Citation: Min-Rui OU, Zi-Hui ZHANG, Yu-Kai WEN, Xiao-Ping XU, Huang-Hao YANG. A Sensitive Material for Specifically Treating Tetracycline in Water Environment[J]. Chinese Journal of Structural Chemistry, ;2021, 40(5): 646-652. doi: 10.14102/j.cnki.0254–5861.2011–2984 shu

A Sensitive Material for Specifically Treating Tetracycline in Water Environment

  • Corresponding author: Min-Rui OU, omr0464@sina.com Huang-Hao YANG, hhyang@fzu.edu.cn
  • Received Date: 18 September 2020
    Accepted Date: 9 November 2020

    Fund Project: the Scientific Research Initiation Project of Fuzhou University for Thousand Talents Program Experts 0041-510248the Science and Technology Development Fund of Fuzhou University 0041-510299

Figures(3)

  • There are currently many materials for treating residual antibiotics in the environment, but none of them can specifically remove antibiotics. In addition, these materials are not sensitive enough to low concentrations of antibiotics. Here we show that a sensitive and specific material was developed by the preparation of magnetic Fe3O4-PAMAM-antibody complexes for treating tetracycline. The prepared antibody complexes can specifically treat tetracycline from aqueous solutions and the tetracycline removal ability by adsorption was also investigated. Controlled experiments were carried out with the effects of solution pH, temperature, and initial concentration of the tetracycline. The tetracycline was completely removed within 35 min at room temperature 30 ℃ with the maximum removal rate of almost 100%. Therefore, this material for specifically combining antigen and antibody to treat tetracycline indicated good application prospects for the waste water treatment.
  • 加载中
    1. [1]

      Barhoumi, N.; Oturan, N.; Ammar, S.; Gadri, A.; Oturan, M. A.; Brillas, E. Enhanced degradation of the antibiotic tetracycline by heterogeneous electro-Fenton with pyrite catalysis. Environ. Chem. Lett. 2017, 15, 689–693.  doi: 10.1007/s10311-017-0638-y

    2. [2]

      Klavarioti, M.; Mantzavinos, D.; Kassinos, D. Removal of residual pharmaceuticals from aqueous systems by advanced oxidation processes. Environ. Int. 2009, 35, 402–417.  doi: 10.1016/j.envint.2008.07.009

    3. [3]

      Zhou, L. J.; Ying, G. G.; Liu, S.; Zhao, J. L.; Yang, B.; Chen, Z. F. Occurrence and fate of eleven classes of antibiotics in two typical wastewater treatment plants in South China. Sci. Total Environ. 2013, 452–453, 365–376.

    4. [4]

      Ciofu, O.; Rojo-Molinero, E.; Macià, M. D.; Oliver, A. Antibiotic treatment of biofilm infections. Apmis Acta Pathologica Microbiologica Et Immunologica Scandinavica 2017, 125, 304–319.  doi: 10.1111/apm.12673

    5. [5]

      Martinez, J. L. Environmental pollution by antibiotics and by antibiotic resistance determinants. Environ. Pollut. 2009, 157, 2893–2902.  doi: 10.1016/j.envpol.2009.05.051

    6. [6]

      Boonsaner, M.; Hawker, D. W. Evaluation of food chain transfer of the antibiotic oxytetracycline and human risk assessment. Chemosphere 2013, 93, 1009–1014.  doi: 10.1016/j.chemosphere.2013.05.070

    7. [7]

      Näslund, J.; Hedman, J. E.; Agestrand, C. Effects of the antibiotic ciprofloxacin on the bacterial community structure and degradation of pyrene in marine sediment. Aquat. Toxicol. 2008, 90, 223–227.  doi: 10.1016/j.aquatox.2008.09.002

    8. [8]

      Underwood, J. C.; Harvey, R. W.; Metge, D. W.; Repert, D. A.; Baumgartner, L. K.; Smith, R. L. Effects of the antimicrobial sulfamethoxazole on groundwater bacterial enrichment. Environ. Sci. Technol. 2011, 45, 3096–3101.  doi: 10.1021/es103605e

    9. [9]

      Rebeca, L. S.; Sandra, P.; Antoni, G.; Mira, P.; Damià, B. Fully automated determination of 74 pharmaceuticals in environmental and waste waters by online solid phase extraction-liquid chromatography-electrospray-tandem mass spectrometry. Talanta. 2011, 83, 410–424.

    10. [10]

      Li, H.; Shen, Y.; Li, G.; Hong, D.; Bo, X.; Jing, D. Spatial distribution and historical records of mercury sedimentation in urban lakes under urbanization impacts. Sci. Total Environ. 2013, 445–446, 117–125.

    11. [11]

      Liu, M.; Zhang, Y.; Yang, M.; Tian, Z.; Ren, L.; Zhang, S. Abundance and distribution of tetracycline resistance genes and mobile elements in an oxytetracycline production wastewater treatment system. Environ. Sci. Technol. 2012, 46, 7551–7557.  doi: 10.1021/es301145m

    12. [12]

      Daghrir, R.; Drogui, P. Tetracycline antibiotics in the environment: a review. Environ. Chem. Lett. 2013, 11, 209–227.  doi: 10.1007/s10311-013-0404-8

    13. [13]

      Hoseini, M.; Safari, G. H.; Kamani, H.; Jaafari, J.; Ghanbarain, M.; Mahvi, A. H. Sonocatalytic degradation of tetracycline antibiotic in aqueous solution by sonocatalysis. Toxico. Environ. Chem. 2013, 95, 1680–1689.  doi: 10.1080/02772248.2014.901328

    14. [14]

      Jeong, J.; Song, W.; Cooper, W. J.; Jung, J.; Greaves, J. Degradation of tetracycline antibiotics: mechanisms and kinetic studies for advanced oxidation/reduction processes. Chemosphere 2010, 78, 533–540.  doi: 10.1016/j.chemosphere.2009.11.024

    15. [15]

      Koyuncu, I.; Arikan, O. A.; Wiesner, M. R.; Rice, C. Removal of hormones and antibiotics by nanofiltration membranes. J. Membrane Sci. 2008, 309, 94–101.  doi: 10.1016/j.memsci.2007.10.010

    16. [16]

      Luu, H. T.; Lee, K. Degradation and changes in toxicity and biodegradability of tetracycline during ozone/ultraviolet-based advanced oxidation. Water Sci. Technol. 2014, 70, 1229–1235.  doi: 10.2166/wst.2014.350

    17. [17]

      Shi, Y.; Wang, X.; Qi, Z.; Diao, M.; Gao, M.; Xing, S. Sorption and biodegradation of tetracycline by nitrifying granules and the toxicity of tetracycline on granules. J. Hazard. Mater. 2011, 191, 103–109.  doi: 10.1016/j.jhazmat.2011.04.048

    18. [18]

      Zhu, X.; Wang, Y.; Sun, R.; Zhou, D. Photocatalytic degradation of tetracycline in aqueous solution by nanosized TiO2. Chemosphere 2013, 92, 925–932.  doi: 10.1016/j.chemosphere.2013.02.066

    19. [19]

      Liu, Y.; Lu, X.; Wu, F.; Deng, N. Adsorption and photooxidation of pharmaceuticals and personal care products on clay minerals. React. Kinet. Mech. Cat. 2011, 104, 61–73.  doi: 10.1007/s11144-011-0349-5

    20. [20]

      Chang, P.; Li, Z.; Yu, T.; Munkhbayer, S.; Kuo, T.; Hung, Y. Sorptive removal of tetracycline from water by palygorskite. J. Hazard. Mater. 2009, 165, 148–155.  doi: 10.1016/j.jhazmat.2008.09.113

    21. [21]

      Khan, M. H.; Bae, H.; Jung, J. Tetracycline degradation by ozonation in the aqueous phase: proposed degradation intermediates and pathway. J. Hazard. Mater. 2010, 181, 659–665.  doi: 10.1016/j.jhazmat.2010.05.063

    22. [22]

      Xue, H.; Liao, S. X.; Chen, Y. L.; Qian, Q. R.; Liu, X. P.; Chen, Q. H. Application and mechanism of ZnSb2O4 and ZnSb2O6 in the photocatalytic degradation of tetracycline hydrochloride. Chin. J. Struct. Chem. 2019, 38, 837–847.

    23. [23]

      Hinrichs, W.; Kisker, C.; Duvel, M.; Muller, A.; Tovar, K.; Hillen, W. Structure of the tet repressor-tetracycline complex and regulation of antibiotic resistance. Science 1994, 264, 418–420.  doi: 10.1126/science.8153629

    24. [24]

      Liang, Y.; Zhang, Y.; Guo, Z.; Xie, J.; Bai, T.; Zou, J. Ultrafast preparation of monodisperse Fe3O4 nanoparticles by microwave-assisted thermal decomposition. Chem Eur. J. 2016, 22, 11807–11815.  doi: 10.1002/chem.201601434

    25. [25]

      Ghosh, S.; Banthia, A. K. Synthesis of photoresponsive polyamidoamine (PAMAM) dendritic architecture. Tetrahedron Lett. 2001, 42, 501–503.  doi: 10.1016/S0040-4039(00)01996-1

    26. [26]

      Tomalia, D. A.; Baker, H.; Dewald, J.; Hall, M.; Kallos, G.; Martin, S. A new class of polymers: starburst-dendritic macromolecules. Polym. J. 1985, 34, 117–132.

    27. [27]

      Chen, Y.; Zhang, H.; Luo, Y.; Song, J. Occurrence and dissipation of veterinary antibiotics in two typical swine wastewater treatment systems in east China. Environ. Monit. Assess. 2012, 184, 2205–2217.  doi: 10.1007/s10661-011-2110-y

    28. [28]

      Zhang, T.; Ma, N.; Ali, A.; Wei, Q.; Wu, D.; Ren, X. Electrochemical ultrasensitive detection of cardiac troponin I using covalent organic frameworks for signal amplification. Biosens. Bioelectron. 2018, 119, 176–181.  doi: 10.1016/j.bios.2018.08.020

    29. [29]

      Cao, J.; Yang, Z.; Xiong, W.; Zhou, Y.; Peng, Y.; Li, X.; Zhou, C.; Zhang, Y. One-step synthesis of Co-doped UiO-66 nanoparticle with enhanced removal efficiency of tetracycline: simultaneous adsorption and photocatalysis. Chem. Eng. J. 2017, 353, 126–137.

    30. [30]

      Dear, B. J.; Hung, J.; Truskett, T. M.; Johnston, K. P. Contrasting the influence of cationic amino acids on the viscosity and stability of a highly concentrated monoclonal antibody. Pharm. Res. 2017, 34, 1–15.  doi: 10.1007/s11095-016-2039-5

    31. [31]

      Levison, S. A.; Jancsi, A. N.; Dandliker, W. B. Temperature effects on the kinetics of the primary antigen-antibody combination. Biochem. Bioph. Res. Co. 1968, 33, 942–948.  doi: 10.1016/0006-291X(68)90403-8

    32. [32]

      De, D. G.; Cruz-Gil, P.; Mateo-Martí, E.; Fernández-Calvo, P.; Rivas, L. A.; Parro, V. Assessing antibody microarrays for space missions: effect of long-term storage, gamma radiation, and temperature shifts on printed and fluorescently labeled antibodies. Astrobiology 2011, 11, 759–773.  doi: 10.1089/ast.2011.0647

    33. [33]

      Kim, S. H.; Shon, H. K.; Ngo, H. H. Adsorption characteristics of antibiotics trimethoprim on powdered and granular activated carbon. J. Ind. Eng. Chem. 2010, 16, 344–349.  doi: 10.1016/j.jiec.2009.09.061

    34. [34]

      Putra, E. K.; Pranowo, R.; Sunarso, J.; Indraswati, N.; Ismadji, S. Performance of activated carbon and bentonite for adsorption of amoxicillin from wastewater: mechanisms, isotherms and kinetics. Water Res. 2009, 43, 2419–2430.  doi: 10.1016/j.watres.2009.02.039

    35. [35]

      Adams, C.; Wang, Y.; Loftin, K.; Meyer, M. Removal of antibiotics from surface and distilled water in conventional water treatment processes. J. Environ. Eng. ASCE. 2002, 128, 253–260.  doi: 10.1061/(ASCE)0733-9372(2002)128:3(253)

    36. [36]

      Li, S.; Li, X.; Wang, D. Membrane (RO-UF) filtration for antibiotic wastewater treatment and recovery of antibiotics. Sep. Purif. Technol. 2004, 34, 109–114.  doi: 10.1016/S1383-5866(03)00184-9

  • 加载中
    1. [1]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    2. [2]

      Zhinan GUOJunli WANGQiang ZHAOZhifang JIAZuopeng LIKewei WANGYong GUO . Cu2O/Bi2CrO6 Z-scheme heterojunction: Construction and photocatalytic degradation properties for tetracycline. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 741-752. doi: 10.11862/CJIC.20240403

    3. [3]

      Jian PengYue JiangShuangyu WuYanran ChengJingyu LiangYixin WangZhuo LiSijie Lin . A nonradical oxidation process initiated by Ti-peroxo complex showed high specificity toward the degradation of tetracycline antibiotics. Chinese Chemical Letters, 2024, 35(5): 108903-. doi: 10.1016/j.cclet.2023.108903

    4. [4]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    5. [5]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    6. [6]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    7. [7]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    8. [8]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    9. [9]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    10. [10]

      Jiahui YUJixian DONGYutong ZHAOFuping ZHAOBo GEXipeng PUDafeng ZHANG . The morphology control and full-spectrum photodegradation tetracycline performance of microwave-hydrothermal synthesized BiVO4:Yb3+,Er3+ photocatalyst. Journal of Fuel Chemistry and Technology, 2025, 53(3): 348-359. doi: 10.1016/S1872-5813(24)60514-1

    11. [11]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    12. [12]

      Mingqi WangShixin FaJiate YuGuoxian ZhangYi YanQing LiuQiuyu Zhang . Light-controlled protein imprinted nanospheres with variable recognition specificity. Chinese Chemical Letters, 2025, 36(2): 110124-. doi: 10.1016/j.cclet.2024.110124

    13. [13]

      Wenhao ChenJian DuHanbin ZhangHancheng WangKaicheng XuZhujun GaoJiaming TongJin WangJunjun XueTing ZhiLonglu Wang . Surface treatment of GaN nanowires for enhanced photoelectrochemical water-splitting. Chinese Chemical Letters, 2024, 35(9): 109168-. doi: 10.1016/j.cclet.2023.109168

    14. [14]

      Mengxing LiuJing LiuHongxing ZhangJianan TaoPeiwen FanXin LvWei Guo . One-pot accessing of meso–aryl heptamethine indocyanine NIR fluorophores and potential application in developing dye-antibody conjugate for imaging tumor. Chinese Chemical Letters, 2025, 36(4): 109994-. doi: 10.1016/j.cclet.2024.109994

    15. [15]

      Yanhua PengXin YuTing Wang . Adaptive nanoconfined Fenton-like reactions: Tailoring carbon pathways for sustainable water treatment and energy harvesting. Chinese Chemical Letters, 2024, 35(12): 110198-. doi: 10.1016/j.cclet.2024.110198

    16. [16]

      Dan-Ying XingXiao-Dan ZhaoChuan-Shu HeBo Lai . Kinetic study and DFT calculation on the tetracycline abatement by peracetic acid. Chinese Chemical Letters, 2024, 35(9): 109436-. doi: 10.1016/j.cclet.2023.109436

    17. [17]

      Xue ZhaoMengshan ChenDan WangHaoran ZhangGuangzhi HuYingtang Zhou . Ultrafine nano-copper derived from dopamine polymerization & synchronous adsorption achieve electrochemical purification of nitrate to ammonia in complex water environments. Chinese Chemical Letters, 2024, 35(8): 109327-. doi: 10.1016/j.cclet.2023.109327

    18. [18]

      Kai Han Guohui Dong Ishaaq Saeed Tingting Dong Chenyang Xiao . Morphology and photocatalytic tetracycline degradation of g-C3N4 optimized by the coal gangue. Chinese Journal of Structural Chemistry, 2024, 43(2): 100208-100208. doi: 10.1016/j.cjsc.2023.100208

    19. [19]

      Xin LiWanting FuRuiqing GuanYue YuanQinmei ZhongGang YaoSheng-Tao YangLiandong JingSong Bai . Nucleophiles promotes the decomposition of electrophilic functional groups of tetracycline in ZVI/H2O2 system: Efficiency and mechanism. Chinese Chemical Letters, 2024, 35(10): 109625-. doi: 10.1016/j.cclet.2024.109625

    20. [20]

      Fengrui YangDebing WangXinying ZhangJie ZhangZhichao WuQiaoying Wang . Synergistic effects of peroxydisulfate on UV/O3 process for tetracycline degradation: Mechanism and pathways. Chinese Chemical Letters, 2024, 35(10): 109599-. doi: 10.1016/j.cclet.2024.109599

Metrics
  • PDF Downloads(2)
  • Abstract views(423)
  • HTML views(26)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return