On-surface Synthesis of Graphene Nanoribbons
- Corresponding author: Hai-Ming ZHANG, hmzhang@suda.edu.cn Li-Feng CHI, chilf@suda.edu.cn
Citation: Yan-Ning TANG, Ke-Wei SUN, Xue-Chao LI, Hai-Ming ZHANG, Li-Feng CHI. On-surface Synthesis of Graphene Nanoribbons[J]. Chinese Journal of Structural Chemistry, ;2020, 39(8): 1377-1384. doi: 10.14102/j.cnki.0254–5861.2011–2944
Cai, J. M.; Ruffieux, P.; Jaafar, R.; Bieri, M.; Braun, T.; Blankenburg, S.; Muoth, M.; Seitsonen, A. P.; Saleh, M.; Feng, X. L.; Mullen, K.; Fasel, R. Atomically precise bottom-up fabrication of graphene nanoribbons. Nature 2010, 466, 470–473.
doi: 10.1038/nature09211
Talirz, L.; Sde, H.; Kawai, S.; Ruffieux, P.; Meyer, E.; Feng, X. L.; Mllen, K.; Fasel, R.; Pignedoli, C. A.; Passerone, D. Band gap of atomically precise graphene nanoribbons as a function of ribbon length and termination. Chemphyschem 2019, 20, 2348–2353.
doi: 10.1002/cphc.201900313
Sun, K. W.; Ji, P. H.; Zhang, J. J.; Wang, J. X.; Li, X. C.; Xu, X.; Zhang, H. M.; Chi, L. F. On-surface synthesis of 8- and 10-armchair graphene nanoribbons. Small 2019, 15, 1804526.
doi: 10.1002/smll.201804526
Zhang, H. M.; Lin, H. P.; Sun, K. W.; Chen, L.; Zagranyarski, Y.; Aghdassi, N.; Duhm, S.; Li, Q.; Zhong, D. Y.; Li, Y. Y.; Mullen, K.; Fuchs, H.; Chi, L. F. On-surface synthesis of rylene-type graphene nanoribbons. J. Am. Chem. Soc. 2015, 137, 4022–4025.
doi: 10.1021/ja511995r
Kimouche, A.; Ervasti, M. M.; Drost, R.; Halonen, S.; Harju, A.; Joensuu, P. M.; Sainio, J.; Liljeroth, P. Ultra-narrow metallic armchair graphene nanoribbons. Nat. Commun. 2015, 6, 10177.
doi: 10.1038/ncomms10177
Beyer, D.; Wang, S. Y.; Pignedoli, C. A.; Melidonie, J.; Yuan, B. K.; Li, C.; Wilhelm, J.; Ruffieux, P.; Berger, R.; Mullen, K.; Fasel, R.; Feng, X. L. Graphene nanoribbons derived from zigzag edge-encased poly(para–2, 9-dibenzo[bc, kl]coronenylene) polymer chains. J. Am. Chem. Soc. 2019, 141, 4488–4488.
doi: 10.1021/jacs.9b01965
Ruffieux, P.; Wang, S. Y.; Yang, B.; Sanchez-Sanchez, C.; Liu, J.; Dienel, T.; Talirz, L.; Shinde, P.; Pignedoli, C. A.; Passerone, D.; Dumslaff, T.; Feng, X. L.; Mullen, K.; Fasel, R. On-surface synthesis of graphene nanoribbons with zigzag edge topology. Nature 2016, 531, 489–492.
doi: 10.1038/nature17151
Liu, J. Z.; Li, B. W.; Tan, Y. Z.; Giannakopoulos, A.; Sanchez-Sanchez, C.; Beljonne, D.; Ruffieux, P.; Fasel, R.; Feng, X. L.; Mullen, K. Toward cove-edged low band gap graphene nanoribbons. J. Am. Chem. Soc. 2015, 137, 6097–6103.
doi: 10.1021/jacs.5b03017
Yang, L.; Park, C. H.; Son, Y. W.; Cohen, M. L.; Louie, S. G. Quasiparticle energies and band gaps in graphene nanoribbons. Phys. Rev. Lett. 2007, 99, 186801.
doi: 10.1103/PhysRevLett.99.186801
Yang, X. Y.; Dou, X.; Rouhanipour, A.; Zhi, L. J.; Rader, H. J.; Mullen, K. Two-dimensional graphene nanoribbons. J. Am. Chem. Soc. 2008, 130, 4216–4217.
doi: 10.1021/ja710234t
Jiao, L. Y.; Zhang, L.; Wang, X. R.; Diankov, G.; Dai, H. J. Narrow graphene nanoribbons from carbon nanotubes. Nature 2009, 458, 877–880.
doi: 10.1038/nature07919
Chen, Y. C.; de Oteyza, D. G.; Pedramrazi, Z.; Chen, C.; Fischer, F. R.; Crommie, M. F. Tuning the band gap of graphene nanoribbons synthesized from molecular precursors. ACS Nano 2013, 7, 6123–6128.
doi: 10.1021/nn401948e
Wang, X. Y.; Dienel, T.; Di Giovannantonio, M.; Barin, G. B.; Kharche, N.; Deniz, O.; Urgel, J. I.; Widmer, R.; Stolz, S.; De Lima, L. H.; Muntwiler, M.; Tommasini, M.; Meunier, V.; Ruffieux, P.; Feng, X. L.; Fasel, R.; Mullen, K.; Narita, A. Heteroatom-doped perihexacene from a double helicene precursor: on-surface synthesis and properties. J. Am. Chem. Soc. 2017, 139, 4671–4674.
doi: 10.1021/jacs.7b02258
Kawai, S.; Saito, S.; Osumi, S.; Yamaguchi, S.; Foster, A. S.; Spijker, P.; Meyer, E. Atomically controlled substitutional boron-doping of graphene nanoribbons. Nat. Commun. 2015, 6, 8098.
doi: 10.1038/ncomms9098
Teeter, J. D.; Costa, P. S.; Pour, M. M.; Miller, D. P.; Zurek, E.; Enders, A.; Sinitskii, A. Epitaxial growth of aligned atomically precise chevron graphene nanoribbons on Cu(111). Chem. Commun. 2017, 53, 8463–8466.
doi: 10.1039/C6CC08006E
Carbonell-Sanroma, E.; Hieulle, J.; Vilas-Varela, M.; Brandimarte, P.; Lraola, M.; Barragan, A.; Li, J. C.; Abadia, M.; Corso, M.; Sanchez-Portal, D.; Pena, D.; Pascual, J. I. Doping of graphene nanoribbons via functional group edge modification. ACS Nano 2017, 11, 7355–7361.
doi: 10.1021/acsnano.7b03522
Marangoni, T.; Haberer, D.; Rizzo, D. J.; Cloke, R. R.; Fischer, F. R. Heterostructures through divergent edge reconstruction in nitrogen-doped segmented graphene nanoribbons. Chem. -Eur. J. 2016, 22, 13037–13040.
doi: 10.1002/chem.201603497
Zhang, Y.; Zhang, Y. F.; Li, G.; Lu, J. C.; Lin, X.; Du, S. X.; Berger, R.; Feng, X. L.; Mullen, K.; Gao, H. J. Direct visualization of atomically precise nitrogen-doped graphene nanoribbons. Appl. Phys. Lett. 2014, 105, 023101.
doi: 10.1063/1.4884359
Nguyen, G. D.; Tom, F. M.; Cao, T.; Pedramrazi, Z.; Chen, C.; Rizzo, D. J.; Joshi, T.; Bronner, C.; Chen, Y. C.; Favaro, M.; Louie, S. G.; Fischer, F. R.; Crommie, M. F. Bottom-up synthesis of n = 13 sulfur-doped graphene nanoribbons. J. Phys. Chem. C 2016, 120, 2684–2687.
Wang, X. Y.; Yao, X. L.; Narita, A.; Mullen, K. Heteroatom-doped nanographenes with structural precision. Acc. Chem. Res. 2019, 52, 2491–2505.
doi: 10.1021/acs.accounts.9b00322
Liu, M. Z.; Liu, M. X.; Zha, Z. Q.; Pan, J. L.; Qiu, X. H.; Li, T.; Wang, J. B.; Zheng, Y.; Zhong, D. Y. Thermally induced transformation of nonhexagonal carbon rings in graphene-like nanoribbons. J. Phys. Chem. C 2018, 122, 9586–9592.
doi: 10.1021/acs.jpcc.8b02565
Fan, Q.; Martin-Jimenez, D.; Ebeling, D.; Krug, C. K.; Brechmann, L.; Kohlmeyer, C.; Hilt, G.; Hieringer, W.; Schirmeisen, A.; Gottfried, J. M. Nanoribbons with nonalternant topology from fusion of polyazulene: carbon allotropes beyond graphene. J. Am. Chem. Soc. 2019, 141, 17713–17720.
doi: 10.1021/jacs.9b08060
Hou, I. C. Y.; Sun, Q.; Eimre, K.; Di Giovannantonio, M.; Urgel, J. I.; Ruffieux, P.; Narita, A.; Fasel, R.; Müllen, K. On-surface synthesis of unsaturated carbon nanostructures with regularly fused pentagon-heptagon pairs. J. Am. Chem. Soc. 2020, 142, 10291–10296.
doi: 10.1021/jacs.0c03635
Di Giovannantonio, M.; Urgel, J. I.; Beser, U.; Yakutovich, A. V.; Wilhelm, J.; Pignedoli, C. A.; Ruffieux, P.; Narita, A.; Mullen, K.; Fasel, R. On-surface synthesis of indenofluorene polymers by oxidative five-membered ring formation. J. Am. Chem. Soc. 2018, 140, 3532–3536.
doi: 10.1021/jacs.8b00587
Majzik, Z.; Pavlicek, N.; Vilas-Varela, M.; Perez, D.; Moll, N.; Guitian, E.; Meyer, G.; Pena, D.; Gross, L. Studying an antiaromatic polycyclic hydrocarbon adsorbed on different surfaces. Nat. Commun. 2018, 9, 1198.
doi: 10.1038/s41467-018-03368-9
Riss, A.; Wickenburg, S.; Gorman, P.; Tan, L. Z.; Tsai, H. Z.; de Oteyza, D. G.; Chen, Y. C.; Bradley, A. J.; Ugeda, M. M.; Etkin, G.; Louie, S. G.; Fischer, F. R.; Crommie, M. F. Local electronic and chemical structure of oligo-acetylene derivatives formed through radical cyclizations at a surface. Nano. Lett. 2014, 14, 2251–2255.
doi: 10.1021/nl403791q
Liu, M. Z.; Liu, M. X.; She, L. M.; Zha, Z. Q.; Pan, J. L.; Li, S. C.; Li, T.; He, Y. Y.; Cai, Z. Y.; Wang, J. B.; Zheng, Y.; Qiu, X. H.; Zhong, D. Y. Graphene-like nanoribbons periodically embedded with four- and eight-membered rings. Nat. Commun. 2017, 8, 14924.
doi: 10.1038/ncomms14924
Kawai, S.; Takahashi, K.; Ito, S.; Pawlak, R.; Meier, T.; Spijker, P.; Canova, F. F.; Tracey, J.; Nozaki, K.; Foster, A. S.; Meyer, E. Competing annulene and radialene structures in a single anti-aromatic molecule studied by high-resolution atomic force microscopy. ACS Nano 2017, 11, 8122–8130.
doi: 10.1021/acsnano.7b02973
Cho, J.; Smerdon, J.; Gao, L.; Suzer, O.; Guest, J. R.; Guisinger, N. P. Structural and electronic decoupling of c–60 from epitaxial graphene on sic. Nano. Lett. 2012, 12, 3018–3024.
doi: 10.1021/nl3008049
Repp, J.; Meyer, G.; Stojkovic, S. M.; Gourdon, A.; Joachim, C. Molecules on insulating films: scanning-tunneling microscopy imaging of individual molecular orbitals. Phys. Rev. Lett. 2005, 94, 026803.
doi: 10.1103/PhysRevLett.94.026803
Zheng, Y. J.; Huang, Y. L.; Chenp, Y. F.; Zhao, W. J.; Eda, G.; Spataru, C. D.; Zhang, W. J.; Chang, Y. H.; Li, L. J.; Chi, D. Z.; Quek, S. Y.; Wee, A. T. S. Heterointerface screening effects between organic monolayers and monolayer transition metal dichalcogenides. ACS Nano 2016, 10, 2476–2484.
doi: 10.1021/acsnano.5b07314
Liu, Z. H.; Sun, K. W.; Li, X. C.; Li, L.; Zhang, H. M.; Chi, L. F. Electronic decoupling of organic layers by a self-assembled supramolecular network on au(111). J. Phys. Chem. Lett. 2019, 10, 4297–4302.
doi: 10.1021/acs.jpclett.9b01167
Han, P.; Akagi, K.; Canova, F. F.; Mutoh, H.; Shiraki, S.; Iwaya, K.; Weiss, P. S.; Asao, N.; Hitosugi, T. Bottom-up graphene-nanoribbon fabrication reveals chiral edges and enantioselectivity. ACS Nano 2014, 8, 9181–9187.
doi: 10.1021/nn5028642
Basagni, A.; Sedona, F.; Pignedoli, C. A.; Cattelan, M.; Nicolas, L.; Casarin, M.; Sambi, M. Molecules-oligomers-nanowires-graphene nanoribbons: a bottom-up stepwise on-surface covalent synthesis preserving long-range order. J. Am. Chem. Soc. 2015, 137, 1802–1808
doi: 10.1021/ja510292b
Zhang, Y. F.; Zhang, Y.; Li, G.; Lu, J. C.; Que, Y. D.; Chen, H.; Berger, R.; Feng, X. L.; Mullen, K.; Lin, X.; Zhang, Y. Y.; Du, S. X.; Pantelides, S. T.; Gao, H. J. Sulfur-doped graphene nanoribbons with a sequence of distinct band gaps. Nano Res. 2017, 10, 3377–3384
doi: 10.1007/s12274-017-1550-2
Bronner, C.; Leyssner, F.; Stremlau, S.; Utecht, M.; Saalfrank, P.; Klamroth, T.; Tegeder, P. Electronic structure of a subnanometer wide bottom-up fabricated graphene nanoribbon: end states, band gap, and dispersion. Phys. Rev. B 2012, 86, 085444.
doi: 10.1103/PhysRevB.86.085444
Kleimeier, N. F.; Timmer, A.; Bignardi, L.; Monig, H.; Feng, X. L.; Mullen, K.; Chi, L. F.; Fuchs, H.; Zacharias, H. Electron dynamics in unoccupied states of spatially aligned 7-a graphene nanoribbons on au(788). Phys. Rev. B 2014, 90, 245408.
doi: 10.1103/PhysRevB.90.245408
Linden, S.; Zhong, D.; Timmer, A.; Aghdassi, N.; Franke, J. H.; Zhang, H.; Feng, X.; Mullen, K.; Fuchs, H.; Chi, L.; Zacharias, H. Electronic structure of spatially aligned graphene nanoribbons on au(788). Phys. Rev. Lett. 2012, 108, 216801.
doi: 10.1103/PhysRevLett.108.216801
Chen, Y. C.; Cao, T.; Chen, C.; Pedramrazi, Z.; Haberer, D.; de Oteyza, D. G.; Fischer, F. R.; Louie, S. G.; Crommie, M. F. Molecular bandgap engineering of bottom-up synthesized graphene nanoribbon heterojunctions. Nat. Nanotech. 2015, 10, 156–160.
doi: 10.1038/nnano.2014.307
Mishra, S.; Lohr, T. G.; Pignedoli, C. A.; Liu, J. Z.; Berger, R.; Urgel, J. I.; Mullen, K.; Feng, X. L.; Ruffieux, P.; Fasel, R. Tailoring bond topologies in open-shell graphene nanostructures. ACS Nano 2018, 12, 11917–11927.
doi: 10.1021/acsnano.8b07225
Mishra, S.; Beyer, D.; Berger, R.; Liu, J. Z.; Groning, O.; Urgel, J. I.; Mullen, K.; Ruffieux, P.; Feng, X. L.; Fasel, R. Topological defect-induced magnetism in a nanographene. J. Am. Chem. Soc. 2020, 142, 1147–1152.
doi: 10.1021/jacs.9b09212
Merino-Diez, N.; Garcia-Lekue, A.; Carbonell-Sanroma, E.; Li, J. C.; Corso, M.; Colazzo, L.; Sedona, F.; Sanchez-Portal, D.; Pascual, J. I.; de Oteyza, D. G. Width-dependent band gap in armchair graphene nanoribbons reveals fermi level pinning on au(111). ACS Nano 2017, 11, 11661–11668.
doi: 10.1021/acsnano.7b06765
Ruffieux, P.; Cai, J. M.; Plumb, N. C.; Patthey, L.; Prezzi, D.; Ferretti, A.; Molinari, E.; Feng, X. L.; Mullen, K.; Pignedoli, C. A.; Fasel, R. Electronic structure of atomically precise graphene nanoribbons. ACS Nano 2012, 6, 6930–6935.
doi: 10.1021/nn3021376
Huang, H.; Chen, S.; Gao, X. Y.; Chen, W.; Wee, A. T. S. Structural and electronic properties of ptcda thin films on epitaxial graphene. ACS Nano 2009, 3, 3431–3436.
doi: 10.1021/nn9008615
Liu, L. W.; Dienel, T.; Widmer, R.; Groning, O. Interplay between energy-level position and charging effect of manganese phthalocyanines on an atomically thin insulator. ACS Nano 2015, 9, 10125–10132.
doi: 10.1021/acsnano.5b03741
Wang, S. Y.; Talirz, L.; Pignedoli, C. A.; Feng, X. L.; Mullen, K.; Fasel, R.; Ruffieux, P. Giant edge state splitting at atomically precise graphene zigzag edges. Nat. Commun. 2016, 7, 11507.
doi: 10.1038/ncomms11507
Yamaguchi, J.; Hayashi, H.; Jippo, H.; Shiotari, A.; Ohtomo, M.; Sakakura, M.; Hieda, N.; Aratani, N.; Ohfuchi, M.; Sugimoto, Y.; Yamada, H.; Sato, S. Small bandgap in atomically precise 17-atom-wide armchair-edged graphene nanoribbons. Commun. Mater. 2020, 1, DOI 10.1038/s43246-020-0039-9.
doi: 10.1038/s43246-020-0039-9
Sakaguchi, H.; Kawagoe, Y.; Hirano, Y.; Iruka, T.; Yano, M.; Nakae, T. Width-controlled sub-nanometer graphene nanoribbon films synthesized by radical-polymerized chemical vapor deposition. Adv. Mater. 2014, 26, 4134–4138.
doi: 10.1002/adma.201305034
Narita, A.; Chen, Z. P.; Chen, Q.; Mullen, K. Solution and on-surface synthesis of structurally defined graphene nanoribbons as a new family of semiconductors. Chem. Sci. 2019, 10, 964–975.
doi: 10.1039/C8SC03780A
Sakaguchi, H.; Song, S. T.; Kojima, T.; Nakae, T. Homochiral polymerization-driven selective growth of graphene nanoribbons. Nat. Chem. 2017, 9, 57–63.
doi: 10.1038/nchem.2614
Song, S. T.; Kojima, T.; Nakae, T.; Sakaguchi, H. Wide graphene nanoribbons produced by interchain fusion of poly(p-phenylene) via two-zone chemical vapor deposition. Chem. Commun. 2017, 53, 7034–7036.
doi: 10.1039/C7CC02849K
Bennett, P. B.; Pedramrazi, Z.; Madani, A.; Chen, Y. C.; de Oteyza, D. G.; Chen, C.; Fischer, F. R.; Crommie, M. F.; Bokor, J. Bottom-up graphene nanoribbon field-effect transistors. Appl. Phys. Lett. 2013, 103, 253114.
doi: 10.1063/1.4855116
Chen, Z. P.; Zhang, W.; Palma, C. A.; Rizzini, A. L.; Liu, B. L.; Abbas, A.; Richter, N.; Martini, L.; Wang, X. Y.; Cavani, N.; Lu, H.; Mishra, N.; Coletti, C.; Berger, R.; Klappenberger, F.; Klaui, M.; Candini, A.; Affronte, M.; Zhou, C. W.; De Renzi, V.; del Pennino, U.; Barth, J. V.; Rader, H. J.; Narita, A.; Feng, X. L.; Mullen, K. Synthesis of graphene nanoribbons by ambient-pressure chemical vapor deposition and device integration. J. Am. Chem. Soc. 2016, 138, 15488–15496.
doi: 10.1021/jacs.6b10374
Kojima, T.; Bao, Y.; Zhang, C.; Liu, S. L.; Xu, H.; Nakae, T.; Loh, K. P.; Sakaguchi, H. Orientation and electronic structures of multilayered graphene nanoribbons produced by two-zone chemical vapor deposition. Langmuir 2017, 33, 10439–10445.
doi: 10.1021/acs.langmuir.7b01862
Ohtomo, M.; Sekine, Y.; Hibino, H.; Yamamoto, H. Graphene nanoribbon field-effect transistors fabricated by etchant-free transfer from au(788). Appl. Phys. Lett. 2018, 112, 021602.
doi: 10.1063/1.5006984
Liu, Y.; Wang, X. Z.; Dong, Y. F.; Wang, Z. Y.; Zhao, Z. B.; Qiu, J. S. Nitrogen-doped graphene nanoribbons for high-performance lithium ion batteries. J. Mater. Chem. A 2014, 2, 16832–16835.
doi: 10.1039/C4TA03531C
Liu, M. K.; Song, Y. F.; He, S. X.; Tjiu, W. W.; Pan, J. S.; Xia, Y. Y.; Liu, T. X. Nitrogen-doped graphene nanoribbons as efficient metal-free electrocatalysts for oxygen reduction. Acs Appl. Mater. Inter. 2014, 6, 4214–4222.
doi: 10.1021/am405900r
Yu He , Hao Jiang , Shaoxuan Yuan , Jiayi Lu , Qiang Sun . On-surface photo-induced dechlorination. Chinese Chemical Letters, 2024, 35(9): 109807-. doi: 10.1016/j.cclet.2024.109807
Xiangshuai Li , Jian Zhao , Li Luo , Zhuohao Jiao , Ying Shi , Shengli Hou , Bin Zhao . Visual and portable detection of metronidazole realized by metal-organic framework flexible sensor and smartphone scanning. Chinese Chemical Letters, 2024, 35(10): 109407-. doi: 10.1016/j.cclet.2023.109407
Chengde Wang , Liping Huang , Shanshan Wang , Lihao Wu , Yi Wang , Jun Dong . A distinction of gliomas at cellular and tissue level by surface-enhanced Raman scattering spectroscopy. Chinese Chemical Letters, 2024, 35(5): 109383-. doi: 10.1016/j.cclet.2023.109383
Mei Peng , Wei-Min He . Photochemical synthesis and group transfer reactions of azoxy compounds. Chinese Chemical Letters, 2024, 35(8): 109899-. doi: 10.1016/j.cclet.2024.109899
Shehla Khalid , Muhammad Bilal , Nasir Rasool , Muhammad Imran . Photochemical reactions as synthetic tool for pharmaceutical industries. Chinese Chemical Letters, 2024, 35(9): 109498-. doi: 10.1016/j.cclet.2024.109498
Kongchuan Wu , Dandan Lu , Jianbin Lin , Ting-Bin Wen , Wei Hao , Kai Tan , Hui-Jun Zhang . Elucidating ligand effects in rhodium(Ⅲ)-catalyzed arene–alkene coupling reactions. Chinese Chemical Letters, 2024, 35(5): 108906-. doi: 10.1016/j.cclet.2023.108906
Shengkai Li , Yuqin Zou , Chen Chen , Shuangyin Wang , Zhao-Qing Liu . Defect engineered electrocatalysts for C–N coupling reactions toward urea synthesis. Chinese Chemical Letters, 2024, 35(8): 109147-. doi: 10.1016/j.cclet.2023.109147
Ying-Di Hao , Zhi-Qian Lin , Xiao-Yu Guo , Jiao Liang , Can-Kun Luo , Qian-Tao Wang , Li Guo , Yong Wu . Rhodium-catalyzed Doyle-Kirmse rearrangement reactions of sulfoxoniun ylides. Chinese Chemical Letters, 2024, 35(4): 108834-. doi: 10.1016/j.cclet.2023.108834
Hongwei Ma , Fang Zhang , Hui Ai , Niu Zhang , Shaochun Peng , Hui Li . Integrated Crystallographic Teaching with X-ray,TEM and STM. University Chemistry, 2024, 39(3): 5-17. doi: 10.3866/PKU.DXHX202308107
Tian Cao , Xuyin Ding , Qiwen Peng , Min Zhang , Guoyue Shi . Intelligent laser-induced graphene sensor for multiplex probing catechol isomers. Chinese Chemical Letters, 2024, 35(7): 109238-. doi: 10.1016/j.cclet.2023.109238
Rui Liu , Jinbo Pang , Weijia Zhou . Monolayer water shepherding supertight MXene/graphene composite films. Chinese Journal of Structural Chemistry, 2024, 43(10): 100329-100329. doi: 10.1016/j.cjsc.2024.100329
Zhiwei Zhong , Yanbin Huang , Wantai Yang . A simple photochemical method for surface fluorination using perfluoroketones. Chinese Chemical Letters, 2024, 35(5): 109339-. doi: 10.1016/j.cclet.2023.109339
Yukai Tong , Zhijun Wu , Bo Zhou , Min Hu , Anpei Ye . Surface tension of single suspended aerosol microdroplets. Chinese Chemical Letters, 2024, 35(4): 109062-. doi: 10.1016/j.cclet.2023.109062
Ling-Hao Zhao , Hai-Wei Yan , Jian-Shuang Jiang , Xu Zhang , Xiang Yuan , Ya-Nan Yang , Pei-Cheng Zhang . Effective assignment of positional isomers in dimeric shikonin and its analogs by 1H NMR spectroscopy. Chinese Chemical Letters, 2024, 35(5): 108863-. doi: 10.1016/j.cclet.2023.108863
Chunru Liu , Ligang Feng . Advances in anode catalysts of methanol-assisted water-splitting reactions for hydrogen generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100136-100136. doi: 10.1016/j.cjsc.2023.100136
Lang Gao , Cen Zhou , Rui Wang , Feng Lan , Bohang An , Xiaozhou Huang , Xiao Zhang . Unveiling inverse vulcanized polymers as metal-free, visible-light-driven photocatalysts for cross-coupling reactions. Chinese Chemical Letters, 2024, 35(4): 108832-. doi: 10.1016/j.cclet.2023.108832
Shu Lin , Kezhen Qi . Phase-dependent lithium-alloying reactions for lithium-metal batteries. Chinese Chemical Letters, 2024, 35(4): 109431-. doi: 10.1016/j.cclet.2023.109431
Xiao-Ya Yuan , Cong-Cong Wang , Bing Yu . Recent advances in FeCl3-photocatalyzed organic reactions via hydrogen-atom transfer. Chinese Chemical Letters, 2024, 35(9): 109517-. doi: 10.1016/j.cclet.2024.109517
Hanqing Zhang , Xiaoxia Wang , Chen Chen , Xianfeng Yang , Chungli Dong , Yucheng Huang , Xiaoliang Zhao , Dongjiang Yang . Selective CO2-to-formic acid electrochemical conversion by modulating electronic environment of copper phthalocyanine with defective graphene. Chinese Journal of Structural Chemistry, 2023, 42(10): 100089-100089. doi: 10.1016/j.cjsc.2023.100089
Ying Chen , Li Li , Junyao Zhang , Tongrui Sun , Xuan Zhang , Shiqi Zhang , Jia Huang , Yidong Zou . Tailored ionically conductive graphene oxide-encased metal ions for ultrasensitive cadaverine sensor. Chinese Chemical Letters, 2024, 35(8): 109102-. doi: 10.1016/j.cclet.2023.109102