Citation: Zhen-Hai SHI, Yuan HUANG, Yu-Ze WU, Xiao-Li CHEN, Hua YANG. A Hexanuclear Cobalt Cluster with Tetracubane-like Topology: Synthesis, Structure and Magnetic Properties[J]. Chinese Journal of Structural Chemistry, ;2021, 40(4): 495-500. doi: 10.14102/j.cnki.0254–5861.2011–2942 shu

A Hexanuclear Cobalt Cluster with Tetracubane-like Topology: Synthesis, Structure and Magnetic Properties

  • Corresponding author: Hua YANG, yanghua_08@163.com
  • Received Date: 20 July 2020
    Accepted Date: 12 October 2020

    Fund Project: the Natural Science Foundation of Yan'an University YDY2017-08Innovation and Entrepreneurship Training Program of College Students of China S202010719031the Natural Science Foundation of Yulin CXY-2020-065the National Natural Science Foundation of China 21763028

Figures(3)

  • One hexanuclear cobalt cluster [Co2Co4(L)4(CH3COO)2(MeO)4]·MeOH (1) was synthesized by the reaction of H2L (H2L = 2-((2-hydroxy-4-methoxy-benzylideneamino)methyl)phenol) and Co(OAc)2·4H2O in MeOH under solvothermal conditions. Complex 1 crystalizes in the triclinic space group P\begin{document}$ \overline 1 $\end{document} with a = 14.397(3), b = 16.625(3), c = 18.992(4) Å, α = 109.47(3)°, β = 99.24(3)°, γ = 112.37(3)°, Dc = 1.464 g/cm3, Z = 2, V = 3741.7(2) Å3, the final R = 0.0781 and wR = 0.1436 for 13051 observed reflections with I > 2σ(I). In the structure of 1, two cobalt ions are in 3+ oxidation states and four cobalt ions are in 2+ valence states. The six cobalt atoms are held together by six phenolate oxygen atoms from four L2– ligands, four oxygen atoms from two chelating acetates and four μ3-O atoms from four MeO groups. The six cobalt atoms are located at six corners of four defective cubanes. Thus, complex 1 displays tetracubane-like topology. Solid-state dc magnetic susceptibilities were measured for 1 in the 2.0~300 K range. Antiferromagnetic interactions were determined for 1.
  • 加载中
    1. [1]

      Han, S. D.; Song, W. C.; Zhao, J. P.; Yang, Q.; Liu, S. J.; Li, Y.; Bu, X. H. Synthesis and ferrimagnetic properties of an unprecedented polynuclear cobalt complex composed of [Co24] macrocycles. Chem. Commun. 2013, 49, 871–873.  doi: 10.1039/C2CC37593A

    2. [2]

      Guo, L. Y.; Zeng, S. Y.; Jaglicic, Z.; Hu, Q. D.; Wang, S. X.; Wang, Z.; Sun, D. A pyridazine-bridged sandwiched cluster incorporating planar hexanuclear cobalt ring and bivacant phosphotungstate. Inorg. Chem. 2016, 55, 9006–9011.  doi: 10.1021/acs.inorgchem.6b01468

    3. [3]

      Guo, Z. Y.; Su, S. G.; Deng, R. P.; Zhang, H. J. An unprecedented ten-connected 3D metal-organic framework based on hexanuclear cobalt(Ⅱ) cluster building blocks. Inorg. Chem. Commun. 2015, 51, 9–12.  doi: 10.1016/j.inoche.2014.10.030

    4. [4]

      Liu, W.; Liu, M.; Du, S. C.; Li, Y. F.; Liao, W. P. Bridging cobalt-calixarene subunits into a Co8 entity or a chain with 4, 4'-bipyridyl. J. Mol. Stru. 2014, 1060, 58–62.  doi: 10.1016/j.molstruc.2013.12.044

    5. [5]

      Zhao, J. J.; Xu, J. C.; King, R. B. Hexanuclear cobalt carbonyl carbide clusters: the interplay between octahedral and trigonal prismatic structures. Inorg. Chem. 2008, 47, 9314–9320.  doi: 10.1021/ic8009089

    6. [6]

      Ma, Y. S.; Xue, F. F.; Tang, X. Y.; Chen, B.; Yuan, R. X. A hexanuclear antiferromagnetic cobalt(Ⅱ) wheel: synthesis, structure and magnetic properties. Inorg. Chem. Commun. 2012, 15, 285–287.  doi: 10.1016/j.inoche.2011.11.003

    7. [7]

      Tudor, V.; Madalan, A.; Lupu, V.; Lloret, F.; Julve, M.; Andruh, M. A new mixed-valence hexanuclear cobalt complex, [Co4Co2(dea)2(Hdea)4(piv)4](ClO4)2·H2O: synthesis, crystal structure and magnetic properties. Inorg. Chim. Acta 2010, 363, 823–826.  doi: 10.1016/j.ica.2009.12.006

    8. [8]

      Shiga, T.; Oshio, H. Syntheses, structures and magnetic properties of mixed-valence pentanuclear [Mn3Mn2] and hexanuclear [Co4Co2] complexes derived from 3-formylsalicylic acid. Polyhedron 2007, 26, 1881–1884.  doi: 10.1016/j.poly.2006.09.026

    9. [9]

      Li, J.; Zhu, X. F.; Zhang, L. Y.; Chen, Z. N. Structures and luminescence properties of diethyldithiocarbamate-bridged polynuclear gold(I) cluster complexes with diphosphine/triphosphine. RSC Adv. 2015, 5, 34992–34998.  doi: 10.1039/C5RA01831E

    10. [10]

      Artemév, A. V.; Pritchina, E. A.; Rakhmanova, M. I.; Gritsan, N. P.; Bagryanskaya, I. Y.; Malysheva, S. F.; Belogorlova, N. A. Alkyl-dependent self-assembly of the first red-emitting zwitterionic {Cu4I6} clusters from [alkyl-P(2-Py)3]+ salts and CuI: when size matters. Dalton Trans. 2019, 48, 2328–2337.  doi: 10.1039/C8DT04328K

    11. [11]

      Leng, J. D.; Xing, S. K.; Herchel, R.; Liu, J. L.; Tong, M. L. Disklike hepta- and tridecanuclear cobalt clusters. Synthesis, structures, magnetic properties, and DFT calculations. Inorg. Chem. 2014, 53, 5458–5466.  doi: 10.1021/ic403093r

    12. [12]

      Nesterov, D. S.; Nesterova, O. V. Polynuclear cobalt complexes as catalysts for light-driven water oxidation: a review of recent advances. Catalysts 2018, 8, 602/1–602/21.

    13. [13]

      Singha Mahapatra, T.; Basak, D.; Chand, S.; Lengyel, J.; Shatruk, M.; Bertolasi, V.; Ray, D. Competitive coordination aggregation for V-shaped [Co3] and disc-like [Co7] complexes: synthesis, magnetic properties and catechol oxidase activity. Dalton Trans. 2016, 45, 13576–13589.  doi: 10.1039/C6DT02494G

    14. [14]

      Murrie, M. Cobalt(Ⅱ) single-molecule magnets. Chem. Soc. Rev. 2010, 39, 1986–1995.  doi: 10.1039/b913279c

    15. [15]

      Wang, X. T.; Wang, B. W.; Wang, Z. M.; Zhang, W.; Gao, S. Azide and oxo bridged ferromagnetic clusters: three face-shared tetracubane Ni(Ⅱ)/Co(Ⅱ) hexamers and a wheel-shaped SMM-like Co(Ⅱ) heptamer. Inorg. Chim. Acta 2008, 361, 3895–3902.  doi: 10.1016/j.ica.2008.03.020

    16. [16]

      Liu, Y. N.; Hou, J. L.; Wang, Z.; Gupta, R. K.; Jaglicic, Z.; Jagodic, M.; Wang, W. G.; Tung, C. H.; Sun, D. An octanuclear cobalt cluster protected by macrocyclic ligand: in situ ligand-transformation-assisted assembly and single-molecule magnet behavior. Inorg. Chem. 2020, 59, 5683–5693.  doi: 10.1021/acs.inorgchem.0c00449

    17. [17]

      Murrie, M.; Teat, S. J.; Stoeckli-Evans, H.; Guedel, H. U. Synthesis and characterization of a cobalt(Ⅱ) single-molecule magnet. Angew. Chem., Int. Ed. 2003, 42, 4653–4656.  doi: 10.1002/anie.200351753

    18. [18]

      Mannini, M.; Pineider, F.; Danieli, C.; Totti, F.; Sorace, L.; Sainctavit, P.; Arrio, M. A.; Otero, E.; Joly, L.; Cezar, J. C.; Cornia, A.; Sessoli, R. Quantum tunneling of the magnetization in a monolayer of oriented single-molecule magnets. Nature 2010, 468, 417–421.  doi: 10.1038/nature09478

    19. [19]

      Ariciu, A. M.; Woen, D. H.; Huh, D. N.; Nodaraki, L. E.; Kostopoulos, A. K.; Goodwin, C. A. P.; Chilton, N. F.; Mclnnes, E. J. L.; Winpenny, R. E. P.; Evans, W. J.; Tuna, F. Engineering electronic structure to prolong relaxation times in molecular qubits by minimising orbital angular momentum. Nat. Commun. 2019, 10, 3330–3337.  doi: 10.1038/s41467-019-11309-3

    20. [20]

      Chandra, A.; Mebs, S.; Kundu, S.; Kuhlmann, U.; Hildebrandt, P.; Dau, H.; Ray, K. Catalytic dioxygen reduction mediated by a tetranuclear cobalt complex supported on a stannoxane core. Dalton Trans. 2020, 49, 6065–6073.  doi: 10.1039/D0DT00475H

    21. [21]

      Lin, J. Q.; Meng, X. Y.; Zheng, M.; Ma, B. C.; Ding, Y. Insight into a hexanuclear cobalt complex: strategy to construct efficient catalysts for visible light-driven water oxidation. Appl. Cataly. B-Environ. 2019, 241, 351–358.  doi: 10.1016/j.apcatb.2018.09.052

    22. [22]

      Monte-Perez, I.; Kundu, S.; Chandra, A.; Craigo, K. E.; Chernev, P.; Kuhlmann, U.; Dau, H.; Hildebrandt, P.; Greco, C.; Van Stappen, C.; Lehnert, N.; Ray, K. Temperature dependence of the catalytic two-versus four-electron reduction of dioxygen by a hexanuclear cobalt complex J. Am. Chem. Soc. 2017, 139, 15033–15042.  doi: 10.1021/jacs.7b07127

    23. [23]

      Gao, J. K.; Bai, L. L.; Zhang, Q.; Li, Y. X.; Rakesh, G.; Lee, J. M.; Yang, Y. H.; Zhang, Q. C. Co6(µ3-OH)6 cluster based coordination polymer as an effective heterogeneous catalyst for aerobic epoxidation of alkenes. Dalton Trans. 2014, 43, 2559–2565.  doi: 10.1039/C3DT52562G

    24. [24]

      Huang, Y.; Qin, Y. R.; Ge, Y.; Cui, Y. F.; Zhang, X. M.; Li, Y. H.; Yao, J. L. Rationally assembled nonanuclear lanthanide clusters: Dy9 displays slow relaxation of magnetization and Tb9 serves as luminescent sensor for Fe3+, CrO42- and Cr2O72-. New J. Chem. 2019, 43, 19344–19354.  doi: 10.1039/C9NJ04893F

    25. [25]

      Sheldrick, G. M. A. A short history of SHELX. Acta Crystallogr., Sect. A: Found. Crystallogr. 2008, 64, 112–122.  doi: 10.1107/S0108767307043930

    26. [26]

      Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 2015, 71, 3–8.  doi: 10.1107/S2053229614024218

    27. [27]

      Brown, I. D.; Altermat, D. Bond-valence parameters obtained from a systematic analysis of the inorganic crystal structure database. Acta Cryst. 1985, B41, 244–247.

    28. [28]

      Brese, N. E.; O'keeffe, M. Bond-valence parameters for solids. Acta Cryst. 1991. B47, 192–197.

    29. [29]

      Alley, K. G.; Bircher, R.; Waldmann, O.; Ochsenbein, S. T.; Gudel, H. U.; Moubaraki, B.; Murray, K. S.; Fernandez-Alonso, F.; Abrahams, B. F.; Boskovic, C. Mixed-valent cobalt spin clusters: a hexanuclear complex and a one-dimensional coordination polymer comprised of alternating hepta- and mononuclear fragments. Inorg. Chem. 2006, 45, 8950–8957.  doi: 10.1021/ic060938e

    30. [30]

      Cao, Y. Y.; Chen, Y. M.; Li, L.; Gao, D. D.; Liu, W.; Hu, H. L.; Li, W.; Li, Y. H. A Co16 cluster and a 1-D Mn chain complex supported by benzohydroxamic acid. Dalton Trans. 2013, 42, 10912–10918.  doi: 10.1039/c3dt51140e

    31. [31]

      Sánchez, R. H.; Champsaur, A. M.; Choi, B.; Wang, S. G.; Bu, W.; Roy, X.; Chen, Y. S.; Steigerwald, M. L.; Nuckolls, C.; Paley, D. W. Electron cartography in clusters. Angew. Chem. Int. Ed. 2018, 57, 13815–13820.  doi: 10.1002/anie.201806426

    32. [32]

      Ferguson, A.; Parkin, A.; Sanchez-Benitez, J.; Kamenev, K.; Wernsdorfer, W.; Murrie, M. A mixed-valence Co7 single-molecule magnet with C3 symmetry. Chem. Commun. 2007, 3473–3475.

    33. [33]

      Chibotaru, L. F.; Ungur, L.; Aronica, C.; Elmoll, H.; Pilet, G.; Luneau, D. Structure, magnetism, and theoretical study of a mixed-valence Co3Co4 heptanuclear wheel: lack of SMM behavior despite negative magnetic anisotropy. J. Am. Chem. Soc. 2008, 130, 12445–12455.  doi: 10.1021/ja8029416

    34. [34]

      Zhang, S. H.; Song, Y.; Liang, H.; Zeng, M. H. Microwave-assisted synthesis, crystal structure and properties of a disc-like heptanuclear Co(Ⅱ) cluster and a heterometallic cubanic Co(Ⅱ) cluster. CrystEngComm. 2009, 11, 865–872.  doi: 10.1039/b815675a

    35. [35]

      Zhou, Y. L.; Zeng, M. H.; Wei, L. Q.; Li, B. W.; Kurmoo, M. Traditional and microwave-assisted solvothermal synthesis and surface modification of Co7 brucite disk clusters and their magnetic properties. Chem. Mater. 2010, 22, 4295–4303.  doi: 10.1021/cm1011229

    36. [36]

      Wei, L. Q.; Li, B. W.; Hua, S.; Zeng, M. H. Controlled assemblies of hepta- and trideca-Co clusters by a rational derivation of salicylalde Schiff bases: microwave-assisted synthesis, crystal structures, ESI-MS solution analysis and magnetic properties. CrystEngComm. 2011, 13, 510–516.  doi: 10.1039/C0CE00085J

    37. [37]

      Zhang, S. H.; Ma, L. F.; Zou, H. H.; Wang, Y. G.; Liang, H.; Zeng, M. H. Anion induced diversification from heptanuclear to tetranuclear clusters: syntheses, structures and magnetic properties. Dalton Trans. 2011, 40, 11402–11409.  doi: 10.1039/c1dt10517e

    38. [38]

      Kitos, A. A.; Efthymiou, C. G.; Papatriantafyllopoulou, C.; Nastopoulos, V.; Tasiopoulos, A. J.; Manos, M. J.; Wernsdorfer, W.; Christou, G.; Perlepes, S. P. The search for cobalt single-molecule magnets: a disk-like CoCo6 cluster with a ligand derived from a novel transformation of 2-acetylpyridine. Polyhedron 2011, 30, 2987–2996.  doi: 10.1016/j.poly.2011.02.013

    39. [39]

      Meally, S. T.; McDonald, C.; Kealy, P.; Taylor, S. M.; Brechin, E. K.; Jones, L. F. Investigating the solid state hosting abilities of homo- and hetero-valent [Co7] metallocalix[6]arenes. Dalton Trans. 2012, 41, 5610–5616.  doi: 10.1039/c2dt12229d

    40. [40]

      Zhang, S. H.; Zou, H. H.; Wang, Y. G.; Song, Y.; Liang, H.; Zeng, M. H. Microwave-assisted synthesis, crystal structure and magnetic behavior of a Schiff base heptanuclear cobalt cluster. J. Cluster Sci. 2014, 25, 357–365.  doi: 10.1007/s10876-013-0614-z

    41. [41]

      Zhang, S. H.; Huang, Q. P.; Zhang, H. Y.; Li, G.; Liu, Z.; Li, Y.; Liang, H. Dodecanuclear water cluster in bowl: microwave-assisted synthesis of a heptanuclear cobalt(Ⅱ) cluster. J. Coord. Chem. 2014, 67, 3155–3166.  doi: 10.1080/00958972.2014.964221

    42. [42]

      Boudalis, A. K.; Raptopoulou, C. P.; Abarca, B.; Ballesteros, R.; Chadlaoui, M.; Tuchagues, J. P.; Terzis, A. Co chemistry of 2, 6-bis(2-pyridylcarbonyl)pyridine: an icosanuclear Co cluster exhibiting superparamagnetic relaxation. Angew. Chem., Int. Ed. 2006, 45, 432–435.  doi: 10.1002/anie.200502519

    43. [43]

      Cheng, X. N.; Zhang, W. X.; Zheng, Y. Z.; Chen, X. M. The slow magnetic relaxation observed in a mixed carboxylate/hydroxide-bridged compound [Co2Na(4-cpa)2(μ3-OH)(H2O)] featuring magnetic Δ-chains. Chem. Commun. 2006, 34, 3603–3605.

  • 加载中
    1. [1]

      Xiaoling WANGHongwu ZHANGDaofu LIU . Synthesis, structure, and magnetic property of a cobalt(Ⅱ) complex based on pyridyl-substituted imino nitroxide radical. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 407-412. doi: 10.11862/CJIC.20240214

    2. [2]

      Shenhao QIUQingquan XIAOHuazhu TANGQuan XIE . First-principles study on electronic structure, optical and magnetic properties of rare earth elements X (X=Sc, Y, La, Ce, Eu) doped with two-dimensional GaSe. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2250-2258. doi: 10.11862/CJIC.20240104

    3. [3]

      Shuwen SUNGaofeng WANG . Two cadmium coordination polymers constructed by varying Ⅴ-shaped co-ligands: Syntheses, structures, and fluorescence properties. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 613-620. doi: 10.11862/CJIC.20230368

    4. [4]

      Gaofeng WANGShuwen SUNYanfei ZHAOLixin MENGBohui WEI . Structural diversity and luminescence properties of three zinc coordination polymers based on bis(4-(1H-imidazol-1-yl)phenyl)methanone. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 849-856. doi: 10.11862/CJIC.20230479

    5. [5]

      Shuyan ZHAO . Field-induced Co single-ion magnet with pentagonal bipyramidal configuration. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1583-1591. doi: 10.11862/CJIC.20240231

    6. [6]

      Yinling HOUJia JIHong YUXiaoyun BIANXiaofen GUANJing QIUShuyi RENMing FANG . A rhombic Dy4-based complex showing remarkable single-molecule magnet behavior. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 605-612. doi: 10.11862/CJIC.20240251

    7. [7]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    8. [8]

      Lulu DONGJie LIUHua YANGYupei FUHongli LIUXiaoli CHENHuali CUILin LIUJijiang WANG . Synthesis, crystal structure, and fluorescence properties of Cd-based complex with pcu topology. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 809-820. doi: 10.11862/CJIC.20240171

    9. [9]

      Yuanjin ChenXianghui ShiDajiang HuangJunnian WeiZhenfeng Xi . Synthesis and reactivity of cobalt dinitrogen complex supported by nonsymmetrical pincer ligand. Chinese Chemical Letters, 2024, 35(7): 109292-. doi: 10.1016/j.cclet.2023.109292

    10. [10]

      Minghui ZhangNa ZhangQian ZhaoChao WangAlexander SteinerJianliang XiaoWeijun Tang . Cobalt pincer complex-catalyzed highly enantioselective hydrogenation of quinoxalines. Chinese Chemical Letters, 2025, 36(4): 110081-. doi: 10.1016/j.cclet.2024.110081

    11. [11]

      Jiayi GuoLiangxiong LingQinwei LuYi ZhouXubiao LuoYanbo Zhou . Degradation of chloroxylenol by CoSx activated peroxomonosulfate: Role of cobalt-sulfur ratio. Chinese Chemical Letters, 2025, 36(4): 110380-. doi: 10.1016/j.cclet.2024.110380

    12. [12]

      Xinyu Huai Jingxuan Liu Xiang Wu . Cobalt-Doped NiMoO4 Nanosheet for High-performance Flexible Supercapacitor. Chinese Journal of Structural Chemistry, 2023, 42(10): 100158-100158. doi: 10.1016/j.cjsc.2023.100158

    13. [13]

      Abiduweili Sikandaier Yukun Zhu Dongjiang Yang . In-situ decorated cobalt phosphide cocatalyst on Hittorf's phosphorus triggering efficient photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(2): 100242-100242. doi: 10.1016/j.cjsc.2024.100242

    14. [14]

      Ling FangSha WangShun LuFengjun YinYujie DaiLin ChangHong Liu . Efficient electroreduction of nitrate via enriched active phases on copper-cobalt oxides. Chinese Chemical Letters, 2024, 35(4): 108864-. doi: 10.1016/j.cclet.2023.108864

    15. [15]

      Muhammad Riaz Rakesh Kumar Gupta Di Sun Mohammad Azam Ping Cui . Selective adsorption of organic dyes and iodine by a two-dimensional cobalt(II) metal-organic framework. Chinese Journal of Structural Chemistry, 2024, 43(12): 100427-100427. doi: 10.1016/j.cjsc.2024.100427

    16. [16]

      Tengjia Ni Xianbiao Hou Huanlei Wang Lei Chu Shuixing Dai Minghua Huang . Controllable defect engineering based on cobalt metal-organic framework for boosting oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100210-100210. doi: 10.1016/j.cjsc.2023.100210

    17. [17]

      Xin LiZhen XuDonglei BuJinming CaiHuamei ChenQi ChenTing ChenFang ChengLifeng ChiWenjie DongZhenchao DongShixuan DuQitang FanXing FanQiang FuSong GaoJing GuoWeijun GuoYang HeShimin HouYing JiangHuihui KongBaojun LiDengyuan LiJie LiQing LiRuoning LiShuying LiYuxuan LinMengxi LiuPeinian LiuYanyan LiuJingtao LüChuanxu MaHaoyang PanJinLiang PanMinghu PanXiaohui QiuZiyong ShenQiang SunShijing TanBing WangDong WangLi WangLili WangTao WangXiang WangXingyue WangXueyan WangYansong WangYu WangKai WuWei XuNa XueLinghao YanFan YangZhiyong YangChi ZhangXue ZhangYang ZhangYao ZhangXiong ZhouJunfa ZhuYajie ZhangFeixue GaoLi Wang . Recent progress on surface chemistry Ⅱ: Property and characterization. Chinese Chemical Letters, 2025, 36(1): 110100-. doi: 10.1016/j.cclet.2024.110100

    18. [18]

      Lei WanYizhou TongXi LuYao Fu . Cobalt-catalyzed reductive alkynylation to construct C(sp)-C(sp3) and C(sp)-C(sp2) bonds. Chinese Chemical Letters, 2024, 35(7): 109283-. doi: 10.1016/j.cclet.2023.109283

    19. [19]

      Weizhong LINGXiangyun CHENWenjing LIUYingkai HUANGYu LI . Syntheses, crystal structures, and catalytic properties of three zinc(Ⅱ), cobalt(Ⅱ) and nickel(Ⅱ) coordination polymers constructed from 5-(4-carboxyphenoxy)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1803-1810. doi: 10.11862/CJIC.20240068

    20. [20]

      Peng Wang Daijie Deng Suqin Wu Li Xu . Cobalt-based deep eutectic solvent modified nitrogen-doped carbon catalyst for boosting oxygen reduction reaction in zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100199-100199. doi: 10.1016/j.cjsc.2023.100199

Metrics
  • PDF Downloads(1)
  • Abstract views(280)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return