A Sensitive Material for Specifically Treating Tetracycline in Water Environment
- Corresponding author: Min-Rui OU, omr0464@sina.com Huang-Hao YANG, hhyang@fzu.edu.cn
Citation:
Min-Rui OU, Zi-Hui ZHANG, Yu-Kai WEN, Xiao-Ping XU, Huang-Hao YANG. A Sensitive Material for Specifically Treating Tetracycline in Water Environment[J]. Chinese Journal of Structural Chemistry,
;2021, 40(5): 646-652.
doi:
10.14102/j.cnki.0254–5861.2011–2984
Barhoumi, N.; Oturan, N.; Ammar, S.; Gadri, A.; Oturan, M. A.; Brillas, E. Enhanced degradation of the antibiotic tetracycline by heterogeneous electro-Fenton with pyrite catalysis. Environ. Chem. Lett. 2017, 15, 689–693.
doi: 10.1007/s10311-017-0638-y
Klavarioti, M.; Mantzavinos, D.; Kassinos, D. Removal of residual pharmaceuticals from aqueous systems by advanced oxidation processes. Environ. Int. 2009, 35, 402–417.
doi: 10.1016/j.envint.2008.07.009
Zhou, L. J.; Ying, G. G.; Liu, S.; Zhao, J. L.; Yang, B.; Chen, Z. F. Occurrence and fate of eleven classes of antibiotics in two typical wastewater treatment plants in South China. Sci. Total Environ. 2013, 452–453, 365–376.
Ciofu, O.; Rojo-Molinero, E.; Macià, M. D.; Oliver, A. Antibiotic treatment of biofilm infections. Apmis Acta Pathologica Microbiologica Et Immunologica Scandinavica 2017, 125, 304–319.
doi: 10.1111/apm.12673
Martinez, J. L. Environmental pollution by antibiotics and by antibiotic resistance determinants. Environ. Pollut. 2009, 157, 2893–2902.
doi: 10.1016/j.envpol.2009.05.051
Boonsaner, M.; Hawker, D. W. Evaluation of food chain transfer of the antibiotic oxytetracycline and human risk assessment. Chemosphere 2013, 93, 1009–1014.
doi: 10.1016/j.chemosphere.2013.05.070
Näslund, J.; Hedman, J. E.; Agestrand, C. Effects of the antibiotic ciprofloxacin on the bacterial community structure and degradation of pyrene in marine sediment. Aquat. Toxicol. 2008, 90, 223–227.
doi: 10.1016/j.aquatox.2008.09.002
Underwood, J. C.; Harvey, R. W.; Metge, D. W.; Repert, D. A.; Baumgartner, L. K.; Smith, R. L. Effects of the antimicrobial sulfamethoxazole on groundwater bacterial enrichment. Environ. Sci. Technol. 2011, 45, 3096–3101.
doi: 10.1021/es103605e
Rebeca, L. S.; Sandra, P.; Antoni, G.; Mira, P.; Damià, B. Fully automated determination of 74 pharmaceuticals in environmental and waste waters by online solid phase extraction-liquid chromatography-electrospray-tandem mass spectrometry. Talanta. 2011, 83, 410–424.
Li, H.; Shen, Y.; Li, G.; Hong, D.; Bo, X.; Jing, D. Spatial distribution and historical records of mercury sedimentation in urban lakes under urbanization impacts. Sci. Total Environ. 2013, 445–446, 117–125.
Liu, M.; Zhang, Y.; Yang, M.; Tian, Z.; Ren, L.; Zhang, S. Abundance and distribution of tetracycline resistance genes and mobile elements in an oxytetracycline production wastewater treatment system. Environ. Sci. Technol. 2012, 46, 7551–7557.
doi: 10.1021/es301145m
Daghrir, R.; Drogui, P. Tetracycline antibiotics in the environment: a review. Environ. Chem. Lett. 2013, 11, 209–227.
doi: 10.1007/s10311-013-0404-8
Hoseini, M.; Safari, G. H.; Kamani, H.; Jaafari, J.; Ghanbarain, M.; Mahvi, A. H. Sonocatalytic degradation of tetracycline antibiotic in aqueous solution by sonocatalysis. Toxico. Environ. Chem. 2013, 95, 1680–1689.
doi: 10.1080/02772248.2014.901328
Jeong, J.; Song, W.; Cooper, W. J.; Jung, J.; Greaves, J. Degradation of tetracycline antibiotics: mechanisms and kinetic studies for advanced oxidation/reduction processes. Chemosphere 2010, 78, 533–540.
doi: 10.1016/j.chemosphere.2009.11.024
Koyuncu, I.; Arikan, O. A.; Wiesner, M. R.; Rice, C. Removal of hormones and antibiotics by nanofiltration membranes. J. Membrane Sci. 2008, 309, 94–101.
doi: 10.1016/j.memsci.2007.10.010
Luu, H. T.; Lee, K. Degradation and changes in toxicity and biodegradability of tetracycline during ozone/ultraviolet-based advanced oxidation. Water Sci. Technol. 2014, 70, 1229–1235.
doi: 10.2166/wst.2014.350
Shi, Y.; Wang, X.; Qi, Z.; Diao, M.; Gao, M.; Xing, S. Sorption and biodegradation of tetracycline by nitrifying granules and the toxicity of tetracycline on granules. J. Hazard. Mater. 2011, 191, 103–109.
doi: 10.1016/j.jhazmat.2011.04.048
Zhu, X.; Wang, Y.; Sun, R.; Zhou, D. Photocatalytic degradation of tetracycline in aqueous solution by nanosized TiO2. Chemosphere 2013, 92, 925–932.
doi: 10.1016/j.chemosphere.2013.02.066
Liu, Y.; Lu, X.; Wu, F.; Deng, N. Adsorption and photooxidation of pharmaceuticals and personal care products on clay minerals. React. Kinet. Mech. Cat. 2011, 104, 61–73.
doi: 10.1007/s11144-011-0349-5
Chang, P.; Li, Z.; Yu, T.; Munkhbayer, S.; Kuo, T.; Hung, Y. Sorptive removal of tetracycline from water by palygorskite. J. Hazard. Mater. 2009, 165, 148–155.
doi: 10.1016/j.jhazmat.2008.09.113
Khan, M. H.; Bae, H.; Jung, J. Tetracycline degradation by ozonation in the aqueous phase: proposed degradation intermediates and pathway. J. Hazard. Mater. 2010, 181, 659–665.
doi: 10.1016/j.jhazmat.2010.05.063
Xue, H.; Liao, S. X.; Chen, Y. L.; Qian, Q. R.; Liu, X. P.; Chen, Q. H. Application and mechanism of ZnSb2O4 and ZnSb2O6 in the photocatalytic degradation of tetracycline hydrochloride. Chin. J. Struct. Chem. 2019, 38, 837–847.
Hinrichs, W.; Kisker, C.; Duvel, M.; Muller, A.; Tovar, K.; Hillen, W. Structure of the tet repressor-tetracycline complex and regulation of antibiotic resistance. Science 1994, 264, 418–420.
doi: 10.1126/science.8153629
Liang, Y.; Zhang, Y.; Guo, Z.; Xie, J.; Bai, T.; Zou, J. Ultrafast preparation of monodisperse Fe3O4 nanoparticles by microwave-assisted thermal decomposition. Chem Eur. J. 2016, 22, 11807–11815.
doi: 10.1002/chem.201601434
Ghosh, S.; Banthia, A. K. Synthesis of photoresponsive polyamidoamine (PAMAM) dendritic architecture. Tetrahedron Lett. 2001, 42, 501–503.
doi: 10.1016/S0040-4039(00)01996-1
Tomalia, D. A.; Baker, H.; Dewald, J.; Hall, M.; Kallos, G.; Martin, S. A new class of polymers: starburst-dendritic macromolecules. Polym. J. 1985, 34, 117–132.
Chen, Y.; Zhang, H.; Luo, Y.; Song, J. Occurrence and dissipation of veterinary antibiotics in two typical swine wastewater treatment systems in east China. Environ. Monit. Assess. 2012, 184, 2205–2217.
doi: 10.1007/s10661-011-2110-y
Zhang, T.; Ma, N.; Ali, A.; Wei, Q.; Wu, D.; Ren, X. Electrochemical ultrasensitive detection of cardiac troponin I using covalent organic frameworks for signal amplification. Biosens. Bioelectron. 2018, 119, 176–181.
doi: 10.1016/j.bios.2018.08.020
Cao, J.; Yang, Z.; Xiong, W.; Zhou, Y.; Peng, Y.; Li, X.; Zhou, C.; Zhang, Y. One-step synthesis of Co-doped UiO-66 nanoparticle with enhanced removal efficiency of tetracycline: simultaneous adsorption and photocatalysis. Chem. Eng. J. 2017, 353, 126–137.
Dear, B. J.; Hung, J.; Truskett, T. M.; Johnston, K. P. Contrasting the influence of cationic amino acids on the viscosity and stability of a highly concentrated monoclonal antibody. Pharm. Res. 2017, 34, 1–15.
doi: 10.1007/s11095-016-2039-5
Levison, S. A.; Jancsi, A. N.; Dandliker, W. B. Temperature effects on the kinetics of the primary antigen-antibody combination. Biochem. Bioph. Res. Co. 1968, 33, 942–948.
doi: 10.1016/0006-291X(68)90403-8
De, D. G.; Cruz-Gil, P.; Mateo-Martí, E.; Fernández-Calvo, P.; Rivas, L. A.; Parro, V. Assessing antibody microarrays for space missions: effect of long-term storage, gamma radiation, and temperature shifts on printed and fluorescently labeled antibodies. Astrobiology 2011, 11, 759–773.
doi: 10.1089/ast.2011.0647
Kim, S. H.; Shon, H. K.; Ngo, H. H. Adsorption characteristics of antibiotics trimethoprim on powdered and granular activated carbon. J. Ind. Eng. Chem. 2010, 16, 344–349.
doi: 10.1016/j.jiec.2009.09.061
Putra, E. K.; Pranowo, R.; Sunarso, J.; Indraswati, N.; Ismadji, S. Performance of activated carbon and bentonite for adsorption of amoxicillin from wastewater: mechanisms, isotherms and kinetics. Water Res. 2009, 43, 2419–2430.
doi: 10.1016/j.watres.2009.02.039
Adams, C.; Wang, Y.; Loftin, K.; Meyer, M. Removal of antibiotics from surface and distilled water in conventional water treatment processes. J. Environ. Eng. ASCE. 2002, 128, 253–260.
doi: 10.1061/(ASCE)0733-9372(2002)128:3(253)
Li, S.; Li, X.; Wang, D. Membrane (RO-UF) filtration for antibiotic wastewater treatment and recovery of antibiotics. Sep. Purif. Technol. 2004, 34, 109–114.
doi: 10.1016/S1383-5866(03)00184-9
Huan ZHANG , Jijiang WANG , Guang FAN , Long TANG , Erlin YUE , Chao BAI , Xiao WANG , Yuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291
Zhinan GUO , Junli WANG , Qiang ZHAO , Zhifang JIA , Zuopeng LI , Kewei WANG , Yong GUO . Cu2O/Bi2CrO6 Z-scheme heterojunction: Construction and photocatalytic degradation properties for tetracycline. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 741-752. doi: 10.11862/CJIC.20240403
Jian Peng , Yue Jiang , Shuangyu Wu , Yanran Cheng , Jingyu Liang , Yixin Wang , Zhuo Li , Sijie Lin . A nonradical oxidation process initiated by Ti-peroxo complex showed high specificity toward the degradation of tetracycline antibiotics. Chinese Chemical Letters, 2024, 35(5): 108903-. doi: 10.1016/j.cclet.2023.108903
Zeyu XU , Anlei DANG , Bihua DENG , Xiaoxin ZUO , Yu LU , Ping YANG , Wenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099
Lu LIU , Huijie WANG , Haitong WANG , Ying LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489
Qiang ZHAO , Zhinan GUO , Shuying LI , Junli WANG , Zuopeng LI , Zhifang JIA , Kewei WANG , Yong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435
Min WANG , Dehua XIN , Yaning SHI , Wenyao ZHU , Yuanqun ZHANG , Wei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477
Ping ZHANG , Chenchen ZHAO , Xiaoyun CUI , Bing XIE , Yihan LIU , Haiyu LIN , Jiale ZHANG , Yu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014
Yaping ZHANG , Tongchen WU , Yun ZHENG , Bizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256
Jiahui YU , Jixian DONG , Yutong ZHAO , Fuping ZHAO , Bo GE , Xipeng PU , Dafeng ZHANG . The morphology control and full-spectrum photodegradation tetracycline performance of microwave-hydrothermal synthesized BiVO4:Yb3+,Er3+ photocatalyst. Journal of Fuel Chemistry and Technology, 2025, 53(3): 348-359. doi: 10.1016/S1872-5813(24)60514-1
Fugui XI , Du LI , Zhourui YAN , Hui WANG , Junyu XIANG , Zhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291
Mingqi Wang , Shixin Fa , Jiate Yu , Guoxian Zhang , Yi Yan , Qing Liu , Qiuyu Zhang . Light-controlled protein imprinted nanospheres with variable recognition specificity. Chinese Chemical Letters, 2025, 36(2): 110124-. doi: 10.1016/j.cclet.2024.110124
Wenhao Chen , Jian Du , Hanbin Zhang , Hancheng Wang , Kaicheng Xu , Zhujun Gao , Jiaming Tong , Jin Wang , Junjun Xue , Ting Zhi , Longlu Wang . Surface treatment of GaN nanowires for enhanced photoelectrochemical water-splitting. Chinese Chemical Letters, 2024, 35(9): 109168-. doi: 10.1016/j.cclet.2023.109168
Mengxing Liu , Jing Liu , Hongxing Zhang , Jianan Tao , Peiwen Fan , Xin Lv , Wei Guo . One-pot accessing of meso–aryl heptamethine indocyanine NIR fluorophores and potential application in developing dye-antibody conjugate for imaging tumor. Chinese Chemical Letters, 2025, 36(4): 109994-. doi: 10.1016/j.cclet.2024.109994
Yanhua Peng , Xin Yu , Ting Wang . Adaptive nanoconfined Fenton-like reactions: Tailoring carbon pathways for sustainable water treatment and energy harvesting. Chinese Chemical Letters, 2024, 35(12): 110198-. doi: 10.1016/j.cclet.2024.110198
Dan-Ying Xing , Xiao-Dan Zhao , Chuan-Shu He , Bo Lai . Kinetic study and DFT calculation on the tetracycline abatement by peracetic acid. Chinese Chemical Letters, 2024, 35(9): 109436-. doi: 10.1016/j.cclet.2023.109436
Xue Zhao , Mengshan Chen , Dan Wang , Haoran Zhang , Guangzhi Hu , Yingtang Zhou . Ultrafine nano-copper derived from dopamine polymerization & synchronous adsorption achieve electrochemical purification of nitrate to ammonia in complex water environments. Chinese Chemical Letters, 2024, 35(8): 109327-. doi: 10.1016/j.cclet.2023.109327
Kai Han , Guohui Dong , Ishaaq Saeed , Tingting Dong , Chenyang Xiao . Morphology and photocatalytic tetracycline degradation of g-C3N4 optimized by the coal gangue. Chinese Journal of Structural Chemistry, 2024, 43(2): 100208-100208. doi: 10.1016/j.cjsc.2023.100208
Xin Li , Wanting Fu , Ruiqing Guan , Yue Yuan , Qinmei Zhong , Gang Yao , Sheng-Tao Yang , Liandong Jing , Song Bai . Nucleophiles promotes the decomposition of electrophilic functional groups of tetracycline in ZVI/H2O2 system: Efficiency and mechanism. Chinese Chemical Letters, 2024, 35(10): 109625-. doi: 10.1016/j.cclet.2024.109625
Fengrui Yang , Debing Wang , Xinying Zhang , Jie Zhang , Zhichao Wu , Qiaoying Wang . Synergistic effects of peroxydisulfate on UV/O3 process for tetracycline degradation: Mechanism and pathways. Chinese Chemical Letters, 2024, 35(10): 109599-. doi: 10.1016/j.cclet.2024.109599
(a) Interaction of tetracyclic and protein; (b) Overall structure of tetracyclic and protein complexes
(a) EDC-NHS concentration; (b) pH; (c) fixed time
(a) initial concentration of tetracycline, (b) pH and (c) temperature