Citation: Jian-Bo TONG, Yi FENG, Tian-Hao WANG, Xing ZHANG. QSAR Study of Thieno [2, 3-d] Pyrimidine as a Promising Scaffold Using HQSAR, CoMFA and CoMSIA[J]. Chinese Journal of Structural Chemistry, ;2021, 40(5): 565-575. doi: 10.14102/j.cnki.0254–5861.2011–2960 shu

QSAR Study of Thieno [2, 3-d] Pyrimidine as a Promising Scaffold Using HQSAR, CoMFA and CoMSIA

  • Corresponding author: Jian-Bo TONG, jianbotong@aliyun.com
  • Received Date: 12 August 2020
    Accepted Date: 21 October 2020

    Fund Project: the National Natural Science Foundation of China 21475081the Natural Science Foundation of Shaanxi Province 2019JM-237

Figures(10)

  • In this study, CoMFA, CoMSIA and HQSAR techniques were used to study the important characteristic activities of thieno [2, 3-d] pyrimidine derivatives for effective antitumor activity. The q2 value of cross validation of CoMFA model was 0.621, and r2 value of non-cross validation was 0.959. The best cross validation q2 value of CoMSIA model was 0.522, while the r2 value of non-cross validation was 0.961. The most effective HQSAR model was obtained by taking atoms and bonds as fragments: the q2 value of cross validation is 0.535, the r2 value of non-cross validation is 0.871, the standard error of prediction is 0.488, and the optimal hologram length is 199. The statistical parameters from the model show that the data fit well and have high prediction ability. In addition, molecular docking is used to study the binding requirements between ligands and receptor proteins, including several hydrogen bonds between thieno [2, 3-d] pyrimidine and active site residues. The results obtained from these QSAR modeling studies can be used to design promising anticancer drugs.
  • 加载中
    1. [1]

      Pédeboscq, S.; Gravier, D.; Casadebaig, F.; Hou, G.; Gissot, A.; Rey, C.; Ichas, F.; De, G. F.; Lartigue, L.; Pometan, J. P. Synthesis and evaluation of apoptosis induction of thienopyrimidine compounds on KRAS and BRAF mutated colorectal cancer cell lines. Bioorgan. Med. Chem. 2012, 22, 6724−6731.

    2. [2]

      El-Sayed, W. A.; Ali, O. M.; Zyada, R. A. F.; Mohamed, A. A.; Abdel-Rahman, A. A. H. Synthesis and antimicrobial activity of new substituted thienopyrimidines, their tetrazolyl and sugar derivatives. Acta Pol. Pharm. 2012, 3, 439−447.

    3. [3]

      El-Sherbeny, M. A.; El-Ashmawy, M. B.; El-Subbagh, H. I.; El-Emam, A. A.; Badria, F. A. Synthesis, antimicrobial and antiviral evaluation of certain thienopyrimidine derivatives. Eur. J. Med. Chem. 1995, 5, 445−449.

    4. [4]

      Kotaiah, Y.; Harikrishna, N.; Nagaraju, K.; Rao, C. V. Synthesis and antioxidant activity of 1, 3, 4-oxadiazole tagged thieno[2, 3-d]pyrimidine derivatives. Eur. J. Med. Chem. 2012, 12, 340−345.

    5. [5]

      Shirole, N. L.; Shirole, K. D.; Deore, R. D.; Fursule, R. A.; Talele, G. S. Synthesis, characterization and pharmacological evaluation of 2-substituted thieno[2, 3-d]pyrimidine-4(3H)-ones. Asian J. Chem. 2007, 7, 4985−4992.

    6. [6]

      Perrissin, M.; Favre, M.; Cuong, L. D.; Huguet, F.; Gaultier, C.; Narcisse, G. ChemInform abstract: synthesis and pharmacological activities of some substituted thienopyrimidin-4-ones. J. Cheminformatics 1989, 13, 104−105.

    7. [7]

      Bousquet, E.; Guerrera, F.; Siracusa, M. A.; Caruso, A.; Amico-Roxas, M. Synthesis and pharmacological activity of 3-substituted pyrido[3΄, 2΄: 4, 5] thieno[3, 2-d] pyrimidin-4(3H)-ones. Farmaco 1984, 2, 110−119.

    8. [8]

      Ashour, H. M.; Shaaban, O. G.; Rizk, O. H.; El-Ashmawy, I. M. Synthesis and biological evaluation of thieno [2΄, 3΄: 4, 5]pyrimido[1, 2-b][1, 2, 4]triazines and thieno[2, 3-d][1, 2, 4]triazolo[1, 5-a]pyrimidines as anti-inflammatory and analgesic agents. Eur. J. Med. Chem. 2013, 62, 341−351.  doi: 10.1016/j.ejmech.2012.12.003

    9. [9]

      Tong, J.; Shan, L.; Qin, S. S.; Wang, Y. QSAR studies of TIBO derivatives as HIV-1 reverse transcriptase inhibitors using HQSAR, CoMFA and CoMSIA. J. Mol. Struct. 2018, 1168, 56−64.  doi: 10.1016/j.molstruc.2018.05.005

    10. [10]

      Kubinyi, H. QSAR and 3D-QSAR in drug design part 1: methodology. Drug Discov. Today 1997, 11, 457−467.

    11. [11]

      Abdizadeh, T.; Ghodsi, R.; Hadizadeh, F. 3D-QSAR (CoMFA, CoMSIA) and molecular docking studies on histone deacetylase 1 selective inhibitors. Recent Pat. Anti-Canc. 2017, 4, 365−383.

    12. [12]

      Verma, J.; Khedkar, V. M.; Coutinho, E. C. 3D-QSAR in drug design. Curr. Top. Med. Chem. 2010, 1, 95−115.

    13. [13]

      Kellogg, G. E.; Semus, S. F.; Abraham, D. J. HINT: a new method of empirical hydrophobic field calculation for CoMFA. J. Comput. Aid. Mol. Des. 1991, 6, 545−552.

    14. [14]

      Bunce, J. D.; Patterson, D. E.; Frank, I. E. Crossvalidation, bootstrapping, and partial least squares compared with multiple regression in conventional QSAR studies. Quant. Struct-Act Rel. 1988, 1, 18−25.

    15. [15]

      Klebe, G.; Abraham, U.; Mietzner, T. Molecular similarity indices in a comparative analysis (CoMSIA) of drug molecules to correlate and predict their biological activity. J. Med. Chem. 2002, 24, 4130−4146.

    16. [16]

      Salum, L. B.; Andricopulo, A. D. Fragment-based QSAR strategies in drug design. Expert. Opin. Drug. Dis. 2010, 5, 405−412.  doi: 10.1517/17460441003782277

    17. [17]

      Andricopulo, A. D.; Salum, L. B. Fragment-based QSAR:  perspectives in drug design. Mol. Divers. 2009, 3, 277−285.

    18. [18]

      Dunn III, W. J.; Wold, S.; Edlund, U.; Hellberg, S.; Gasteiger, J. Multivariate structure-activity relationships between data from a battery of biological tests and an ensemble of structure descriptors: the PLS method. Quant. Struct-Act Rel. 1984, 4, 131−137.

    19. [19]

      Ali, E. M. H.; Abdel-Maksoud, M. S.; Oh, C. H. Thieno 2, 3-d pyrimidine as a promising scaffold in medicinal chemistry: recent advances. Bioorgan. Med. Chem. 2019, 7, 1159−1194.

    20. [20]

      Sheila, A.; Malcolm, A. C.; Homer, R. W.; Tad, H.; Gregory, B. S. SYBYL Line notation (SLN): a versatile language for chemical structure representation. J. Chem. Inf. Model. 1997, 1, 71−79.

    21. [21]

      Tong, J. B.; Zhan, P.; Wang, X. S.; Wu, Y. J. Quionolone carboxylic acid derivatives as HIV-1 integrase inhibitors: docking-based HQSAR and topomer CoMFA analyses. J. Chemometr. 2017, 12, 2934−2947.

    22. [22]

      Damre, M. V.; Gangwal, R. P.; Dhoke, G. V.; Lalit, M.; Sharma, D.; Khandelwal, K.; Sangamwar, A. T. 3D-QSAR and molecular docking studies of amino-pyrimidine derivatives as PknB inhibitors. J. Taiwan. Inst. Chem. E 2014, 2, 354−364.

    23. [23]

      Wang, Z. Y.; Chang, Y. Q.; Han, Y. S.; Liu, K. J.; Hou, J. S.; Dai, C. L.; Zhai, Y. H.; Guo, J. L.; Sun, P. H.; Lin, J.; Chen, W. M. 3D-QSAR and docking studies on 1-hydroxypyridin-2-one compounds as mutant isocitrate dehydrogenase 1 inhibitors. J. Mol. Struct. 2016, 6, 335−343.

    24. [24]

      Hong, H.; Fang, H.; Xie, Q.; Perkins, R.; Sheehan, D. M.; Tong, W. Comparative molecular field analysis (CoMFA) model using a large diverse set of natural, synthetic and environmental chemicals for binding to the androgen receptor. Sar Qsar Environ. Res. 2003, 6, 373−388.

    25. [25]

      Ghasemi, J. B.; Shiri, F. Molecular docking and 3D-QSAR studies of falcipain inhibitors using CoMFA, CoMSIA, and open 3D-QSAR. Med. Chem. Res. 2012, 10, 2788−2806.

    26. [26]

      Bhonsle, J. B.; Venugopal, D.; Huddler, D. P.; Magill, A. J.; Hicks, R. P. Application of 3D-QSAR for identification of descriptors defining bioactivity of antimicrobial peptides. J. Med. Chem. 2008, 26, 6545−6553.

    27. [27]

      Doddareddy, M. R.; Lee, Y. J.; Cho, Y. S.; Choi, K. I.; Koh, H. Y.; Pae, A. N. Hologram quantitative structure activity relationship studies on 5-HT6 antagonists. Bioorgan. Med. Chem. 2004, 14, 3815−3824.  doi: 10.1016/j.bmcl.2004.04.103

    28. [28]

      Waller, C. L. A comparative QSAR study using CoMFA, HQSAR, and FRED/SKEYS paradigms for estrogen receptor binding affinities of structurally diverse compounds. J. Chem. Inf. Model. 2004, 2, 758−765.

    29. [29]

      Patel, S.; Patel, B.; Bhatt, H. 3D-QSAR studies on 5-hydroxy-6-oxo-1, 6-dihydropyrimidine-4-carboxamide derivatives as HIV-1 integrase inhibitors. J. Taiwan. Inst. Chem. E 2016, 59, 61−68.

    30. [30]

      ong, J. B.; Qin, S. S.; Jiang, G. Y. 3D-QSAR study of melittin and amoebapore analogues by CoMFA and CoMSIA methods. Chin. J. Struct. Chem. 2019, 2, 201−210.

    31. [31]

      Wang, Y. J.; Zhang, G. W.; Yan, J. K.; Gong, D. M. Inhibitory effect of morin on tyrosinase: insights from spectroscopic and molecular docking studies. Food Chem. 2014, 163, 226−233.

    32. [32]

      Jain, A. N. Effects of protein conformation in docking: improved pose prediction through protein pocket adaptation. J. Comput. Aid. Mol. Des. 2009, 6, 355−374.

    33. [33]

      Tong, J. B.; Wang, Y.; Lei, S.; Qin, S. S. Comprehensive 3D-QSAR and binding mode of DAPY inhibitors using R-group search and molecular docking. Chin. J. Struct. Chem. 2019, 1, 25−36.

  • 加载中
    1. [1]

      Bairu MengZongji ZhuoHan YuSining TaoZixuan ChenErik De ClercqChristophe PannecouqueDongwei KangPeng ZhanXinyong Liu . Design, synthesis, and biological evaluation of benzo[4,5]thieno[2,3-d]pyrimidine derivatives as novel HIV-1 NNRTIs. Chinese Chemical Letters, 2024, 35(6): 108827-. doi: 10.1016/j.cclet.2023.108827

    2. [2]

      Yan ChengHua-Peng RuanYan PengLonghe LiZhenqiang XieLang LiuShiyong ZhangHengyun YeZhao-Bo Hu . Magnetic, dielectric and luminescence synergetic switchable effects in molecular material [Et3NCH2Cl]2[MnBr4]. Chinese Chemical Letters, 2024, 35(4): 108554-. doi: 10.1016/j.cclet.2023.108554

    3. [3]

      Fang-Yuan ChenWen-Chao GengKang CaiDong-Sheng Guo . Molecular recognition of cyclophanes in water. Chinese Chemical Letters, 2024, 35(5): 109161-. doi: 10.1016/j.cclet.2023.109161

    4. [4]

      Zhenchun YangBixiao GuoZhenyu HuKun WangJiahao CuiLina LiChun HuYubao Zhao . Molecular engineering towards dual surface local polarization sites on poly(heptazine imide) framework for boosting H2O2 photo-production. Chinese Chemical Letters, 2024, 35(8): 109251-. doi: 10.1016/j.cclet.2023.109251

    5. [5]

      Haojie DuanHejingying NiuLina GanXiaodi DuanShuo ShiLi Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038

    6. [6]

      Yuan TengZichun ZhouJinghua ChenSiying HuangHongyan ChenDaibin Kuang . Dual atom-bridge effect promoting interfacial charge transfer in 2D/2D Cs3Bi2Br9/BiOBr epitaxial heterojunction for efficient photocatalysis. Chinese Chemical Letters, 2025, 36(2): 110430-. doi: 10.1016/j.cclet.2024.110430

    7. [7]

      Caihong MaoYanfeng HeXiaohan WangYan CaiXiaobo Hu . Synthesis and molecular recognition characteristics of a tetrapodal benzene cage. Chinese Chemical Letters, 2024, 35(8): 109362-. doi: 10.1016/j.cclet.2023.109362

    8. [8]

      Cheng-Da ZhaoHuan YaoShi-Yao LiFangfang DuLi-Li WangLiu-Pan Yang . Amide naphthotubes: Biomimetic macrocycles for selective molecular recognition. Chinese Chemical Letters, 2024, 35(4): 108879-. doi: 10.1016/j.cclet.2023.108879

    9. [9]

      Yanwei DuanQing Yang . Molecular targets and their application examples for interrupting chitin biosynthesis. Chinese Chemical Letters, 2025, 36(4): 109905-. doi: 10.1016/j.cclet.2024.109905

    10. [10]

      Hualin JiangWenxi YeHuitao ZhenXubiao LuoVyacheslav FominskiLong YePinghua Chen . Novel 3D-on-2D g-C3N4/AgI.x.y heterojunction photocatalyst for simultaneous and stoichiometric production of H2 and H2O2 from water splitting under visible light. Chinese Chemical Letters, 2025, 36(2): 109984-. doi: 10.1016/j.cclet.2024.109984

    11. [11]

      Cailiang YueNan SunYixing QiuLinlin ZhuZhiling DuFuqiang Liu . A direct Z-scheme 0D α-Fe2O3/TiO2 heterojunction for enhanced photo-Fenton activity with low H2O2 consumption. Chinese Chemical Letters, 2024, 35(12): 109698-. doi: 10.1016/j.cclet.2024.109698

    12. [12]

      Yue LiMinghao FanConghui WangYanxun LiXiang YuJun DingLei YanLele QiuYongcai ZhangLonglu Wang . 3D layer-by-layer amorphous MoSx assembled from [Mo3S13]2- clusters for efficient removal of tetracycline: Synergy of adsorption and photo-assisted PMS activation. Chinese Chemical Letters, 2024, 35(9): 109764-. doi: 10.1016/j.cclet.2024.109764

    13. [13]

      Ao SunZipeng LiShuchun LiXiangbao MengZhongtang LiZhongjun Li . Stereoselective synthesis of α-3-deoxy-D-manno-oct-2-ulosonic acid (α-Kdo) derivatives using a C3-p-tolylthio-substituted Kdo fluoride donor. Chinese Chemical Letters, 2025, 36(3): 109972-. doi: 10.1016/j.cclet.2024.109972

    14. [14]

      Zhimin SunXin-Hui GuoYue ZhaoQing-Yu MengLi-Juan XingHe-Lue Sun . Dynamically switchable porphyrin-based molecular tweezer for on−off fullerene recognition. Chinese Chemical Letters, 2024, 35(6): 109162-. doi: 10.1016/j.cclet.2023.109162

    15. [15]

      Li LinSong-Lin TianZhen-Yu HuYu ZhangLi-Min ChangJia-Jun WangWan-Qiang LiuQing-Shuang WangFang Wang . Molecular crowding electrolytes for stabilizing Zn metal anode in rechargeable aqueous batteries. Chinese Chemical Letters, 2024, 35(7): 109802-. doi: 10.1016/j.cclet.2024.109802

    16. [16]

      Minghao HuTianci XieYuqiang HuLongjie LiTing WangTongbo Wu . Allosteric DNAzyme-based encoder for molecular information transfer. Chinese Chemical Letters, 2024, 35(7): 109232-. doi: 10.1016/j.cclet.2023.109232

    17. [17]

      Chuan-Zhi NiRuo-Ming LiFang-Qi ZhangQu-Ao-Wei LiYuan-Yuan ZhuJie ZengShuang-Xi Gu . A chiral fluorescent probe for molecular recognition of basic amino acids in solutions and cells. Chinese Chemical Letters, 2024, 35(10): 109862-. doi: 10.1016/j.cclet.2024.109862

    18. [18]

      Wei-Jia WangKaihong Chen . Molecular-based porous polymers with precise sites for photoreduction of carbon dioxide. Chinese Chemical Letters, 2025, 36(1): 109998-. doi: 10.1016/j.cclet.2024.109998

    19. [19]

      Dongpu WuZheng YangYuchen XiaLulu WuYingxia ZhouCaoyuan NiuPuhui XieXin ZhengZhanqi Cao . Surface controllable wettability using amphiphilic rotaxane molecular shuttles. Chinese Chemical Letters, 2025, 36(2): 110353-. doi: 10.1016/j.cclet.2024.110353

    20. [20]

      Bingwei WangYihong DingXiao Tian . Benchmarking model chemistry composite calculations for vertical ionization potential of molecular systems. Chinese Chemical Letters, 2025, 36(2): 109721-. doi: 10.1016/j.cclet.2024.109721

Metrics
  • PDF Downloads(6)
  • Abstract views(319)
  • HTML views(3)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return