Citation: Chang-Zheng TU, Yu-Ting YANG, Fan WANG, Jian-Ling WANG, Hong-Ju YIN, Fei-Xiang CHENG. Two Coordination Polymers Based on Pamoic Acid and (1,4-Bis(imidazol-1-yl)-butane: Synthesis, Structures and Properties[J]. Chinese Journal of Structural Chemistry, ;2021, 40(4): 473-481. doi: 10.14102/j.cnki.0254–5861.2011–2946 shu

Two Coordination Polymers Based on Pamoic Acid and (1,4-Bis(imidazol-1-yl)-butane: Synthesis, Structures and Properties

  • Corresponding author: Fei-Xiang CHENG, chengfx2019@163.com
  • Received Date: 27 July 2020
    Accepted Date: 14 October 2020

    Fund Project: the Shanghai Key Laboratory of Rare Earth Functional Materials, the project of teaching quality and teaching reform of Yunnan Province 2073010023the National Teaching Quality and Teaching Reform Project 201810684012the National Natural Science Foundation of China 81601602

Figures(10)

  • Two mixed-ligand compounds, namely [Mn2(bimb)(PA)2]n (1) and [Zn(bimb)(PA)]n (2) (H2PA = pamoic acid, bimb = 1,4-bis(imidazol-1-yl)-butane) have been synthesized under the same solvothermal conditions. Compound 1 can be described as (4,4) topology based on the 4-connected [Mn2(COO)4] paddle-wheel units, which contains both rotaxane- and catenane-like motifs. For 2, the 2D wavy-like network interlocked with each other and resulted in a 2-fold interpenetrated 2D → 3D architecture. The structural differences of the two compounds are mainly due to the differences of metal ions and coordination modes of the PA2- ligand. In addition, the magnetism and photoluminescent properties of them have also been explored.
  • 加载中
    1. [1]

      Chen, X.; Jiang, H.; Li, X.; Hou, B.; Gong, W.; Wu, X. W.; Han, X.; Zheng, F. F.; Liu, Y.; Jiang, J. W.; Cui, Y. Chiral phosphoric acids in metal-organic frameworks with enhanced acidity and tunable catalytic selectivity. Angew. Chem. Int. Ed. 2019, 58, 14748–14757.  doi: 10.1002/anie.201908959

    2. [2]

      Fan, W. D.; Yuan, S.; Wang, W. J.; Feng, L.; Liu, X. P.; Zhang, X. R.; Wang, X.; Kang, Z. X.; Dai, F. N.; Yuan, D. Q.; Sun, D. F.; Zhou, H. C. Optimizing multivariate metal-organic frameworks for efficient C2H2/CO2 separation. J. Am. Chem. Soc. 2020, 142, 8728–8737.  doi: 10.1021/jacs.0c00805

    3. [3]

      Cao, C.; Liu, S. J.; Yao, S. L.; Zheng, T. F.; Chen, Y. Q.; Chen, J. L.; Wen, H. R. Spin-canted antiferromagnetic ordering in transition metal-organic frameworks based on tetranuclear clusters with mixed V- and Y-shaped ligands. Cryst. Growth Des. 2017, 17, 4757–4765.  doi: 10.1021/acs.cgd.7b00682

    4. [4]

      Yao, S. L.; Liu, S. J.; Tian, X. M.; Zheng, T. F.; Cao, C.; Niu, C. Y.; Chen, Y. Q.; Chen, J. L.; Huang, H.; Wen, H. R. A Zn(Ⅱ)-based metal-organic framework with a rare tcj topology as a turn-on fluorescent sensor for acetylacetone. Inorg. Chem. 2019, 58, 3578–3581.  doi: 10.1021/acs.inorgchem.8b03316

    5. [5]

      Liu, S. J.; Han, S. D.; Zhao, J. P.; Xu, J.; Bu, X. H. In-situ synthesis of molecular magnetorefrigerant materials. Coord. Chem. Rev. 2019, 394, 39–52.  doi: 10.1016/j.ccr.2019.05.009

    6. [6]

      Zhao, Y.; Hao, R. H. Structural diversity and photoluminescent properties of two zinc coordination polymers based on 5-i-propoxyisophthalate and flexible N-donor ligands. Inorg. Nano-Met. Chem. 2020, 1–7.

    7. [7]

      Zhao, Y.; Wang, R. L.; Wu, X. X.; Yang, C. D. A water-stable metal organic framework for the detection of explosives and antibiotics. Chin. J. Struct. Chem. 2019, 38, 991–998.

    8. [8]

      Li, Z. S.; Li, X. Y.; Liu, J. W.; He, T.; Yue, K. F. Substituent and temperature effect on the assemblies of three lead(Ⅱ) coordination polymers based on asymmetrical biphenyl tritopic ligands. Z. Anorg. Allg. Chem. 2015, 641, 2570–2575.  doi: 10.1002/zaac.201500621

    9. [9]

      Gu, J. Z.; Cui, Y. H.; Liang, X. X.; Wu, J.; Lv, D. Y.; Kirillov, A. M. Structurally distinct metal-organic and H-bonded networks derived from 5-(6-carboxypyridin-3-yl)isophthalic acid: coordination and template effect of 4, 4′-bipyridine. Cryst. Growth Des. 2016, 16, 4658–4670.  doi: 10.1021/acs.cgd.6b00735

    10. [10]

      Dong, X. Y.; Si, C. D.; Fan, Y.; Hu, D. C.; Yao, X. Q.; Yang, Y. X.; Liu, J. C. Effect of N-donor ligands and metal ions on the coordination polymers based on a semirigid carboxylic acid ligand: structures analysis, magnetic properties, and photoluminescence. Cryst. Growth Des. 2016, 16, 2062–2073.  doi: 10.1021/acs.cgd.5b01734

    11. [11]

      Pinta, N. D.; Fidalgo, L.; Madariaga, G.; Lezama, L.; Cortés, R. Guest driven structural correlations in DPDS [di(4-pyridyl)disulfide]-based coordination polymers. Cryst. Growth Des. 2012, 12, 5069–5078.  doi: 10.1021/cg3010135

    12. [12]

      Yang, Y. T.; Tu, C. Z.; Miao J. J.; Li J. L.; Chen, G. Temperature-dependent hydrothermal synthesis of two distinct three-dimensional copper complexes. Chin. J. Struct. Chem. 2016, 35, 597–604

    13. [13]

      Hu, H. Y.; Horton, J. K.; Gryk, M. R.; Prasad, R.; Naron, J. M.; Sun, D. A.; Hecht, S. M.; Wilson. S. H.; Mullen, G. P. Identification of small molecule synthetic inhibitors of DNA polymerase beta by NMR chemical shift mapping. J. Biol. Chem. 2004, 279, 39736–39744.  doi: 10.1074/jbc.M402842200

    14. [14]

      Jørgensen, M. Quantitative determination of pamoic acid in dog and rat serum by automated ion-pair solid-phase extraction and reversed-phase high-performance liquid chromatography. Chromatogr. B 1998, 716, 315–323.  doi: 10.1016/S0378-4347(98)00273-4

    15. [15]

      Du, M.; Li, C. P.; Zhao, X. J.; Yu, Q. Interplay of coordinative and supramolecular interactions in engineering unusual crystalline architectures of low-dimensional metal-pamoate complexes under co-ligand intervention. CrystEngComm. 2007, 9, 1011–1028.  doi: 10.1039/b707853f

    16. [16]

      He, Y. P.; Yuan, L. B.; Chen, G. H.; Lin, Q. P.; Wang, F.; Zhang, L.; Zhang, J. Water-soluble and ultrastable Ti4L6 tetrahedron with coordination assembly function. J. Am. Chem. Soc. 2017, 139, 16845–16851.  doi: 10.1021/jacs.7b09463

    17. [17]

      He, Y. P.; Chen, G. H.; Yuan, L. B.; Zhang, L.; Zhang, J. Ti4(embonate)6 cage-ligand strategy on the construction of metal-organic frameworks with high stability and gas sorption properties. Inorg. Chem. 2020, 59, 964–967.  doi: 10.1021/acs.inorgchem.9b03075

    18. [18]

      Chen, G. H.; He, Y. P.; Zhang, S. H.; Zhang, J. Syntheses, crystal structures and fluorescent properties of two metal-organic frameworks based on pamoic acid. J. Solid State Chem. 2019, 270, 335–338.  doi: 10.1016/j.jssc.2018.11.027

    19. [19]

      Shi, X. M.; Li, M. X.; He, X.; Liu, H. J.; Shao, M. Crystal structures and properties of four coordination polymers constructed from flexible pamoic acid. Polyhedron 2010, 29, 2075–2080.  doi: 10.1016/j.poly.2010.04.004

    20. [20]

      Wang, S. N.; Peng, Y. Q.; Wei, X. L.; Zhang, Q. F.; Wang, D. Q.; Dou, J. M.; Li, D. C.; Bai, J. F. Temperature-dependent supramolecular isomerism in three zinc coordination polymers with pamoic acid and 1, 4-bis(imidazol-1-ylmethyl)-benzene. CrystEngComm. 2011, 13, 5313–5316.  doi: 10.1039/c1ce05463e

    21. [21]

      Yang, Y. T.; Tu, C. Z.; Yin, H. J.; He, C. X.; Zhao, Q.; Cheng, F. X. Synthesis, structures, and properties of five metal-organic frameworks based on oxidized 3, 3'-azodibenzoic acid and different N-donor ligands. Eur. J. Inorg. Chem. 2019, 4582–4591.

    22. [22]

      Yang, Y. T.; Tu, C. Z.; Xu, L. L.; Yan, B. L.; Wang, F. Flexible bis(benzimidazole)-based ligands directed the structure characteristics of coordination polymers based on diphenic acid Co-ligands: syntheses, structures and properties. Chin. J. Struct. Chem. 2019, 38, 155–164.

    23. [23]

      Tu, C. Z.; Wang, W. H.; Guo, B.; Miao, J. J.; Yang, Y. T. A novel example of Mn-compound showing rotaxane-like motif. J. Qujing Normal Univ. 2014, 33, 19–22.

    24. [24]

      Li, S. L.; Lan, Y. Q.; Ma, J. F.; Yang, J.; Wei, G. H.; Zhang, L. P.; Su, Z. M. Structures and luminescent properties of seven coordination polymers of zinc(Ⅱ) and cadmium(Ⅱ) with 3, 3′, 4, 4′-benzophenone tetracarboxylate anion and bis(imidazole). Cryst. Growth Des. 2008, 8, 675–684.  doi: 10.1021/cg7009385

    25. [25]

      Wen, L. L.; Lu, Z. D.; Lin, J. G.; Tian, Z. F.; Zhu, H. Z.; Meng, Q. J. Syntheses, structures, and physical properties of three novel metal-organic frameworks constructed from aromatic polycarboxylate acids and flexible imidazole-based synthons. Cryst. Growth Des. 2007, 7, 93–99.  doi: 10.1021/cg0604982

    26. [26]

      Sheldrick, G. M. SHELXS-97, Program for X-ray Crystal Structure Solution. University of Göttingen, Germany 1997.

    27. [27]

      Sheldrick, G. M. SHELXL-97, Program for the Refinement of Crystal Structures from Diffraction Data. University of Göttingen, Germany 1997.

    28. [28]

      Luo, F.; Yang, Y. T.; Che, Y. X.; Zheng, J. M. An unusual metal-organic framework showing both rotaxane- and cantenane-like motifs. CrystEngComm. 2008, 10, 981–982.  doi: 10.1039/b805025b

    29. [29]

      Yi, F. Y.; Sun, Z. M. Solvent-controlled syntheses, structure, and magnetic properties of trinuclear Mn(Ⅱ)-based metal-organic frameworks. Cryst. Growth Des. 2012, 12, 5693–5700.  doi: 10.1021/cg3011844

    30. [30]

      Zhao, Y.; Chang, X. H.; Liu, G. Z.; Ma, L. F.; Wang, L. Y. Five Mn(Ⅱ) coordination polymers based on 2, 3', 5, 5'-biphenyl tetracarboxylic acid: syntheses, structures, and magnetic properties. Cryst. Growth Des. 2015, 15, 966–974.  doi: 10.1021/cg501768f

    31. [31]

      Ma, L. F.; Wang, L. Y.; Du, M. A novel 3D Mn(Ⅱ) coordination polymer involving 4, 4'-dipyridylsulfide and 4, 4'-dipyridyltrisulfide obtained by in situ ligand formation from 4, 4′-dipyridyldisulfide. CrystEngComm. 2009, 11, 2593–2596.  doi: 10.1039/b914827m

    32. [32]

      Gou, L.; Wu, Q. R.; Hu, H. M.; Qin, T.; Xue, G. L.; Yang, M. L.; Tang, Z. X. An investigation of the positional isomeric effect of terpyridine derivatives: self-assembly of novel cadmium coordination architectures driven by N-donor covalence and ππ non-covalent interactions. Polyhedron 2008, 27, 1517–1526.  doi: 10.1016/j.poly.2008.01.024

    33. [33]

      Han, Z. X.; Wang J. J.; Hu, H. M.; Chen, X. L.; Wu, Q. R.; Li, D. S.; Shi, Q. Z. Effects of the size of aromatic chelate ligands and d10 metal ions on the structures of dicarboxylate complexes: from dinuclear molecule to helical chains and 2D network. J. Mol. Struct. 2008, 891, 364–369.  doi: 10.1016/j.molstruc.2008.04.010

  • 加载中
    1. [1]

      Long TANGYaxin BIANLuyuan CHENXiangyang HOUXiao WANGJijiang WANG . Syntheses, structures, and properties of three coordination polymers based on 5-ethylpyridine-2,3-dicarboxylic acid and N-containing ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1975-1985. doi: 10.11862/CJIC.20240180

    2. [2]

      Xiaxia LIUXiaofang MALuxia GUOXianda HANSisi FENG . Structure and magnetic properties of Mn(Ⅱ) coordination polymers regulated by N-auxiliary ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 587-596. doi: 10.11862/CJIC.20240269

    3. [3]

      Ting WANGPeipei ZHANGShuqin LIURuihong WANGJianjun ZHANG . A Bi-CP-based solid-state thin-film sensor: Preparation and luminescence sensing for bioamine vapors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1615-1621. doi: 10.11862/CJIC.20240134

    4. [4]

      Xiaofen GUANYating LIUJia LIYiwen HUHaiyuan DINGYuanjing SHIZhiqiang WANGWenmin WANG . Synthesis, crystal structure, and DNA-binding of binuclear lanthanide complexes based on a multidentate Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2486-2496. doi: 10.11862/CJIC.20240122

    5. [5]

      Zhenghua ZHAOQin ZHANGYufeng LIUZifa SHIJinzhong GU . Syntheses, crystal structures, catalytic and anti-wear properties of nickel(Ⅱ) and zinc(Ⅱ) coordination polymers based on 5-(2-carboxyphenyl)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 621-628. doi: 10.11862/CJIC.20230342

    6. [6]

      Weizhong LINGXiangyun CHENWenjing LIUYingkai HUANGYu LI . Syntheses, crystal structures, and catalytic properties of three zinc(Ⅱ), cobalt(Ⅱ) and nickel(Ⅱ) coordination polymers constructed from 5-(4-carboxyphenoxy)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1803-1810. doi: 10.11862/CJIC.20240068

    7. [7]

      Jimin HOUMengyang LIChunhua GONGShaozhuang ZHANGCaihong ZHANHao XUJingli XIE . Synthesis, structures, and properties of metal-organic frameworks based on bipyridyl ligands and isophthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 549-560. doi: 10.11862/CJIC.20240348

    8. [8]

      Yuanpeng Ye Longfei Yao Guofeng Liu . Engineering circularly polarized luminescence through symmetry manipulation in achiral tetraphenylpyrazine structures. Chinese Journal of Structural Chemistry, 2025, 44(2): 100460-100460. doi: 10.1016/j.cjsc.2024.100460

    9. [9]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    10. [10]

      Changqing MIAOFengjiao CHENWenyu LIShujie WEIYuqing YAOKeyi WANGNi WANGXiaoyan XINMing FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192

    11. [11]

      Yang LiYihan ChenJiaxin LuoQihuan LiYiwu QuanYixiang Cheng . Enhanced circularly polarized luminescence emission promoted by achiral dichroic oligomers of F8BT in cholesteric liquid crystal. Chinese Chemical Letters, 2024, 35(11): 109864-. doi: 10.1016/j.cclet.2024.109864

    12. [12]

      Yan ChengHua-Peng RuanYan PengLonghe LiZhenqiang XieLang LiuShiyong ZhangHengyun YeZhao-Bo Hu . Magnetic, dielectric and luminescence synergetic switchable effects in molecular material [Et3NCH2Cl]2[MnBr4]. Chinese Chemical Letters, 2024, 35(4): 108554-. doi: 10.1016/j.cclet.2023.108554

    13. [13]

      Gaofeng WANGShuwen SUNYanfei ZHAOLixin MENGBohui WEI . Structural diversity and luminescence properties of three zinc coordination polymers based on bis(4-(1H-imidazol-1-yl)phenyl)methanone. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 849-856. doi: 10.11862/CJIC.20230479

    14. [14]

      Xiumei LIYanju HUANGBo LIUYaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109

    15. [15]

      Xiumei LILinlin LIBo LIUYaru PAN . Syntheses, crystal structures, and characterizations of two cadmium(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 613-623. doi: 10.11862/CJIC.20240273

    16. [16]

      Chen ChenJinzhou ZhengChaoqin ChuQinkun XiaoChaozheng HeXi Fu . An effective method for generating crystal structures based on the variational autoencoder and the diffusion model. Chinese Chemical Letters, 2025, 36(4): 109739-. doi: 10.1016/j.cclet.2024.109739

    17. [17]

      Jie ZHANGXin LIUZhixin LIYuting PEIYuqi YANGHuimin LIZhiqiang LIU . Assembling a luminescence silencing system based on post-synthetic modification strategy: A highly sensitive and selective turn-on metal-organic framework probe for ascorbic acid detection. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 823-833. doi: 10.11862/CJIC.20230310

    18. [18]

      Chao LIUJiang WUZhaolei JIN . Synthesis, crystal structures, and antibacterial activities of two zinc(Ⅱ) complexes bearing 5-phenyl-1H-pyrazole group. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1986-1994. doi: 10.11862/CJIC.20240153

    19. [19]

      Shuwen SUNGaofeng WANG . Two cadmium coordination polymers constructed by varying Ⅴ-shaped co-ligands: Syntheses, structures, and fluorescence properties. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 613-620. doi: 10.11862/CJIC.20230368

    20. [20]

      Huirong LIUHao XUDunru ZHUJunyong ZHANGChunhua GONGJingli XIE . Syntheses, structures, photochromic and photocatalytic properties of two viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1368-1376. doi: 10.11862/CJIC.20240066

Metrics
  • PDF Downloads(1)
  • Abstract views(257)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return