: 10.1016/j.cclet.2024.109899

    3. [3]

      Hui LiuXiangyang TangZhuang ChengYin HuYan YanYangze XuZihan SuFutong LiuPing Lu . Constructing multifunctional deep-blue emitters with weak charge transfer excited state for high-performance non-doped blue OLEDs and single-emissive-layer hybrid white OLEDs. Chinese Chemical Letters, 2024, 35(10): 109809-. doi: 10.1016/j.cclet.2024.109809

    4. [4]

      Kexin YuanYulei LiuHaoran FengYi LiuJun ChengBeiyang LuoQinglian WuXinyu ZhangYing WangXian BaoWanqian GuoJun Ma . Unlocking the potential of thin-film composite reverse osmosis membrane performance: Insights from mass transfer modeling. Chinese Chemical Letters, 2024, 35(5): 109022-. doi: 10.1016/j.cclet.2023.109022

    5. [5]

      Er-Meng WangZiyi WangXu BanXiaowei ZhaoYanli YinZhiyong Jiang . Chemoselective photocatalytic sulfenylamination of alkenes with sulfenamides via energy transfer. Chinese Chemical Letters, 2024, 35(12): 109843-. doi: 10.1016/j.cclet.2024.109843

    6. [6]

      Yu-Yu TanLin-Heng HeWei-Min He . Copper-mediated assembly of SO2F group via radical fluorine-atom transfer strategy. Chinese Chemical Letters, 2024, 35(9): 109986-. doi: 10.1016/j.cclet.2024.109986

    7. [7]

      Zhao-Xia LianXue-Zhi WangChuang-Wei ZhouJiayu LiMing-De LiXiao-Ping ZhouDan Li . Producing circularly polarized luminescence by radiative energy transfer from achiral metal-organic cage to chiral organic molecules. Chinese Chemical Letters, 2024, 35(8): 109063-. doi: 10.1016/j.cclet.2023.109063

    8. [8]

      Chaoqun MaYuebo WangNing HanRongzhen ZhangHui LiuXiaofeng SunLingbao Xing . Carbon dot-based artificial light-harvesting systems with sequential energy transfer and white light emission for photocatalysis. Chinese Chemical Letters, 2024, 35(4): 108632-. doi: 10.1016/j.cclet.2023.108632

    9. [9]

      Siwei WangWei-Lei ZhouYong Chen . Cucurbituril and cyclodextrin co-confinement-based multilevel assembly for single-molecule phosphorescence resonance energy transfer behavior. Chinese Chemical Letters, 2024, 35(12): 110261-. doi: 10.1016/j.cclet.2024.110261

    10. [10]

      Huanyu LiuGang YuRuoyao GuoHao QiJiayin ZhengTong JinZifeng ZhaoZuqiang BianZhiwei Liu . Direct identification of energy transfer mechanism in Ce-Mn system by constructing molecular heteronuclear complexes. Chinese Chemical Letters, 2025, 36(2): 110296-. doi: 10.1016/j.cclet.2024.110296

    11. [11]

      Shuai QiuJia HeXiao HuHongxia YanZhao GaoWei Tian . Cation-π enhanced triplet-to-singlet Förster resonance energy transfer for fluorescence afterglow. Chinese Chemical Letters, 2025, 36(4): 110057-. doi: 10.1016/j.cclet.2024.110057

    12. [12]

      Caixia LiYi QiuYufeng ZhaoWuliang Feng . Self assembled electron blocking and lithiophilic interface towards dendrite-free solid-state lithium battery. Chinese Chemical Letters, 2024, 35(4): 108846-. doi: 10.1016/j.cclet.2023.108846

    13. [13]

      Chunxiu YuZelin WuHongle ShiLingyun GuKexin ChenChuan-Shu HeYang LiuHeng ZhangPeng ZhouZhaokun XiongBo Lai . Insights into the electron transfer mechanisms of peroxydisulfate activation by modified metal-free acetylene black for degradation of sulfisoxazole. Chinese Chemical Letters, 2024, 35(8): 109334-. doi: 10.1016/j.cclet.2023.109334

    14. [14]

      Yiqian JiangZihan YangXiuru BiNan YaoPeiqing ZhaoXu Meng . Mediated electron transfer process in α-MnO2 catalyzed Fenton-like reaction for oxytetracycline degradation. Chinese Chemical Letters, 2024, 35(8): 109331-. doi: 10.1016/j.cclet.2023.109331

    15. [15]

      Xin LiLing ZhangYunyan FanShaojing LinYong LinYongsheng YingMeijiao HuHaiying GaoXianri XuZhongbiao XiaXinchuan LinJunjie LuXiang Han . Carbon interconnected microsized Si film toward high energy room temperature solid-state lithium-ion batteries. Chinese Chemical Letters, 2025, 36(2): 109776-. doi: 10.1016/j.cclet.2024.109776

    16. [16]

      Xiaoyao MaJinling ZhangGe FangHe GaoJie GaoLi FuYuanyuan HouGang Bai . Förster resonance energy transfer reveals phillygenin and swertiamarin concurrently target AKT on different binding domains to increase the anti-inflammatory effect. Chinese Chemical Letters, 2024, 35(5): 108823-. doi: 10.1016/j.cclet.2023.108823

    17. [17]

      Weixu Li Yuexin Wang Lin Li Xinyi Huang Mengdi Liu Bo Gui Xianjun Lang Cheng Wang . Promoting energy transfer pathway in porphyrin-based sp2 carbon-conjugated covalent organic frameworks for selective photocatalytic oxidation of sulfide. Chinese Journal of Structural Chemistry, 2024, 43(7): 100299-100299. doi: 10.1016/j.cjsc.2024.100299

    18. [18]

      Zhaorui SongQiulian HaoBing LiYuwei YuanShanshan ZhangYongkuan SuoHai-Hao HanZhen Cheng . NIR-Ⅱ fluorescence lateral flow immunosensor based on efficient energy transfer probe for point-of-care testing of tumor biomarkers. Chinese Chemical Letters, 2025, 36(1): 109834-. doi: 10.1016/j.cclet.2024.109834

    19. [19]

      Yi LiuZhe-Hao WangGuan-Hua XueLin ChenLi-Hua YuanYi-Wen LiDa-Gang YuJian-Heng Ye . Photocatalytic dicarboxylation of strained C–C bonds with CO2 via consecutive visible-light-induced electron transfer. Chinese Chemical Letters, 2024, 35(6): 109138-. doi: 10.1016/j.cclet.2023.109138

    20. [20]

      Yun-Xin HuangLin-Qian YuKe-Yu ChenHao WangShou-Yan ZhaoBao-Cheng HuangRen-Cun Jin . Biochar with self-doped N to activate peroxymonosulfate for bisphenol-A degradation via electron transfer mechanism: The active edge graphitic N site. Chinese Chemical Letters, 2024, 35(9): 109437-. doi: 10.1016/j.cclet.2023.109437

Metrics
  • PDF Downloads(2)
  • Abstract views(328)
  • HTML views(11)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return