Citation: Yong ZHANG, Hong-Ni QIN, Bao-Long LI, Bing WU. Syntheses, Structures and Photocatalytic Degradation Properties of Two Copper(Ⅱ) Coordination Polymers with Flexible Bis(imidazole) Ligand[J]. Chinese Journal of Structural Chemistry, ;2021, 40(5): 595-602. doi: 10.14102/j.cnki.0254–5861.2011–2989 shu

Syntheses, Structures and Photocatalytic Degradation Properties of Two Copper(Ⅱ) Coordination Polymers with Flexible Bis(imidazole) Ligand

  • Corresponding author: Bao-Long LI, libaolong@suda.edu.cn
  • Received Date: 22 September 2020
    Accepted Date: 25 November 2020

    Fund Project: the Natural Science Foundation of Jiangsu Province BK20161212the Priority Academic Program Development of Jiangsu Higher Education Institutions, and the project of scientific and technological infrastructure of Suzhou SZS201905

Figures(7)

  • Two copper(Ⅱ) coordination polymers {[Cu(bib)(nip)]·1.5H2O}n (1) and [Cu2(bib)(glu)2]n (2) (bib = 1, 4-bis(2-methyl-imidazol-1-yl)butane, H2nip = 5-nitroisophthalic acid, H2glu = glutaric acid) were synthesized by the hydrothermal method and characterized by single-crystal X-ray diffraction, elemental analyses, IR and solid-state diffuse-reflection spectra. 1 forms a 2D network with the point symbol of (44·62) and 2D → 2D polythreaded network. 2 constructs the 6-connected 3D network based on the [Cu2(COO)2] dimer with the point symbol of (44·610·8). The energy band gaps (Eg) of 1 and 2 were 2.453 and 2.162 eV, respectively. 1 and 2 present high photocatalytic activity for the degradation of methylene blue under visible light irradiation.
  • 加载中
    1. [1]

      Li, W. W.; Yu, H. Q.; He, Z. Towards sustainable wastewater treatment by using microbial fuel cells-centered technologies. Energy Environ. Sci. 2014, 7, 911–924.

    2. [2]

      Bizani, E.; Fytianos, K.; Poulios, I. V.; Tsiridis, V. Photocatalytic decolorization and degradation of dye solutions and wastewaters in the presence of titanium dioxide. J. Hazard. Mater. 2006, 136, 85–94.  doi: 10.1016/j.jhazmat.2005.11.017

    3. [3]

      Dias, E. M.; Petit, C. Towards the use of metal-organic frameworks for water reuse: a review of the recent advances in the field of organic pollutants removal and degradation and the next steps in the field. J. Mater. Chem. A 2005, 3, 22484–22506.

    4. [4]

      Liu, G. M.; Li, X. Z.; Zhao, J. C. Photooxidation pathway of sulforhodamine-B. Dependence on the adsorption mode on TiO2 exposed to visible light radiation. Environ. Sci. Technol. 2000, 34, 3982–3990.  doi: 10.1021/es001064c

    5. [5]

      Chen, Q.; Tong, R.; Chen, X.; Xue, Y.; Xie, Z.; Kuang, Q.; Zheng, L. Ultrafine ZnO quantum dot-modified TiO2 composite photocatalysts: the role of the quantum size effect in heterojunction-enhanced photocatalytic hydrogen evolution. Catal. Sci. Technol. 2018, 8, 1296–1303.  doi: 10.1039/C7CY02310C

    6. [6]

      Tang, Z. R.; Han, B.; Han, C.; Xu, Y. J. One-dimensional CdS based materials for artificial photoredox reactions. J. Mater. Chem. A 2017, 5, 2387–2410.  doi: 10.1039/C6TA06373J

    7. [7]

      Mosleh, S.; Rahimi, M. R.; Ghaedi, M.; Dashtian, K.; Hajati, S. Sonochemical-assisted synthesis of CuO/Cu2O/Cu nanoparticles as efficient photocatalyst for simultaneous degradation of pollutant dyes in rotating packed bed reactor: LED illumination and central composite design optimization. Ultrason. Sonochem. 2018, 40, 601–610.  doi: 10.1016/j.ultsonch.2017.08.007

    8. [8]

      Alvaro, M.; Carbonell, E.; Ferrer, B.; Xamena, F. X. L.; Carcia, H. Semiconductor behavior of a metal-organic framework (MOF). Chem. Eur. J. 2007, 13, 5106–5112.  doi: 10.1002/chem.200601003

    9. [9]

      Wang, C. C.; Li, J. R.; Lv, X. L.; Zhang, Y. Q.; Guo, G. S. Photocatalytic organic pollutants degradation in metal-organic frameworks. Energy Environ. Sci. 2014, 7, 2831–2867.  doi: 10.1039/C4EE01299B

    10. [10]

      Xu, W. T.; Ma, L.; Ke, F.; Peng, F. M.; Xu, G. S.; Shen, Y. H.; Zhu, J. F.; Qiu, L. G.; Yuan, Y. P. Metal-organic frameworks MIL-88A hexagonal microrods as a new photocatalyst for efficient decolorization of methylene blue dye. Dalton Trans. 2014, 43, 3792–3798.  doi: 10.1039/C3DT52574K

    11. [11]

      Dong, J. P.; Shi, Z. Z.; Li, B.; Wang, L. Y. Synthesis of a novel 2D zinc(Ⅱ) metal-organic framework for photocatalytic degradation of organic dyes in water. Dalton Trans. 2019, 48, 17626–17632.  doi: 10.1039/C9DT03727F

    12. [12]

      Qian, L. L.; Baltov, V. A.; Wang, Z. X.; Ding, J. G.; Zhu, L. M.; Li, K.; Li, B. L.; Wu, B. Sonochemical synthesis and characterization of four nanostructural nickel coordination polymers and photocatalytic degradation of methylene blue. Ultrason. Sonochem. 2019, 56, 213–218.  doi: 10.1016/j.ultsonch.2019.04.015

    13. [13]

      Duan, X.; Zheng, W.; Yu, B.; Ji, Z. G. A microporous metal-organic framework with soc topology for adsorption and separation selectivity of C2H2/CO2. Chem. Pap. 2019, 73, 2371–2375.  doi: 10.1007/s11696-019-00794-x

    14. [14]

      He, Y. P.; Tan, Y. X.; Zhang, J. Gas sorption, second-order nonlinear optics, and luminescence properties of a series of lanthanide-organic frameworks based on nanosized tris((4-carboxyl)phenylduryl)amine ligand. Inorg. Chem. 2013, 52, 12758–12762.  doi: 10.1021/ic4020256

    15. [15]

      Shi, L.; Shao, D.; Shen, F. Y.; Wei, X. Q.; Wang, X. Y. A three-dimensional Mn-[Mo(CN)7]4 ferrimagnet containing formate as a second bridging ligand. Chin. J. Chem. 2019, 38, 19–24.

    16. [16]

      Pan, M.; Liao, W. M.; Yin, S. Y.; Sun, S. S.; Su, C. Y. Single-phase white-light emitting and photoluminescent color-tuning coordination assemblies. Chem. Rev. 2018, 118, 8889−8935.  doi: 10.1021/acs.chemrev.8b00222

    17. [17]

      Wang, H. P.; Wang, H. L.; Li, B. L. Synthesis, structure, luminescence and thermal stability properties of a new (3, 4)-connected 2D Zn coordination polymer. Chin. J. Struct. Chem. 2020, 39, 1835–1840.

    18. [18]

      Hu, Z.; Deibert, B. J.; Li, J. Luminescent metal-organic frameworks for chemical sensing and explosive detection. Chem. Soc. Rev. 2014, 43, 5815–5840.  doi: 10.1039/C4CS00010B

    19. [19]

      Ju, P.; Zhang, E. S.; Wang, X.; Yang, H.; Wang, J. J. A novel 3D Cd-based luminescence metal-organic framework: synthesis, structure and luminescent sensing properties. Chin. J. Chem. 2019, 38, 1578–1584.

    20. [20]

      Wang, C. K.; Xing, F. F.; Bai, Y. L.; Zhao, Y. M.; Li, M. X.; Zhu, S. R. Synthesis and structure of semirigid tetracarboxylate copper(Ⅱ) porous coordination polymers and their versatile high-efficiency catalytic dye degradation in neutral aqueous solution. Cryst. Growth Des. 2016, 2277–2288.

    21. [21]

      Kitagawa, S.; Kitaura, R.; Noro, S. Functional porous coordination polymers. Angew. Chem. Int. Ed. 2004, 43, 2334–2375.  doi: 10.1002/anie.200300610

    22. [22]

      Lin, Z. J.; Lu, J.; Hong, M.; Cao, R. Metal-organic frameworks based on flexible ligands (FL-MOFs): structures and applications. Chem. Soc. Rev. 2014, 43, 5867–5895.  doi: 10.1039/C3CS60483G

    23. [23]

      Zheng, C. Y.; Yang, H. W.; Wang, J. D.; Man, T. L.; Zhao, Z. B.; Zhao, H. K.; Wang, X. G.; Yang, E. C. A novel three-dimensional triazole-based zinc(Ⅱ) coordination polymer controlled by the spacers of dicarboxylate ligand with (42. 62. 82)(4. 62. 83) topology. Chin. J. Struct. Chem. 2019, 38, 1571–1577.

    24. [24]

      Xu, G. C.; Ding, Y. J.; Okamura, T.; Huang, Y. Q.; Bai, Z. S.; Hua, Q.; Liu, G. X.; Sun, W. Y.; Ueyama, N. Coordination polymers with varied metal centers and flexible tripodal ligand 1, 3, 5-tris(imidazol-1-ylmethyl)benzene: synthesis, structure, and reversible anion exchange property. Cryst. Growth Des. 2009, 9, 395–403.  doi: 10.1021/cg800600g

    25. [25]

      Lv, X. X.; Shi, L. L.; Li, K.; Li, B. L.; Li, H. Y. An unusual porous cationic metal-organic framework based on tetranuclear hydroxyl-copper(Ⅱ) cluster for fast and highly efficient dichromate trapping through a single-crystal to single-crystal process. Chem. Commun. 2017, 53, 1860–1863.  doi: 10.1039/C6CC09676J

    26. [26]

      Qin, J. H.; Ma, L. F.; Hu, Y.; Wang, L. Y. Syntheses, structures and photoluminescence of five zinc(Ⅱ) coordination polymers based on 5-methoxyisophthalate and flexible N-donor ancillary ligands. CrystEngComm. 2012, 14, 2891–2898.  doi: 10.1039/c2ce06581a

    27. [27]

      Zheng, L. Y.; Li, K.; Zhao, S.; Liu, L.; Li, B. L.; Wu, B. Syntheses, structures and properties of eight coordination polymers based on bis(imidazole) and biscarboxylate ligands. Polyhedron 2016, 104, 1–8.  doi: 10.1016/j.poly.2015.11.020

    28. [28]

      Sheldrick, G. M. SHELXS-2016, Program for Crystal Structure Solution. University of Göttingen, Germany 2016.

    29. [29]

      Sheldrick, G. M. SHELXL-2016, Program for the Refinement of Crystal Structures from Diffraction Data. University of Göttingen, Germany 2016.

    30. [30]

      Blatov, V. A.; Shevchenko, A. P.; Proserpio, D. M. Applied topological analysis of crystal structures with the program package ToposPro. Cryst. Growth Des. 2014, 14, 3576–3586.  doi: 10.1021/cg500498k

  • 加载中
    1. [1]

      Fei ZHOUXiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236

    2. [2]

      Weizhong LINGXiangyun CHENWenjing LIUYingkai HUANGYu LI . Syntheses, crystal structures, and catalytic properties of three zinc(Ⅱ), cobalt(Ⅱ) and nickel(Ⅱ) coordination polymers constructed from 5-(4-carboxyphenoxy)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1803-1810. doi: 10.11862/CJIC.20240068

    3. [3]

      Zhenghua ZHAOQin ZHANGYufeng LIUZifa SHIJinzhong GU . Syntheses, crystal structures, catalytic and anti-wear properties of nickel(Ⅱ) and zinc(Ⅱ) coordination polymers based on 5-(2-carboxyphenyl)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 621-628. doi: 10.11862/CJIC.20230342

    4. [4]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    5. [5]

      Jing RENRuikui YANXiaoli CHENHuali CUIHua YANGJijiang WANG . Synthesis and fluorescence sensing of a highly sensitive and multi-response cadmium coordination polymer. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 574-586. doi: 10.11862/CJIC.20240287

    6. [6]

      Junying LIXinyan CHENXihui DIAOMuhammad YaseenChao CHENHao WANGChuansong QIWei LI . Chiral fluorescent sensor Tb3+@Cd-CP based on camphoric acid for the enantioselective recognition of R- and S-propylene glycol. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2497-2504. doi: 10.11862/CJIC.20240084

    7. [7]

      Zhenzhong MEIHongyu WANGXiuqi KANGYongliang SHAOJinzhong GU . Syntheses and catalytic performances of three coordination polymers with tetracarboxylate ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1795-1802. doi: 10.11862/CJIC.20240081

    8. [8]

      Xiumei LIYanju HUANGBo LIUYaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109

    9. [9]

      Xiumei LILinlin LIBo LIUYaru PAN . Syntheses, crystal structures, and characterizations of two cadmium(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 613-623. doi: 10.11862/CJIC.20240273

    10. [10]

      Shuwen SUNGaofeng WANG . Two cadmium coordination polymers constructed by varying Ⅴ-shaped co-ligands: Syntheses, structures, and fluorescence properties. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 613-620. doi: 10.11862/CJIC.20230368

    11. [11]

      Dongdong YANGJianhua XUEYuanyu YANGMeixia WUYujia BAIZongxuan WANGQi MA . Design and synthesis of two coordination polymers for the rapid detection of ciprofloxacin based on triphenylpolycarboxylic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2466-2474. doi: 10.11862/CJIC.20240266

    12. [12]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    13. [13]

      Jun LIHuipeng LIHua ZHAOQinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401

    14. [14]

      Wenda WANGJinku MAYuzhu WEIShuaishuai MA . Waste biomass-derived carbon modified porous graphite carbon nitride heterojunction for efficient photodegradation of oxytetracycline in seawater. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 809-822. doi: 10.11862/CJIC.20230353

    15. [15]

      Huirong LIUHao XUDunru ZHUJunyong ZHANGChunhua GONGJingli XIE . Syntheses, structures, photochromic and photocatalytic properties of two viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1368-1376. doi: 10.11862/CJIC.20240066

    16. [16]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    17. [17]

      Ting WANGPeipei ZHANGShuqin LIURuihong WANGJianjun ZHANG . A Bi-CP-based solid-state thin-film sensor: Preparation and luminescence sensing for bioamine vapors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1615-1621. doi: 10.11862/CJIC.20240134

    18. [18]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    19. [19]

      Gaofeng WANGShuwen SUNYanfei ZHAOLixin MENGBohui WEI . Structural diversity and luminescence properties of three zinc coordination polymers based on bis(4-(1H-imidazol-1-yl)phenyl)methanone. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 849-856. doi: 10.11862/CJIC.20230479

    20. [20]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

Metrics
  • PDF Downloads(5)
  • Abstract views(348)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return