Citation: Guo-Jie YIN, Hao-Yu ZHANG, Wen-Jie TIAN, Dan ZHAO, Bin ZHANG, Dong-Mei CHEN. Synthesis and Optical Property of a New Zinc Complex Based on the Derivative of 2-(2'-Hydroxyphenyl)-1H-benzimidazole and Phenanthroline[J]. Chinese Journal of Structural Chemistry, ;2021, 40(4): 487-494. doi: 10.14102/j.cnki.0254–5861.2011–2941 shu

Synthesis and Optical Property of a New Zinc Complex Based on the Derivative of 2-(2'-Hydroxyphenyl)-1H-benzimidazole and Phenanthroline

  • Corresponding author: Guo-Jie YIN, 591941522@qq.com Bin ZHANG, 13523612522@163.com
  • Received Date: 20 July 2020
    Accepted Date: 13 October 2020

    Fund Project: the Training Plan for Young Key Teachers in Colleges and Universities of Henan Province 2020GGJS243Scientific and Technological Project of Henan Province 182102210102Scientific and Technological Project of Henan Province 202102210058

Figures(6)

  • A novel zinc complex (ZnE) has been designed and synthesized based on the derivative of 2-(2'-hydroxyphenyl)-1-H-benzimidazole (HBI) and the neutral nitrogen-containing ligand (phen). The crystal of the title complex crystallizes in the monoclinic system, space group P21/n with a = 10.2631(2), b = 34.2166(6), c = 11.4103(3) Å, β = 96.771(2)°, Mr = 844.24, V = 3978.99(14) Å3, Z = 4, the final R = 0.0400 and wR = 0.1001 for 8107 observed reflections (I > 2σ(I)). In the title complex, the free protonated phenoxide moiety (4-OH) is successfully retained to realize pseudo-intramolecular hydrogen bonds with the coordinated O atom from the other ligand.
  • 加载中
    1. [1]

      Park, S.; Seo, J.; Kim, S. H.; Park, S. Y. Tetraphenylimidazole-based excited-state intramolecular proton-transfer molecules for highly efficient blue electroluminescence. Adv. Funct. Mater. 2008, 18, 726–731.  doi: 10.1002/adfm.200700827

    2. [2]

      Park, S.; Kwon, J. E.; Kim, S. H.; Seo, J.; Chung, K.; Park, S. Y.; Jang, D. J.; Medina B. M.; Gierschner J.; Park, S. Y. A white-light-emitting molecule: frustrated energy transfer between constituent emitting centers. J. Am. Chem. Soc. 2009, 131, 14043–14049.  doi: 10.1021/ja902533f

    3. [3]

      Porel, M.; Ramalingam, V.; Domaradzki, M. E.; Young, V. G.; Ramamurthy, V.; Muthyala, R. S. Chloride sensing via suppression of excited state intramolecular proton transfer in squaramides. Chem. Commun. 2013, 49, 1633–1635.  doi: 10.1039/c3cc38767d

    4. [4]

      Hsu, Y. H.; Chen, Y. A.; Tseng, H. W.; Zhang, Z.; Shen, J. Y.; Chuang, W. T.; Lin, T. C.; Lee, C. S.; Hung, W. Y.; Hung, B. C.; Liu, S. H.; Chou, P. T. Locked ortho- and para-core chromophores of green fluorescent protein; dramatic emission enhancement via structural constraint. J. Am. Chem. Soc. 2014, 136, 11805–11812.  doi: 10.1021/ja5062856

    5. [5]

      Cui, L.; Baek, Y.; Lee, S.; Kwon, N.; Yoon, J. An AIE and ESIPT based kinetically resolved fluorescent probe for biothiols. J. Mater. Chem. C 2016, 4, 2909–2914.  doi: 10.1039/C5TC03272E

    6. [6]

      Kim, S.; Seo, J.; Jung, H. K.; Kim, J. J.; Park, S. Y. White Luminescence from polymer thin films containing excited-state intramolecular proton-transfer dyes. Adv. Mater. 2005, 17, 2077–2082.  doi: 10.1002/adma.200401739

    7. [7]

      Ye, J.; Liu, C.; Ou, C.; Cai, M.; Chen, S.; Wei, Q.; Li, W.; Qian, Y.; Xie, L.; Mi, B.; Gao Z.; Huang, W. Universal strategy for cheap and color-stable single-EML WOLEDs utilizing two complementary-color nondoped emitters without energy transfer. Adv. Optical Mater. 2014, 2, 938–944.  doi: 10.1002/adom.201400188

    8. [8]

      Furukawa, S.; Shono, H.; Mutai, T.; Araki, K. Colorless, transparent, dye-doped polymer films exhibiting tunable luminescence color: Controlling the dual-color luminescence of 2-(2'-hydroxyphenyl)imidazo[1, 2-a]pyridine derivatives with the surrounding matrix. ACS Appl. Mater. Inter. 2014, 6, 16065–16070.  doi: 10.1021/am503956t

    9. [9]

      Park, S.; Kwon, O. H.; Kim, S.; Park, S.; Choi, M. G.; Cha, M.; Park, S. Y.; Jang, D. J. Imidazole-based excited-state intramolecular proton-transfer materials: synthesis and amplified spontaneous emission from a large single crystal. J. Am. Chem. Soc. 2005, 127, 10070–10074.  doi: 10.1021/ja0508727

    10. [10]

      Park, S.; Kim, S.; Seo, J.; Park, S. Y. Application of excited-state intramolecular proton transfer (ESIPT) principle to functional polymeric materials. Macromol. Res. 2008, 16, 385–395.  doi: 10.1007/BF03218534

    11. [11]

      Kim, S. H.; Park, S.; Kwon, J. E.; Park, S. Y. Organic light-emitting diodes with a white-emitting molecule: Emission mechanism and device characteristics. Adv. Funct. Mater. 2011, 21, 644–651.  doi: 10.1002/adfm.201001779

    12. [12]

      Benelhadj, K.; Muzuzu, W.; Massue, J.; Retailleau, P.; Charaf-Eddin, A.; Laurent, A. D.; Jacquemin, D.; Ulrich, G.; Ziessel, R. White emitters by tuning the excited-state intramolecular proton-transfer fluorescence emission in 2-(2'-hydroxybenzofuran) benzoxazole dyes. Chem. Eur. J. 2014, 20, 12843–12857.  doi: 10.1002/chem.201402717

    13. [13]

      Mutai, T.; Ohkawa, T.; Shono, H.; Araki, K. The development of aryl-substituted 2-phenylimidazo[1, 2-a]pyridines (PIP) with various colors of excited-state intramolecular proton transfer (ESIPT) luminescence in the solid state. J. Mater. Chem. C 2016, 4, 3599–3606.

    14. [14]

      Shono, H.; Ohkawa, T.; Tomoda, H.; Mutai, T.; Araki, K. Fabrication of colorless organic materials exhibiting white luminescence using normal and excited-state intramolecular proton transfer processes. ACS Appl. Mater. Inter. 2011, 3, 654–657.  doi: 10.1021/am200022z

    15. [15]

      Ma, J.; Zhao, J.; Yang, P.; Huang, D.; Zhang, C.; Li, Q. New excited state intramolecular proton transfer (ESIPT) dyes based on naphthalimide and observation of long-lived triplet excited states. Chem. Commun. 2012, 48, 9720–9722.  doi: 10.1039/c2cc35210a

    16. [16]

      Park, S.; Kwon, J. E.; Park, S. Y. Strategic emission color tuning of highly fluorescent imidazole-based excited-state intramolecular proton transfer molecules. Phys. Chem. Chem. Phys. 2012, 14, 8878–8884.  doi: 10.1039/c2cp23894b

    17. [17]

      Skonieczny, K.; Ciuciu, A. I.; Nichols, E. M.; Hugues, V.; Blanchard-Desce, M.; Flamigni, L.; Gryko, D. T. Bright, emission tunable fluorescent dyes based on imidazole and π-expanded imidazole. J. Mater. Chem. 2012, 22, 20649–20664.  doi: 10.1039/c2jm33891b

    18. [18]

      Sakai, K.; Kawamura, H.; Kobayashi, N.; Ishikawa, T.; Ikeda, C.; Kikuchi, T.; Akutagawa, T. Highly efficient solid-state red fluorophores using ESIPT: crystal packing and fluorescence properties of alkoxy-substituted dibenzothiazolylphenols. CrystEngComm. 2014, 16, 3180–3185.  doi: 10.1039/c3ce42109k

    19. [19]

      Santos, F. S.; Ramasamy, E.; Ramamurthy, V.; Rodembusch, F. S. Confinement effect on the photophysics of ESIPT fluorophores. J. Mater. Chem. C 2016, 4, 2820–2827.  doi: 10.1039/C5TC03245H

    20. [20]

      Mosquera, M.; Penedo, J. C.; Ríos Rodríguez, M. C.; Rodríguez-Prieto, F. Photoinduced inter- and intramolecular proton transfer in aqueous and ethanolic solutions of 2-(2'-hydroxyphenyl)benzimidazole: evidence for tautomeric and conformational equilibria in the ground state. J. Phys. Chem. 1996, 100, 5398–5407.  doi: 10.1021/jp9533638

    21. [21]

      Ríos Vázquez, S.; Ríos Rodríguez, M. C.; Mosquera, M.; Rodríguez-Prieto, F. Rotamerism, tautomerism, and excited-state intramolecular proton transfer in 2-(4'-N, N-diethylamino-2'-hydroxyphenyl)benzimidazoles: novel benzimidazoles undergoing excited-state intramolecular coupled proton and charge transfer. J. Phys. Chem. A 2008, 112, 376–387.  doi: 10.1021/jp076634a

    22. [22]

      Brenlla, A.; Rodríguez-Prieto, F.; Mosquera, M.; Ríos, M. A.; Ríos Rodríguez, M. C. Solvent-modulated ground-state rotamerism and tautomerism and excited-state proton-transfer processes ino-hydroxynaphthylbenzimidazoles. J. Phys. Chem. A 2009, 113, 56–67.  doi: 10.1021/jp8076003

    23. [23]

      Iijima, T.; Momotake, A.; Shinohara, Y.; Sato, T.; Nishimura, Y.; Arai, T. Excited-state intramolecular proton transfer of naphthalene-fused 2-(2'-hydroxyaryl)benzazole family. J. Phys. Chem. A 2010, 114, 1603–1609.

    24. [24]

      Chipem, F. A. S.; Dash, N.; Krishnamoorthy, G. Role of nitrogen substitution in phenyl ring on excited state intramolecular proton transfer and rotamerism of 2-(2'-hydroxyphenyl)benzimidazole: a theoretical study. J. Chem. Phys. 2011, 10, 104308–9.

    25. [25]

      Houari, Y.; Charaf-Eddin, A.; Laurent, A. D.; Massue, J.; Ziessel, R.; Ulrich, G.; Jacquemin, D. Modeling optical signatures and excited-state reactivities of substituted hydroxyphenylbenzoxazole (HBO) ESIPT dyes. Phys. Chem. Chem. Phys. 2014, 16, 1319–1321.  doi: 10.1039/C3CP54703E

    26. [26]

      Tseng, H. W.; Liu, J. Q.; Chen, Y. A.; Chao, C. M.; Liu, K. M.; Chen, C. L.; Lin, T. C.; Hung, C. H.; Chou, Y. L.; Lin, T. C.; Wang T. L.; Chou, P. T. Harnessing excited-state intramolecular proton-transfer reaction via a series of amino-type hydrogen-bonding molecules. J. Phys. Chem. Lett. 2015, 6, 1477–1486.  doi: 10.1021/acs.jpclett.5b00423

    27. [27]

      Xu, H.; Chen, R.; Sun, Q.; Lai, W.; Su, Q.; Huang, W.; Liu, X. Recent progress in metal-organic complexes for optoelectronic applications. Chem. Soc. Rev. 2014, 43, 3259–3302.  doi: 10.1039/C3CS60449G

    28. [28]

      Jiang, M.; Li, J.; Huo, Y.; Xi, Y.; Yan, J.; Zhang, F. Synthesis, thermoanalysis, and thermal kinetic thermogravimetric analysis of transition metal Co(Ⅱ), Ni(Ⅱ), Cu(Ⅱ), and Zn(Ⅱ) complexes with 2-(2'-hydroxyphenyl)benzimidazole (HL). J. Chem. Eng. Data 2011, 56, 1185–1190.  doi: 10.1021/je101107w

    29. [29]

      Yang, X.; Guo, Y.; Strongin, R. M. Conjugate addition/cyclization sequence enables selective and simultaneous fluorescence detection of cysteine and homocysteine. Angew. Chem. Int. Ed. 2011, 50, 10690–10693.  doi: 10.1002/anie.201103759

    30. [30]

      Shaikh, M.; Dutta Choudhury, S.; Mohanty, J.; Bhasikuttan, A. C.; Nau, W. M.; Pal, H. Modulation of excited-state proton transfer of 2-(2'-hydroxyphenyl)benzimidazole in a macrocyclic cucurbit[7]uril host cavity: dual emission behavior and pKa shift. Chem. Eur. J. 2009, 15, 12362–12370.  doi: 10.1002/chem.200900390

    31. [31]

      Zhang, B.; Gu, M.; Liu, C.; Liu, X.; Gao, N.; Gao, Q.; Zhu, Y.; Tang, M.; Du, C.; Song, M. An ESIPT fluorophore based on zinc-induced intramolecular proton transfer between ligands in the complex. Eur. J. Inorg. Chem. 2017, 45, 5366–5371.

    32. [32]

      Yang, D.; Fokas, D.; Li, J.; Yu, L.; Baldino, C. M. A versatile method for the synthesis of benzimidazoles from o-nitroanilines and aldehydes in one step via a reductive cyclization. Synthesis 2005, 2005, 47–56.

    33. [33]

      Benelhadj, K.; Massue, J.; Retailleau, P.; Ulrich, G.; Ziessel, R. 2-(2′-hydroxyphenyl)benzimidazole and 9, 10-phenanthroimidazole chelates and borate complexes: Solution- and solid-state emitters. Org. Lett. 2013, 15, 2918–2921.  doi: 10.1021/ol400849a

    34. [34]

      CrysAlisPro, Version 1.171. 36.20, Agilent Technologies UK Ltd. Oxford, UK 2013.

    35. [35]

      Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341.  doi: 10.1107/S0021889808042726

    36. [36]

      Sheldrick G. M. A short history of SHELX. Acta Crystallogr. Sect. A 2008, 64, 112–122.  doi: 10.1107/S0108767307043930

    37. [37]

      Yao, H.; Funada, T. Mechanically inducible fluorescence colour switching in the formation of organic nanoparticles of an ESIPT molecule. Chem. Commun. 2014, 50, 2748–2750.  doi: 10.1039/C4CC00090K

    38. [38]

      Wu, F.; Ma, L.; Zhang, S.; Wang, Z.; Cheng, X. The nonlinear optical properties of HBI in different solvents. Mater. Lett. 2014, 116, 231–234.  doi: 10.1016/j.matlet.2013.11.017

    39. [39]

      Wong, K. T.; Chen, H. F.; Fang, F. C. Novel spiro-configured pet chromophores incorporating 4, 5-diazafluorene moiety as an electron acceptor. Org. Lett. 2006, 8, 3501–3504.  doi: 10.1021/ol061227n

    40. [40]

      Pearson, R. G. Absolute electronegativity and hardness: application to inorganic chemistry. Inorg. Chem. 1988, 27, 734–740.  doi: 10.1021/ic00277a030

    41. [41]

      Lee, C.; Yang, W.; Parr, R. G. Development of the colle-salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785–789.  doi: 10.1103/PhysRevB.37.785

    42. [42]

      Dreizler, R. M.; Gross E. U. K. Density Functional Theory. Heidelberg, Germany: Springer-Verlag 1990.

    43. [43]

      Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A. Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision A. 02. Gaussian, Inc., Pittsburgh PA 2009.

  • 加载中
    1. [1]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    2. [2]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    3. [3]

      Mei PengWei-Min He . Photochemical synthesis and group transfer reactions of azoxy compounds. Chinese Chemical Letters, 2024, 35(8): 109899-. doi: 10.1016/j.cclet.2024.109899

    4. [4]

      Liyong DingZhenhua PanQian Wang . 2D photocatalysts for hydrogen peroxide synthesis. Chinese Chemical Letters, 2024, 35(12): 110125-. doi: 10.1016/j.cclet.2024.110125

    5. [5]

      Qinghong ZhangQiao ZhaoXiaodi WuLi WangKairui ShenYuchen HuaCheng GaoYu ZhangMei PengKai Zhao . Visible-light-induced ring-opening cross-coupling of cycloalcohols with vinylazaarenes and enones via β-C-C scission enabled by proton-coupled electron transfer. Chinese Chemical Letters, 2025, 36(2): 110167-. doi: 10.1016/j.cclet.2024.110167

    6. [6]

      Guoju GuoXufeng LiJie MaYongjia ShiJian LvDaoshan Yang . Photocatalyst/metal-free sequential C–N/C–S bond formation: Synthesis of S-arylisothioureas via photoinduced EDA complex activation. Chinese Chemical Letters, 2024, 35(11): 110024-. doi: 10.1016/j.cclet.2024.110024

    7. [7]

      Fabrice Nelly HabarugiraDucheng YaoWei MiaoChengcheng ChuZhong ChenShun Mao . Synergy of sodium doping and nitrogen defects in carbon nitride for promoted photocatalytic synthesis of hydrogen peroxide. Chinese Chemical Letters, 2024, 35(8): 109886-. doi: 10.1016/j.cclet.2024.109886

    8. [8]

      Meng ShanYongmei YuMengli SunShuping YangMengqi WangBo ZhuJunbiao Chang . Bifunctional organocatalyst-catalyzed dynamic kinetic resolution of hemiketals for synthesis of chiral ketals via hydrogen bonding control. Chinese Chemical Letters, 2025, 36(1): 109781-. doi: 10.1016/j.cclet.2024.109781

    9. [9]

      Xinyu HouXuelian YuMeng LiuHengxing PengLijuan WuLibing LiaoGuocheng Lv . Ultrafast synthesis of Mo2N with highly dispersed Ru for efficient alkaline hydrogen evolution. Chinese Chemical Letters, 2025, 36(4): 109845-. doi: 10.1016/j.cclet.2024.109845

    10. [10]

      Xiao-Ya YuanCong-Cong WangBing Yu . Recent advances in FeCl3-photocatalyzed organic reactions via hydrogen-atom transfer. Chinese Chemical Letters, 2024, 35(9): 109517-. doi: 10.1016/j.cclet.2024.109517

    11. [11]

      Lanfang WangJiangnan LvYujia LiYanqing HaoWenjiao LiuHui ZhangXiaohong Xu . One-step synthesis of nanowoven ball-like NiS-WS2 for high-efficiency hydrogen evolution. Chinese Chemical Letters, 2025, 36(1): 109597-. doi: 10.1016/j.cclet.2024.109597

    12. [12]

      Yunfa DongShijie ZhongYuhui HeZhezhi LiuShengyu ZhouQun LiYashuai PangHaodong XieYuanpeng JiYuanpeng LiuJiecai HanWeidong He . Modification strategies for non-aqueous, highly proton-conductive benzimidazole-based high-temperature proton exchange membranes. Chinese Chemical Letters, 2024, 35(4): 109261-. doi: 10.1016/j.cclet.2023.109261

    13. [13]

      Huimin Luan Qinming Wu Jianping Wu Xiangju Meng Feng-Shou Xiao . Templates for the synthesis of zeolites. Chinese Journal of Structural Chemistry, 2024, 43(4): 100252-100252. doi: 10.1016/j.cjsc.2024.100252

    14. [14]

      Xing Xiao Yunling Jia Wanyu Hong Yuqing He Yanjun Wang Lizhi Zhao Huiqin An Zhen Yin . Sulfur-defective ZnIn2S4 nanosheets decorated by TiO2 nanosheets with exposed {001} facets to accelerate charge transfer for efficient photocatalytic hydrogen evolution. Chinese Journal of Structural Chemistry, 2024, 43(12): 100474-100474. doi: 10.1016/j.cjsc.2024.100474

    15. [15]

      Guixu Pan Zhiling Xia Ning Wang Hejia Sun Zhaoqi Guo Yunfeng Li Xin Li . Preparation of high-efficient donor-π-acceptor system with crystalline g-C3N4 as charge transfer module for enhanced photocatalytic hydrogen evolution. Chinese Journal of Structural Chemistry, 2024, 43(12): 100463-100463. doi: 10.1016/j.cjsc.2024.100463

    16. [16]

      Zhaojun Liu Zerui Mu Chuanbo Gao . Alloy nanocrystals: Synthesis paradigms and implications. Chinese Journal of Structural Chemistry, 2023, 42(11): 100156-100156. doi: 10.1016/j.cjsc.2023.100156

    17. [17]

      Zhenhao WangYuliang TangRuyu LiShuai TianYu TangDehai Li . Bioinspired synthesis of cochlearol B and ganocin A. Chinese Chemical Letters, 2024, 35(7): 109247-. doi: 10.1016/j.cclet.2023.109247

    18. [18]

      Hui JinQin CaiPeiwen LiuYan ChenDerong WangWeiping ZhuYufang XuXuhong Qian . Multistep continuous flow synthesis of Erlotinib. Chinese Chemical Letters, 2024, 35(4): 108721-. doi: 10.1016/j.cclet.2023.108721

    19. [19]

      Jiaqi LinPupu YangYimin JiangShiqian DuDongcai ZhangGen HuangJinbo WangJun WangQie LiuMiaoyu LiYujie WuPeng LongYangyang ZhouLi TaoShuangyin Wang . Surface decoration prompting the decontamination of active sites in high-temperature proton exchange membrane fuel cells. Chinese Chemical Letters, 2024, 35(11): 109435-. doi: 10.1016/j.cclet.2023.109435

    20. [20]

      Caihong MaoYanfeng HeXiaohan WangYan CaiXiaobo Hu . Synthesis and molecular recognition characteristics of a tetrapodal benzene cage. Chinese Chemical Letters, 2024, 35(8): 109362-. doi: 10.1016/j.cclet.2023.109362

Metrics
  • PDF Downloads(1)
  • Abstract views(253)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return