-
[1]
Cantrell, C. L.; Dayan, F. E.; Duke, S. O. Natural products as sources for new pesticides. J. Nat. Prod. 2012, 75, 1231–1242.
doi: 10.1021/np300024u
-
[2]
Xu, H. Natural products as leads for new drugs and pesticides discovery. Mini. Rev. Org. Chem. 2012, 9, 125.
doi: 10.2174/157019312800604751
-
[3]
Bolzani, V. D.; Davies-Coleman, M.; Newman, D. J.; Singh, S. B.; Gordon, M.; Cragg, D.; Phil, D. Sc. (H. C. ): a man for all natural products. J. Nat. Prod. 2012, 75, 309–310.
doi: 10.1021/np201003c
-
[4]
Copping, L. G.; Duke, S. O. Natural products that have been used commercially as crop protection agents. Pest Manag. Sci. 2007, 63, 524–554.
doi: 10.1002/ps.1378
-
[5]
Bauer, A.; Bronstrupt, M. Industrial natural product chemistry for drug discovery and development. Nat. Prod. Rep. 2014, 31, 35–60.
doi: 10.1039/C3NP70058E
-
[6]
Rodrigues, T.; Reker, D.; Schneider, P.; Schneider, G. Counting on natural products for drug design. Nat. Chem. 2016, 8, 531–541.
doi: 10.1038/nchem.2479
-
[7]
Newman, D. J.; Cragg, G. M. Natural products as sources of new drugs from 1981 to 2014. J. Nat. Prod. 2016, 79, 629–661.
doi: 10.1021/acs.jnatprod.5b01055
-
[8]
Rinehart, K. L.; Staley, A. L.; Wilson, S. R.; Ankenbauer, R. G.; Cox, C. D. Stereochemical assignment of the pyochelins. J. Org. Chem. 1995, 60, 2786–2791.
doi: 10.1021/jo00114a029
-
[9]
Elliot, G. T.; Kelly, K. F.; Bonna, R. L.; Wardlaw, T. R.; Burns, E. R. In vitro antiproliferative activity of 2΄-(2-hydroxyphenyl)-2΄-thiazoline- 4΄-carboxylic acid and its methyl ester of L1210 and P388 murine neoplasms. Cancer Chemother. Pharmacol. 1988, 21, 233–236.
-
[10]
Gududuru, V.; Hurh, E.; Dalton, J. T.; Miller, D. D. SAR studies of 2-arylthiazolidine-4-carboxylic acid amides: a novel class of cytotoxic agents for prostate cancer. J. Med. Chem. 2005, 48, 2584–2588.
doi: 10.1021/jm049208b
-
[11]
Pattenden, G.; Thom, S. M. Naturally occurring linear fused thiazoline-thiazole containing metabolites: total synthesis of (–)-didehydromirabazole A, a cytotoxic alkaloid from blue-green algae. J. Chem. Soc. Perk. Trans. 1993, 14, 1629–1636.
-
[12]
Bergeron, R. J.; Wollenweber, M.; Weigand, J. An investigation of desferrithiocin metabolism. J. Med. Chem. 1994, 37, 2889–2895.
doi: 10.1021/jm00044a009
-
[13]
Zamri, A.; Schalk, I. J.; Pattus, F.; Abdallah, M. A. Bacterial siderophores: synthesis and biological activities of novel pyochelin analogues. Bioorg. Med. Chem. Lett. 2003, 13, 1147–1150.
doi: 10.1016/S0960-894X(03)00010-6
-
[14]
Chen, P.; Horton, L. B.; Mikulski, R. L.; Deng, L.; Sundriyal, S.; Palzkill, T.; Song, Y. 2-Substituted 4, 5-dihydrothiazole-4-carboxylic acids are novel inhibitors of metallo-β-lactamases. Bioorg. Med. Chem. Lett. 2012, 22, 6229–6232.
doi: 10.1016/j.bmcl.2012.08.012
-
[15]
Liu, J. B.; Li, Y. X.; Chen, Y. W.; Hua, X. W.; Wan, Y. Y.; Wei, W.; Song, H. B.; Yu, S. J.; Zhang, X.; Li, Z. M. Design, synthesis, antifungal activities and SARs of (R)-2-aryl-4, 5-dihydrothiazole-4-carboxylic acid derivatives. Chin. J. Chem. 2015, 33, 1269–1275.
doi: 10.1002/cjoc.201500619
-
[16]
Liu, J. B.; Li, F. Y.; Wang, Y. H.; Zhang, H. X.; Dong, J. Y.; Sun, P. W.; Li, Y. X.; Li, Z. M. Synthesis, biological activities and 3D-QSAR studies of (R)-2-phenyl-4, 5-dihydrothiazole-4-carboxamide derivatives containing a sulfur ether moiety. Chin. Chem. Lett. 2019, 30, 668–671.
doi: 10.1016/j.cclet.2018.11.001
-
[17]
Li, F. Y.; Liu, J. B.; Gong, J. N.; Li, G. (R)-2-Phenyl-4, 5-dihydrothiazole-4-carboxamide derivatives containing a diacylhydrazine group: synthesis, biological evaluation, and SARs. Molecules 2019, 24, 4440.
doi: 10.3390/molecules24244440
-
[18]
Liu, J. B.; Li, F. Y.; Wang, Y. H.; Zhang, H. X.; Li, Y. X.; Li, Z. M. Synthesis, biological activities, and 3D-QSAR studies of (R)-2-phenyl-4, 5-dihydrothiazole- 4-carboxamide derivatives containing a sulfonohydrazide moiety. Med. Chem. Res. 2020, 29, 495–503.
doi: 10.1007/s00044-020-02499-3
-
[19]
Min, L. J.; Wang, Q.; Tan, C. X.; Weng, J. Q.; Liu, X. H. Synthesis, crystal structure and fungicidal activity of 2-chloro-N-(o-tolylcarbamoyl) nicotinamide. Chin. J. Struct. Chem. 2020, 39, 452–458.
-
[20]
Jin, T.; Zhai, Z. W.; Han, L.; Weng, J. Q.; Tan, C. X.; Liu, X. H. Synthesis, crystal structure, docking and antifungal activity of a new pyrazole acylurea compound. Chin. J. Struct. Chem. 2018, 37, 1259–1264.
-
[21]
Cheng, L.; Zhang, R. R.; Wu, H. K.; Xu, T. M.; Liu, X. H. The synthesis of 6-(tertbutyl)-8-fluoro-2, 3-dimethylquinoline carbonate derivatives and their antifungal activity against pyricularia oryzae. Front. Chem. Sci. Eng. 2019, 13, 369–376.
doi: 10.1007/s11705-018-1734-7
-
[22]
Liu, J. B.; Li, F. Y.; Dong, J. Y.; Li, Y. X.; Zhang, X. L.; Wang, Y. H.; Xiong, L. X.; Li, Z. M. Anthranilic diamides derivatives as potential ryanodine receptor modulators: synthesis, biological evaluation and structure activity relationship. Bioorgan. Med. Chem. 2018, 26, 3541–3550.
doi: 10.1016/j.bmc.2018.05.028
-
[23]
Li, F. Y.; Wang, Y. H.; Liu, J. B.; Li, Y. X.; Li, Z. M. Synthesis, insecticidal evaluation and mode of action of novel anthranilic diamide derivatives containing sulfur moiety as potential ryanodine receptor activators. Bioorgan. Med. Chem. 2019, 27, 769–776.
doi: 10.1016/j.bmc.2019.01.009
-
[24]
Sheldrick, G. M. SHELXS-97, Program for Solution of Crystal Structures. University of Göttingen, Germany 1997.
-
[25]
Sheldrick, G. M. SHELXL-97, Program for Crystal Structure Refinement. University of Göttingen, Germany 1997.
-
[26]
Wu, Y. D.; Shen, J. L.; Chen, J.; Lin, X. W.; Li, A. M. Evaluation of two resistance monitoring methods in Helicoverpa armigera: topical application method and leaf dipping method. Plant Prot. 1996, 22, 3–6.
-
[27]
Ma, H.; Wang, K. Y.; Xia, X. M.; Zhang, Y.; Guo, Q. L. The toxicity testing of five insecticides to different instar larvae of Spodoptera exigua. Mod. Agrochem. 2006, 5, 44–46.
-
[28]
Wang, B. L.; Ma, Y.; Xiong, L. X.; Li, Z. M. Synthesis and insecticidal activity of novel N-pyridylpyrazole carbonyl thioureas. Chin. J. Chem. 2012, 30, 815–821.
doi: 10.1002/cjoc.201100386
-
[29]
Abbott, W. S. A method of computing the effectiveness of an insecticide. J. Econ. Entomol. 1925, 18, 265–267.
-
[30]
Liu, J. B.; Li, F. Y.; Li, Y. X.; Zhang, X. L.; Hua, X. W.; Xiong, L. X.; Li, Z. M. Synthesis, insecticidal evaluation and 3D-QSAR study of novel anthranilic diamide derivatives as potential ryanodine receptor modulators. Pest Manag. Sci. 2019, 75, 1034–1044.
doi: 10.1002/ps.5213
-
[31]
Liu, X. H.; Xu, X. Y.; Tan, C. X.; Weng, J. Q.; Xin, J. H.; Chen, J. Synthesis, crystal structure, herbicidal activities and 3D-QSAR study of some novel 1, 2, 4-triazolo[4, 3-a]pyridine derivatives. Pest Manag. Sci. 2015, 71, 292–301.
doi: 10.1002/ps.3804
-
[32]
Li, F. Y.; Zhu, Y. J.; Fan, Z. J.; Xu, J. H.; Guo, X. F.; Zong, G. N.; Song, H. B. Synthesis, crystal structure and biological activity of 2-(1-(3-bromo-1-(3-chloropyridin-2-yl)-1H-pyrazole-5-carbonyl)piperidin-4-yl)-N-isopropyl-1, 3-thiazole-4-carboxamide. Chin. J. Struct. Chem. 2015, 34, 659–666.