Citation: Qing-Shui HONG, Tang-Yi LI, Shi-Sheng ZHENG, Hai-Biao CHEN, Hong-Hao CHU, Kuan-Da XU, Shun-Ning LI, Zong-Wei MEI, Qing-He ZHAO, Wen-Ju REN, Wen-Guang ZHAO, Feng PAN. Tuning Double Layer Structure of WO3 Nanobelt for Promoting the Electrochemical Nitrogen Reduction Reaction in Water[J]. Chinese Journal of Structural Chemistry, ;2021, 40(4): 519-526. doi: 10.14102/j.cnki.0254–5861.2011–2975 shu

Tuning Double Layer Structure of WO3 Nanobelt for Promoting the Electrochemical Nitrogen Reduction Reaction in Water

  • Corresponding author: Feng PAN, panfeng@pkusz.edu.cn
  • ② Author contributions. Q.S.H and T.Y.L contributed equally
  • Received Date: 2 September 2020
    Accepted Date: 28 October 2020

    Fund Project: Shenzhen Science and Technology Research Grant ZDSYS201707281026184Natural Science Foundation of Shenzhen JCYJ20190813110605381

Figures(10)

  • Electrochemical fixation of nitrogen to ammonia with highly active, highly selective and low cost electrocatalysts is a sustainable alternative to the extremely energy- and capital-intensive Haber-Bosch process. Herein, we demonstrate a near electroneutral WO3 nanobelt catalyst to be a promising electrocatalyst for selective and efficient nitrogen reduction. The concept of near electroneutral interface is demonstrated by fabricating WO3 nanobelts with small zeta potential value on carbon fiber paper, which ensures a loose double layer structure of the electrode/electrolyte interface and allows nitrogen molecules access the active sites more easily and regulates proton transfer to increase the catalytic selectivity. The WO3/CFP electrode with optimal surface charge achieves a NH3 yield rate of 4.3 μg·h−1·mg−1 and a faradaic efficiency of 37.3% at −0.3 V vs. RHE, rivalling the performance of the state-of-the-art nitrogen reduction reaction electrocatalysts. The result reveals that an unobstructed gas-diffusion pathway for continually supplying enough nitrogen to the active catalytic sites is of great importance to the overall catalytic performance.
  • 加载中
    1. [1]

      Jiao, D.; Iniguez, J. A.; Chong, L. Electrocatalytic nitrogen reduction at low temperature. Joule 2018, 2, 846−56.  doi: 10.1016/j.joule.2018.04.014

    2. [2]

      Cui, X.; Tang, C.; Zhang, Q. A review of electrocatalytic reduction of dinitrogen to ammonia under ambient conditions. Adv. Energy Mater. 2018, 8. 1800369−25.

    3. [3]

      van der Ham, C. J. M.; Koper, M. T. M.; Hetterscheid, D. G. H. Challenges in reduction of dinitrogen by proton and electron transfer. Chem. Soc. Rev. 2014, 43, 5183−5191.  doi: 10.1039/C4CS00085D

    4. [4]

      Cao, N.; Zheng, G. Aqueous electrocatalytic N2 reduction under ambient conditions. Nano Res. 2018, 11, 2992−3008.  doi: 10.1007/s12274-018-1987-y

    5. [5]

      Suryanto, B. H. R.; Kang, C. S. M.; Wang, D.; Xiao, C.; Zhou, F.; Azofra, L. M.; Cavallo, L.; Zhang, X.; MacFarlane, D. R. Rational electrode-electrolyte design for efficient ammonia electrosynthesis under ambient conditions. ACS Energy Lett. 2018, 3, 1219−1224.  doi: 10.1021/acsenergylett.8b00487

    6. [6]

      Bao, D.; Zhang, Q.; Meng, F. L.; Zhong, H. X.; Shi, M. M.; Zhang, Y.; Yan, J. M.; Jiang, Q.; Zhang, X. B. Electrochemical reduction of N2 under ambient conditions for artificial N2 fixation and renewable energy storage using N2/NH3 cycle. Adv. Mater. 2017, 29, 1604799−5.  doi: 10.1002/adma.201604799

    7. [7]

      He, D.; Li, Y.; Ookap, H.; Go, Y. K.; Jin, F.; Kim, S. H.; Nakamura, R. Selective electrocatalytic reduction of nitrite to dinitrogen based on decoupled proton-electron transfer. J. Am. Chem. Soc. 2018, 140, 2012−2015.  doi: 10.1021/jacs.7b12774

    8. [8]

      Chen, G. F.; Cao, X.; Wu, S.; Zeng, X.; Ding, L. X.; Zhu, M.; Wang, H. Ammonia electrosynthesis with high selectivity under ambient conditions via a Li+ incorporation strategy. J. Am. Chem. Soc. 2017, 139, 9771−9774.  doi: 10.1021/jacs.7b04393

    9. [9]

      Shi, M. M.; Bao, D.; Li, S. J.; Wulan, B. R.; Yan, J. M.; Jiang, Q. Anchoring PdCu amorphous nanocluster on graphene for electrochemical reduction of N2 to NH3 under ambient conditions in aqueous solution. Adv. Energy Mater. 2018, 8, 1800124−6.  doi: 10.1002/aenm.201800124

    10. [10]

      Wang, Z.; Gong, F.; Zhang, L.; Wang, R.; Ji, L.; Liu, Q.; Luo, Y.; Guo, H.; Li, Y.; Gao, P.; Shi, X.; Li, B.; Tang, B.; Sun, X. Electrocatalytic hydrogenation of N2 to NH3 by MnO: experimental and theoretical investigations. Adv. Sci. 2019, 6, 1801182−8.  doi: 10.1002/advs.201801182

    11. [11]

      Du, H.; Guo, X.; Kong, R. M.; Qu, F. Cr2O3 nanofiber: a high-performance electrocatalyst toward artificial N fixation to NH3 under ambient conditions. Chem. Commun. 2018, 54, 12848−12851.  doi: 10.1039/C8CC07186A

    12. [12]

      Zhang, R.; Ji, L.; Kong, W.; Wang, H.; Zhao, R.; Chen, H.; Li, T.; Li, B.; Luo, Y.; Sun, X. Electrocatalytic N2-to-NH3 conversion with high faradaic efficiency enabled using a Bi nanosheet array. Chem. Commun. 2019, 55, 5263−5266.  doi: 10.1039/C9CC01703H

    13. [13]

      Cui, X.; Tang, C.; Liu, X. M.; Wang, C.; Ma, W.; Zhang, Q. Highly selective electrochemical reduction of dinitrogen to ammonia at ambient temperature and pressure over iron oxide catalysts. Chem. Eur. J. 2018, 24, 18494−18501.  doi: 10.1002/chem.201800535

    14. [14]

      Tao, H.; Choi, C.; Ding, L. X.; Jiang, Z.; Hang, Z.; Jia, M.; Fan, Q.; Gao, Y.; Wang, H.; Robertson, A. W.; Hong, S.; Jung, Y.; Liu, S.; Sun, Z. Nitrogen fixation by Ru single-atom electrocatalytic reduction. Chem. 2019, 5, 204−214.  doi: 10.1016/j.chempr.2018.10.007

    15. [15]

      Nazemi, M.; Panikkanvalappil, S. R.; El-Sayed, M. A. Enhancing the rate of electrochemical nitrogen reduction reaction for ammonia synthesis under ambient conditions using hollow gold nanocages. Nano Energy 2018, 49, 316−323.  doi: 10.1016/j.nanoen.2018.04.039

    16. [16]

      Sun, Z.; Huo, R.; Choi, C.; Hong, S.; Wu, T. S.; Qiu, J.; Yan, C.; Han, Z.; Liu, Y.; Soo, Y. L.; Jung, Y. Oxygen vacancy enables electrochemical N2 fixation over WO3 with tailored structure. Nano Energy 2019, 62, 869−875.  doi: 10.1016/j.nanoen.2019.06.019

    17. [17]

      Song, Y.; Johnson, D.; Peng, R.; Hensley, D. K.; Bonnesen, P. V.; Liang, L.; Huang, J.; Yang, F.; Zhang, F.; Qiao, R.; Baddorf, A. P.; Tschaplinski, T. J.; Engle, N. L.; Hatzell, M. C.; Wu, Z.; Cullen, D. A.; Meyer, H. M. III; Sumpter, B. G.; Rondinone, A. J. A physical catalyst for the electrolysis of nitrogen to ammonia. Sci. Adv. 2018, 4, e1700336−8.  doi: 10.1126/sciadv.1700336

    18. [18]

      Hao, Y. C.; Guo, Y.; Chen, L. W.; Shu, M.; Wang, X. Y.; Bu, T. A.; Gao, W. Y.; Zhang, N.; Su, X.; Feng, X.; Zhou, J. W.; Wang, B.; Hu, C. W.; Yin, A. X.; Si, R.; Zhang, Y. W.; Yan, C. H. Promoting nitrogen electroreduction to ammonia with bismuth nanocrystals and potassium cations in water. Nat. Catal. 2019, 2, 448−456.  doi: 10.1038/s41929-019-0241-7

    19. [19]

      Wang, J.; Yu, L.; Hu, L.; Chen, G.; Xin, H.; Feng, X. Ambient ammonia synthesis via palladium-catalyzed electrohydrogenation of dinitrogen at low overpotential. Nat. Commun. 2018, 9, 1795−7.

    20. [20]

      Pan, J.; Wang, Y.; Zheng, R.; Wang, M.; Wan, Z.; Jia, C.; Weng, X.; Xie, J.; Deng, L. Directly grown high-performance WO3 films by a novel one-step hydrothermal method with significantly improved stability for electrochromic applications. J. Mater. Chem. A 2019, 7, 13956−13967.  doi: 10.1039/C9TA01333D

    21. [21]

      Tian, H.; Cui, X.; Zeng, L.; Su, L.; Song, Y.; Shi, J. Oxygen vacancy-assisted hydrogen evolution reaction of the Pt/WO3 electrocatalyst. J. Mater. Chem. A 2019, 7, 6285−6293.  doi: 10.1039/C8TA12219A

    22. [22]

      Diao, J.; Yuan, W.; Qiu, Y.; Cheng, L.; Guo, X. A hierarchical oxygen vacancy-rich WO3 with nanowire-array-on-nanosheet-array structure for highly efficient oxygen evolution reaction. J. Mater. Chem. A 2019, 7, 6730−6739.

    23. [23]

      Kong, W.; Zhang, R.; Zhang, X.; Ji, L.; Yu, G.; Wang, T.; Luo, Y.; Shi, X.; Xu, Y.; Sun, X. WO3 nanosheets rich in oxygen vacancies for enhanced electrocatalytic N2 reduction to NH3. Nanoscale 2019, 11, 19274−19277.  doi: 10.1039/C9NR03678D

    24. [24]

      Zhang, L.; Ji, X.; Ren, X.; Ma, Y.; Shi, X.; Tian, Z.; Asiri, A. M.; Chen, L.; Tang, B.; Sun, X. Electrochemical ammonia synthesis via nitrogen reduction reaction on a MoS2 catalyst: theoretical and experimental studies. Adv. Mater. 2018, 30, 201800191−6.

  • 加载中
    1. [1]

      Lumin ZhengYing BaiChuan Wu . Multi-electron reaction and fast Al ion diffusion of δ-MnO2 cathode materials in rechargeable aluminum batteries via first-principle calculations. Chinese Chemical Letters, 2024, 35(4): 108589-. doi: 10.1016/j.cclet.2023.108589

    2. [2]

      Shaohua ZhangXiaojuan DaiWei HaoLiyao LiuYingqiao MaYe ZouJia ZhuChong-an Di . A first-principles study of the Nernst effect in doped polymer. Chinese Chemical Letters, 2024, 35(12): 109837-. doi: 10.1016/j.cclet.2024.109837

    3. [3]

      Chaozheng HeJia WangLing FuWei Wei . Nitric oxide assists nitrogen reduction reaction on 2D MBene: A theoretical study. Chinese Chemical Letters, 2024, 35(5): 109037-. doi: 10.1016/j.cclet.2023.109037

    4. [4]

      Chaozheng HePei ShiDonglin PangZhanying ZhangLong LinYingchun Ding . First-principles study of the relationship between the formation of single atom catalysts and lattice thermal conductivity. Chinese Chemical Letters, 2024, 35(6): 109116-. doi: 10.1016/j.cclet.2023.109116

    5. [5]

      Zhenfei TangYunwu ZhangZhiyuan YangHaifeng YuanTong WuYue LiGuixiang ZhangXingzhi WangBin ChangDehui SunHong LiuLili ZhaoWeijia Zhou . Iron-doping regulated light absorption and active sites in LiTaO3 single crystal for photocatalytic nitrogen reduction. Chinese Chemical Letters, 2025, 36(3): 110107-. doi: 10.1016/j.cclet.2024.110107

    6. [6]

      Peng Wang Daijie Deng Suqin Wu Li Xu . Cobalt-based deep eutectic solvent modified nitrogen-doped carbon catalyst for boosting oxygen reduction reaction in zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100199-100199. doi: 10.1016/j.cjsc.2023.100199

    7. [7]

      Shuanglin TIANTinghong GAOYutao LIUQian CHENQuan XIEQingquan XIAOYongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482

    8. [8]

      Bingwei WangYihong DingXiao Tian . Benchmarking model chemistry composite calculations for vertical ionization potential of molecular systems. Chinese Chemical Letters, 2025, 36(2): 109721-. doi: 10.1016/j.cclet.2024.109721

    9. [9]

      Rui PANYuting MENGRuigang XIEDaixiang CHENJiefa SHENShenghu YANJianwu LIUYue ZHANG . Selective electrocatalytic reduction of Sn(Ⅳ) by carbon nitrogen materials prepared with different precursors. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1015-1024. doi: 10.11862/CJIC.20230433

    10. [10]

      Sajid MahmoodHaiyan WangFang ChenYijun ZhongYong Hu . Recent progress and prospects of electrolytes for electrocatalytic nitrogen reduction toward ammonia. Chinese Chemical Letters, 2024, 35(4): 108550-. doi: 10.1016/j.cclet.2023.108550

    11. [11]

      Shenhao QIUQingquan XIAOHuazhu TANGQuan XIE . First-principles study on electronic structure, optical and magnetic properties of rare earth elements X (X=Sc, Y, La, Ce, Eu) doped with two-dimensional GaSe. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2250-2258. doi: 10.11862/CJIC.20240104

    12. [12]

      Fei YinErli YangXue GeQian SunFan MoGuoqiu WuYanfei Shen . Coupling WO3−x dots-encapsulated metal-organic frameworks and template-free branched polymerization for dual signal-amplified electrochemiluminescence biosensing. Chinese Chemical Letters, 2024, 35(4): 108753-. doi: 10.1016/j.cclet.2023.108753

    13. [13]

      Xueyang ZhaoBangwei DengHongtao XieYizhao LiQingqing YeFan Dong . Recent process in developing advanced heterogeneous diatomic-site metal catalysts for electrochemical CO2 reduction. Chinese Chemical Letters, 2024, 35(7): 109139-. doi: 10.1016/j.cclet.2023.109139

    14. [14]

      Xue XinQiming QuIslam E. KhalilYuting HuangMo WeiJie ChenWeina ZhangFengwei HuoWenjing Liu . Hetero-phase zirconia encapsulated with Au nanoparticles for boosting electrocatalytic nitrogen reduction. Chinese Chemical Letters, 2024, 35(5): 108654-. doi: 10.1016/j.cclet.2023.108654

    15. [15]

      Yuxiang Zhang Jia Zhao Sen Lin . Nitrogen doping retrofits the coordination environment of copper single-atom catalysts for deep CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100415-100415. doi: 10.1016/j.cjsc.2024.100415

    16. [16]

      Yan WangJiaqi ZhangXiaofeng WuSibo WangMasakazu AnpoYuanxing Fang . Elucidating oxygen evolution and reduction mechanisms in nitrogen-doped carbon-based photocatalysts. Chinese Chemical Letters, 2025, 36(2): 110439-. doi: 10.1016/j.cclet.2024.110439

    17. [17]

      Xiao LiWanqiang YuYujie WangRuiying LiuQingquan YuRiming HuXuchuan JiangQingsheng GaoHong LiuJiayuan YuWeijia Zhou . Metal-encapsulated nitrogen-doped carbon nanotube arrays electrode for enhancing sulfion oxidation reaction and hydrogen evolution reaction by regulating of intermediate adsorption. Chinese Chemical Letters, 2024, 35(8): 109166-. doi: 10.1016/j.cclet.2023.109166

    18. [18]

      Sanmei WangYong ZhouHengxin FangChunyang NieChang Q SunBiao Wang . Constant-potential simulation of electrocatalytic N2 reduction over atomic metal-N-graphene catalysts. Chinese Chemical Letters, 2025, 36(3): 110476-. doi: 10.1016/j.cclet.2024.110476

    19. [19]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    20. [20]

      Yu YaoJinqiang ZhangYantao WangKunsheng HuYangyang YangZhongshuai ZhuShuang ZhongHuayang ZhangShaobin WangXiaoguang Duan . Nitrogen-rich carbon for catalytic activation of peroxymonosulfate towards green synthesis. Chinese Chemical Letters, 2024, 35(11): 109633-. doi: 10.1016/j.cclet.2024.109633

Metrics
  • PDF Downloads(2)
  • Abstract views(309)
  • HTML views(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return