Citation: Hong-Mei GUO, Le FU, Guang-Ping LI, Mao SHU, Zhi-Hua LIN. Discovery of Novel Acetaldehyde Dehydrogenase 1A1 (ALDH1A1) Inhibitors by Utilizing 3D-QSAR, Molecular Docking and Molecular Dynamics Simulation[J]. Chinese Journal of Structural Chemistry, ;2021, 40(5): 549-564. doi: 10.14102/j.cnki.0254–5861.2011–2982 shu

Discovery of Novel Acetaldehyde Dehydrogenase 1A1 (ALDH1A1) Inhibitors by Utilizing 3D-QSAR, Molecular Docking and Molecular Dynamics Simulation

  • Corresponding author: Mao SHU, maoshu@cqut.edu.cn Zhi-Hua LIN, zhlin@cqit.edu.cn
  • Received Date: 15 September 2020
    Accepted Date: 5 October 2020

    Fund Project: the key project of Chongqing natural science foundation cstc2015jcyjBX0080

Figures(13)

  • Acetaldehyde dehydrogenase 1A1 is a hopeful therapeutic target to ovarian cancer. In this present work, 3D-QSAR, molecular docking and molecular dynamics (MD) simulations were implemented on a series of quinoline-based ALDH1A1 inhibitors to investigate novel acetaldehyde dehydrogenase 1A1 inhibitors as anti-cancer adjuvant drugs for ovarian cancer. Two reliable CoMFA (Q2 = 0.583, R2 = 0.967) and CoMSIA (Q2 = 0.640, R2 = 0.977) models of ALDH1A1 inhibitors were established. Novel ALDH1A1 inhibitors were predicted by the 3D-QSAR models. Molecular docking reveals important residues for protein-compound interactions, and the results revealed ALDH1A1 inhibitors had stronger electrostatic interaction and binding affinity with key residues of protein, such as Phe171, Val174 and Cys303. Molecular dynamics simulations further verified the results of molecular docking. The above information provided significant guidance for the design of novel ALDH1A1 inhibitors.
  • 加载中
    1. [1]

      Satori, A. M.; Chad, B.; Dimitrios, S.; Vasilis, V. Non-P450 aldehyde oxidizing enzymes: the aldehyde dehydrogenase superfamily. Expert Opin. Drug. Metab. Toxicol. 2008, 4, 697−720.  doi: 10.1517/17425255.4.6.697

    2. [2]

      Black, W.; Vasiliou, V. The aldehyde dehydrogenase gene superfamily resource center. Hum. Genomics 2009, 4, 136−7.  doi: 10.1186/1479-7364-4-2-136

    3. [3]

      Ma, I.; Allan, A. L. The role of human aldehyde dehydrogenase in normal and cancer stem cells. Stem. Cell Rev. Rep. 2011, 7, 292−306.  doi: 10.1007/s12015-010-9208-4

    4. [4]

      William, B. R.; Gael, C. Sjögren-larsson syndrome: diversity of mutations and polymorphisms in the fatty aldehyde dehydrogenase gene (ALDH3A2). Hum. Mutat. 2005, 26, 1−10.  doi: 10.1002/humu.20181

    5. [5]

      Neslihan, O. M.; Bilgin, Y.; Mürüvet, E.; Ali, K. T.; Tolunay, B.; Güler, O. Type II hyperprolinemia: a case report. Turk. J. Pediatr. 2004, 46, 167−9.

    6. [6]

      Shinjiro, A.; Boris, M. H.; Andrea, N.; Patrizia, M.; Gajja, S. S.; George, D. M. Mutational spectrum of the succinate semialdehyde dehydrogenase (ALDH5A1) gene and functional analysis of 27 novel disease-causing mutations in patients with SSADH deficiency. Hum. Mutat. 2003, 22, 442−450.  doi: 10.1002/humu.10288

    7. [7]

      Mills, P. B.; Struys, E.; Jakobs, C.; Plecko, B.; Baxter, P.; Baumgartner, M. Mutations in antiquitin in individuals with pyridoxine-dependent seizures. Nat. Med. 2006, 12, 307−309.  doi: 10.1038/nm1366

    8. [8]

      Matthias, R. B.; Chien-an, A. H.; Shlomo, A.; Gary, S.; Cassandra, O.; Bernard, A. Hyperammonemia with reduced ornithine, citrulline, arginine and proline: a new inborn error caused by a mutation in the gene encoding delta1-pyrroline-5-carboxylate synthase. Hum. Mol. Genet. 2000, 9, 2853−2858.  doi: 10.1093/hmg/9.19.2853

    9. [9]

      Enomoto, N.; Takase, S.; Takada, N.; Takada, A. Alcoholic liver disease in heterozygotes of mutant and normal aldehyde dehydrogenase-2 genes. Hepatology 1991, 13, 1071−1075.  doi: 10.1002/hep.1840130611

    10. [10]

      Akira, Y.; Taro, M.; Tai, O.; Tetsuji, Y.; Sachio, M.; Susumu, H. Alcohol and aldehyde dehydrogenase gene polymorphisms and oropharyngolaryngeal, esophageal and stomach cancers in Japanese alcoholics. Carcinogenesis 2001, 22, 433−439.  doi: 10.1093/carcin/22.3.433

    11. [11]

      Kamino, K.; Nagasaka, K.; Imagawa, M.; Yamamoto, H.; Yoneda, H.; Ueki, A.; Ohta, S. Deficiency in mitochondrial aldehyde dehydrogenase increases the risk for late-onset alzheimer's disease in the Japanese population. Biochem. Biophys. Res. Commun. 2000, 273, 192−196.  doi: 10.1006/bbrc.2000.2923

    12. [12]

      Mele, L.; Liccardo, D.; Tirino, V. Evaluation and isolation of cancer stem cells using ALDH activity assay. Cancer Stem. Cells 2017, 43−48.

    13. [13]

      Tomita, H.; Tanaka, K.; Tanaka, T.; Hara, A. Aldehyde dehydrogenase 1A1 in stem cells and cancer. Oncotarget. 2016, 7−15.

    14. [14]

      Vasiliou, V.; Thompson, D. C.; Smith, C.; Fujita, M.; Chen, Y. Aldehyde dehydrogenases: from eye crystallins to metabolic disease and cancer stem cells. Chem. Biol. Interact. 2013, 202, 2−10.  doi: 10.1016/j.cbi.2012.10.026

    15. [15]

      Naora, H.; Montell, D. J. Ovarian cancer metastasis: integrating insights from disparate model organisms. Nat. Rev. Cancer 2005, 5, 355−366.  doi: 10.1038/nrc1611

    16. [16]

      Meng, E.; Mitra, A.; Tripathi, K.; Finan, M. A.; Scalici, J.; McClellan, S.; Rocconi, R. P. ALDH1A1 maintains ovarian cancer stem cell-like properties by altered regulation of cell cycle checkpoint and DNA repair network signaling. PLoS One 2014, 9, e107142−11.  doi: 10.1371/journal.pone.0107142

    17. [17]

      Nwani, N.; Condello, S.; Wang, Y. A novel ALDH1A1 inhibitor targets cells with stem cell characteristics in ovarian cancer. Cancers 2019, 11, 502−19.  doi: 10.3390/cancers11040502

    18. [18]

      Kimble-Hill, A. C.; Parajuli, B.; Chen, C. H. Development of selective inhibitors for aldehyde dehydrogenases based on substituted indole-2, 3-diones. J. Med. Chem. 2014, 57, 714−722.  doi: 10.1021/jm401377v

    19. [19]

      Morgan, C. A.; Hurley, T. D. Development of a high-throughput in vitro assay to identify selective inhibitors for human ALDH1A1. Chem. Biol. Interact. 2015, 234, 29−37.  doi: 10.1016/j.cbi.2014.10.028

    20. [20]

      Yasgar, A.; Titus, S. A.; Wang, Y. A high-content assay enables the automated screening and identification of small molecules with specific ALDH1A1 inhibitory activity. PLoS One 2017, 12, e0170937−19.  doi: 10.1371/journal.pone.0170937

    21. [21]

      Yang, S. M.; Yasgar, A.; Miller, B. Discovery of NCT-501, a potent and selective theophyllne-based inhibitor of aldehyde dehydrogenase 1A1 (ALDH1A1). J. Med. Chem. 2015, 58, 5967−5978.  doi: 10.1021/acs.jmedchem.5b00577

    22. [22]

      Yang, S. M.; Martinez, N. J.; Yasgar, A. Discovery of orally bioavailable, quinoline-based aldehyde dehydrogenase 1A1 (ALDH1A1) inhibitors with potent cellular activity. J. Med. Chem. 2018, 61, 4883−4903.  doi: 10.1021/acs.jmedchem.8b00270

    23. [23]

      Fu, L.; Chen, Y.; Xu, C. M.; Wu, T.; Shu, M. 3D-QSAR, HQSAR, molecular docking, and new compound design study of 1, 3, 6-trisubstituted 1, 4-diazepan-7-ones as human KLK7 inhibitors. Med. Chem. Res. 2020, 29−18.

    24. [24]

      Clark, M.; Cramer, R. D.; Van, O. Validation of the general purpose tripos 5. 2 force field. J. Comput. Chem. 1989, 10, 982−1012.  doi: 10.1002/jcc.540100804

    25. [25]

      Purcell, W. P.; Singer, J. A. A brief review and table of semiempirical parameters used in the Hückel molecular orbital method. J. Chem. Eng. Data 1967, 12, 235−246.  doi: 10.1021/je60033a020

    26. [26]

      Eriksson, L.; Jaworska, J.; Worth, A. P.; Cronin, M. T. D.; Mcdowell, R. M. Methods for reliability and uncertainty assessment and for applicability evaluations of classification- and regression-based QSARs. Environ. Health Perspect. 2003, 111. 1361−1375.

    27. [27]

      Golbraikh, A.; Tropsha, A. Beware of q2! J. Mol. Graph. Model. 2002, 20, 269−276.  doi: 10.1016/S1093-3263(01)00123-1

    28. [28]

      Mitra, I.; Roy, P. P.; Kar, S. On further application of r2 m as a metric for validation of QSAR models. J. Chemom. 2009, 24, 22−33.

    29. [29]

      Pratim, R. P.; Paul, S.; Mitra, I. On two novel parameters for validation of predictive QSAR models. Molecules 2009, 14, 1660−1701.  doi: 10.3390/molecules14051660

    30. [30]

      Balupuri, A.; Balasubramanian, P. K; Cho, S. J. 3D-QSAR, docking, molecular dynamics simulation and free energy calculation studies of some pyrimidine derivatives as novel JAK3 inhibitors. Arab. J. Chem. 2020, 13, 1052−78.  doi: 10.1016/j.arabjc.2017.09.009

    31. [31]

      Huddle, B. C.; Grimley, E.; Buchman, C. D. Structure-based optimization of a novel class of aldehyde dehydrogenase 1A (ALDH1A) subfamily-selective inhibitors as potential adjuncts to ovarian cancer chemotherapy. J. Med. Chem. 2018, 61, 8754−73.  doi: 10.1021/acs.jmedchem.8b00930

    32. [32]

      Albert, P. L. Screening for human ADME/Tox drug properties in drug discovery. Drug. Discov. Today 2001, 6, 357−366.  doi: 10.1016/S1359-6446(01)01712-3

    33. [33]

      Ekins, S.; Rose, J. In silico ADME/Tox: the state of the art. J. Mol. Graph. Model. 2002, 20, 305−309.  doi: 10.1016/S1093-3263(01)00127-9

    34. [34]

      Daina, A.; Michielin, O.; Zoete, V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017, 7−13.

    35. [35]

      Götz, A. W.; Williamson, M. J.; Xu, D. Routine microsecond molecular dynamics simulations with AMBER on GPUs. 1. Generalized born. J. Chem. Theory Comput. 2012, 8, 1542−1555.  doi: 10.1021/ct200909j

    36. [36]

      Salomon, F. R.; Götz, A. W.; Poole, D. Routine microsecond molecular dynamics simulations with AMBER on GPUs. 2. Explicit solvent particle mesh Ewald. J. Chem. Theory Comput. 2013, 9, 3878−88.  doi: 10.1021/ct400314y

    37. [37]

      Lindorff, L. K.; Piana, S.; Palmo, K. Improved side-chain torsion potentials for the amber ff99SB protein force field. Proteins 2010, 78, 1950−1958.  doi: 10.1002/prot.22711

    38. [38]

      Wang, J.; Wolf, R. M.; Caldwell, J. W. Development and testing of a general amber force field. J. Comput. Chem. 2004, 25, 1157−1174.  doi: 10.1002/jcc.20035

    39. [39]

      Chen, F.; Sun, H.; Wang, J.; Zhu, F.; Liu, H.; Wang, Z.; Hou, T. Assessing the performance of MM/PBSA and MM/GBSA methods. 8. Predicting binding free energies and poses of protein-RNA complexes. RNA 2018, 24, 1183−1194.  doi: 10.1261/rna.065896.118

    40. [40]

      Huang, K.; Luo, S.; Cong, Y. An accurate free energy estimator: based on MM/PBSA combined with interaction entropy for protein-ligand binding affinity. Nanoscale 2020, 12, 10737−50.  doi: 10.1039/C9NR10638C

    41. [41]

      Dixon, J. S. Evaluation of the CASP2 docking section. Proteins 2010, 29, 198−204.

    42. [42]

      Egan, W. J.; Merz, K. M.; Baldwin, J. J. Prediction of drug absorption using multivariate statistics. J. Med. Chem. 2000, 43, 3867−3877.  doi: 10.1021/jm000292e

    43. [43]

      Egan, W. J.; Lauri, G. Prediction of intestinal permeability. Adv. Drug Deliv. Rev. 2002, 54, 273−289.  doi: 10.1016/S0169-409X(02)00004-2

  • 加载中
    1. [1]

      Keke HanWenjun RaoXiuli YouHaina ZhangXing YeZhenhong WeiHu Cai . Two new high-temperature molecular ferroelectrics [1,5-3.2.2-Hdabcni]X (X = ClO4, ReO4). Chinese Chemical Letters, 2024, 35(6): 108809-. doi: 10.1016/j.cclet.2023.108809

    2. [2]

      Fang-Yuan ChenWen-Chao GengKang CaiDong-Sheng Guo . Molecular recognition of cyclophanes in water. Chinese Chemical Letters, 2024, 35(5): 109161-. doi: 10.1016/j.cclet.2023.109161

    3. [3]

      Caihong MaoYanfeng HeXiaohan WangYan CaiXiaobo Hu . Synthesis and molecular recognition characteristics of a tetrapodal benzene cage. Chinese Chemical Letters, 2024, 35(8): 109362-. doi: 10.1016/j.cclet.2023.109362

    4. [4]

      Cheng-Da ZhaoHuan YaoShi-Yao LiFangfang DuLi-Li WangLiu-Pan Yang . Amide naphthotubes: Biomimetic macrocycles for selective molecular recognition. Chinese Chemical Letters, 2024, 35(4): 108879-. doi: 10.1016/j.cclet.2023.108879

    5. [5]

      Yanwei DuanQing Yang . Molecular targets and their application examples for interrupting chitin biosynthesis. Chinese Chemical Letters, 2025, 36(4): 109905-. doi: 10.1016/j.cclet.2024.109905

    6. [6]

      Yan ChengHua-Peng RuanYan PengLonghe LiZhenqiang XieLang LiuShiyong ZhangHengyun YeZhao-Bo Hu . Magnetic, dielectric and luminescence synergetic switchable effects in molecular material [Et3NCH2Cl]2[MnBr4]. Chinese Chemical Letters, 2024, 35(4): 108554-. doi: 10.1016/j.cclet.2023.108554

    7. [7]

      Shiyu HouMaolin SunLiming CaoChaoming LiangJiaxin YangXinggui ZhouJinxing YeRuihua Cheng . Computational fluid dynamics simulation and experimental study on mixing performance of a three-dimensional circular cyclone-type microreactor. Chinese Chemical Letters, 2024, 35(4): 108761-. doi: 10.1016/j.cclet.2023.108761

    8. [8]

      Junjun HuangRan ChenYajian HuangHang ZhangAnran ZhengQing XiaoDan WuRuxia DuanZhi ZhouFei HeWei Yi . Discovery of an enantiopure N-[2-hydroxy-3-phenyl piperazine propyl]-aromatic carboxamide derivative as highly selective α1D/1A-adrenoceptor antagonist and homology modelling. Chinese Chemical Letters, 2024, 35(11): 109594-. doi: 10.1016/j.cclet.2024.109594

    9. [9]

      Zhimin SunXin-Hui GuoYue ZhaoQing-Yu MengLi-Juan XingHe-Lue Sun . Dynamically switchable porphyrin-based molecular tweezer for on−off fullerene recognition. Chinese Chemical Letters, 2024, 35(6): 109162-. doi: 10.1016/j.cclet.2023.109162

    10. [10]

      Li LinSong-Lin TianZhen-Yu HuYu ZhangLi-Min ChangJia-Jun WangWan-Qiang LiuQing-Shuang WangFang Wang . Molecular crowding electrolytes for stabilizing Zn metal anode in rechargeable aqueous batteries. Chinese Chemical Letters, 2024, 35(7): 109802-. doi: 10.1016/j.cclet.2024.109802

    11. [11]

      Minghao HuTianci XieYuqiang HuLongjie LiTing WangTongbo Wu . Allosteric DNAzyme-based encoder for molecular information transfer. Chinese Chemical Letters, 2024, 35(7): 109232-. doi: 10.1016/j.cclet.2023.109232

    12. [12]

      Chuan-Zhi NiRuo-Ming LiFang-Qi ZhangQu-Ao-Wei LiYuan-Yuan ZhuJie ZengShuang-Xi Gu . A chiral fluorescent probe for molecular recognition of basic amino acids in solutions and cells. Chinese Chemical Letters, 2024, 35(10): 109862-. doi: 10.1016/j.cclet.2024.109862

    13. [13]

      Wei-Jia WangKaihong Chen . Molecular-based porous polymers with precise sites for photoreduction of carbon dioxide. Chinese Chemical Letters, 2025, 36(1): 109998-. doi: 10.1016/j.cclet.2024.109998

    14. [14]

      Dongpu WuZheng YangYuchen XiaLulu WuYingxia ZhouCaoyuan NiuPuhui XieXin ZhengZhanqi Cao . Surface controllable wettability using amphiphilic rotaxane molecular shuttles. Chinese Chemical Letters, 2025, 36(2): 110353-. doi: 10.1016/j.cclet.2024.110353

    15. [15]

      Bingwei WangYihong DingXiao Tian . Benchmarking model chemistry composite calculations for vertical ionization potential of molecular systems. Chinese Chemical Letters, 2025, 36(2): 109721-. doi: 10.1016/j.cclet.2024.109721

    16. [16]

      Kai YeZhicheng YeChuantao WangZhilai LuoCheng LianChunyan Bao . Artificial signal transduction triggered by molecular photoisomerization in lipid membranes. Chinese Chemical Letters, 2025, 36(4): 110033-. doi: 10.1016/j.cclet.2024.110033

    17. [17]

      Shiqi XuZi YeShuang ShangFengge WangHuan ZhangLianguo ChenHao LinChen ChenFang HuaChong-Jing Zhang . Pairs of thiol-substituted 1,2,4-triazole-based isomeric covalent inhibitors with tunable reactivity and selectivity. Chinese Chemical Letters, 2024, 35(7): 109034-. doi: 10.1016/j.cclet.2023.109034

    18. [18]

      Hai-Yang SongJun JiangYu-Hang SongMin-Hang ZhouChao WuXiang ChenWei-Min He . Supporting-electrolyte-free electrochemical [2 + 2 + 1] annulation of benzo[d]isothiazole 1,1-dioxides, N-arylglycines and paraformaldehyde. Chinese Chemical Letters, 2024, 35(6): 109246-. doi: 10.1016/j.cclet.2023.109246

    19. [19]

      Jinge ZhuAiling TangLeyi TangPeiqing CongChao LiQing GuoZongtao WangXiaoru XuJiang WuErjun Zhou . Chlorination of benzyl group on the terminal unit of A2-A1-D-A1-A2 type nonfullerene acceptor for high-voltage organic solar cells. Chinese Chemical Letters, 2025, 36(1): 110233-. doi: 10.1016/j.cclet.2024.110233

    20. [20]

      Qihan LinJiabin XingYue-Yang LiuGang WuShi-Jia LiuHui WangWei ZhouZhan-Ting LiDan-Wei ZhangtaBOX: A water-soluble tetraanionic rectangular molecular container for conjugated molecules and taste masking for berberine and palmatine. Chinese Chemical Letters, 2024, 35(5): 109119-. doi: 10.1016/j.cclet.2023.109119

Metrics
  • PDF Downloads(5)
  • Abstract views(312)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return