Citation: Yao-Ming YU, Jia-Jie LIU, Rui QI, Chang-Jian ZUO, Wen-Guang ZHAO, Jun-Liang LU, Ming-Jian ZHANG, Feng PAN. Interface-reconstruction Forming Bifunctional (LixTM1-x)O Rock-salt Shell for Enhanced Cyclability in Li-rich Layered Oxide[J]. Chinese Journal of Structural Chemistry, ;2020, 39(8): 1363-1371. doi: 10.14102/j.cnki.0254–5861.2011–2920 shu

Interface-reconstruction Forming Bifunctional (LixTM1-x)O Rock-salt Shell for Enhanced Cyclability in Li-rich Layered Oxide

  • Corresponding author: Ming-Jian ZHANG, zhangmj@pkusz.edu.cn Feng PAN, panfeng@pkusz.edu.cn
  • Received Date: 28 June 2020
    Accepted Date: 13 July 2020

    Fund Project: National Key R & D Program of China 2016YFB0700600Soft Science Research Project of Guangdong Province 2017B030301013Shenzhen Science and Technology Research Grant ZDSYS201707281026184

Figures(5)

  • Poor cycling stability, as a long-standing issue, has greatly hindered the commercial application of Li-rich layered oxide cathodes in high-energy-density Li-ion batteries. NiO-type rock-salt phase is commonly considered electrochemically inert but stable. Herein, an ultrathin (LixTM1-x)O rock-salt shell was in situ constructed at the particle surface during the synthesis of Li-rich layered oxide cathodes through a unique soft chemical quenching method. Comprehensive structural/chemical analysis reveals that, it not only inherits the chemical stability of traditional NiO-type rock-salt phase, but also facilitates Li+ diffusion due to the co-occupancy of Li+ and TM cations. Such a bifunctional shell could efficiently prevent TM dissolution and oxygen evolution during the long-term cycling, eventually leading to the enhanced cycling stability for Li-rich layered oxides (92.7% of capacity retention after 200 cycles at 0.5C). It provides new guidance to design and synthesize new Li-rich layered oxides with the excellent cycling stability through utilizing some electrochemically-inert phases.
  • 加载中
    1. [1]

      Li, M.; Lu, J.; Chen, Z. W.; Amine, K. 30 years of lithium-ion batteries. Adv. Mater. 2018, 30, 1800561–24.  doi: 10.1002/adma.201800561

    2. [2]

      Lu, Z. H.; Beaulieu, L. Y.; Donaberger, R. A.; Thomas, C. L.; Dahn, J. R. Synthesis, structure, and electrochemical behavior of Li[NixLi1/3-2x/3Mn2/3-x/3]O2. J. Electrochem. Soc. 2002, 149, A778–A791.  doi: 10.1149/1.1471541

    3. [3]

      Thackeray, M. M.; Johnson, C. S.; Vaughey, J. T.; Li, N.; Hackney, S. A. Advances in manganese-oxide 'composite' electrodes for lithium-ion batteries. J. Mater. Chem. 2005, 15, 2257–2267.  doi: 10.1039/b417616m

    4. [4]

      Zheng, J. M.; Myeong, S. J.; Cho, W. R.; Yan, P. F.; Xiao, J.; Wang, C. M.; Cho, J.; Zhang, J. G. Li- and Mn-rich cathode materials: challenges to commercialization. Adv. Energy Mater. 2017, 7, 1601284–25.

    5. [5]

      Hong, J.; Gwon, H.; Jung, S. K.; Ku, K.; Kang, K. Review-lithium-excess layered cathodes for lithium rechargeable batteries. J. Electrochem. Soc. 2015, 162, A2447–A2467.  doi: 10.1149/2.0071514jes

    6. [6]

      Rozier, P.; Tarascon, J. M. Review-Li-rich layered oxide cathodes for next-generation Li-ion batteries: chances and challenges. J. Electrochem. Soc. 2015, 162, A2490–A2499.  doi: 10.1149/2.0111514jes

    7. [7]

      Lu, Z. H.; Dahn, J. R. Understanding the anomalous capacity of Li/Li[NixLi(1/3-2x/3)Mn(2/3-x/3)]O2 cells using in situ X-ray diffraction and electrochemical studies. J. Electrochem. Soc. 2002, 149, A815–A822.  doi: 10.1149/1.1480014

    8. [8]

      Robertson, A. D.; Bruce, P. G. Mechanism of electrochemical activity in Li2MnO3. Chem. Mat. 2003, 15, 1984–1992.  doi: 10.1021/cm030047u

    9. [9]

      Yin, Z. W.; Li, J. T.; Huang, L.; Pan, F.; Sun, S. G. High-capacity Li-rich Mn-based cathodes for lithium-ion batteries. Chin. J. Struc. Chem. 2020, 39, 20–25.

    10. [10]

      Gu, M.; Belharouak, I.; Zheng, J. M.; Wu, H. M.; Xiao, J.; Genc, A.; Amine, K.; Thevuthasan, S.; Baer, D. R.; Zhang, J. G.; Browning, N. D.; Liu, J.; Wang, C. M. Formation of the spinel phase in the layered composite cathode used in Li-ion batteries. ACS Nano 2013, 7, 760–767.  doi: 10.1021/nn305065u

    11. [11]

      Boulineau, A.; Simonin, L.; Colin, J. F.; Bourbon, C.; Patoux, S. First evidence of manganese-nickel segregation and densification upon cycling in Li-rich layered oxides for lithium batteries. Nano Lett. 2013, 13, 3857–3863.  doi: 10.1021/nl4019275

    12. [12]

      Zheng, J. X.; Ye, Y. K.; Pan, F. 'Structure units' as material genes in cathode materials for lithium-ion batteries. Natl. Sci. Rev. 2020, 7, 242–245.  doi: 10.1093/nsr/nwz178

    13. [13]

      Oh, P.; Ko, M.; Myeong, S.; Kim, Y.; Cho, J. A novel surface treatment method and new insight into discharge voltage deterioration for high-performance 0.4Li2MnO30.6LiNi1/3Co1/3Mn1/3O2 cathode materials. Adv. Energy Mater. 2014, 4, 1400631–9.  doi: 10.1002/aenm.201400631

    14. [14]

      Zheng, J. M.; Xu, P. H.; Gu, M.; Xiao, J.; Browning, N. D.; Yan, P. F.; Wang, C. M.; Zhang, J. G. Structural and chemical evolution of Li- and Mn-rich layered cathode material. Chem. Mater. 2015, 27, 1381–1390.  doi: 10.1021/cm5045978

    15. [15]

      Yan, P. F.; Nie, A. M.; Zheng, J. M.; Zhou, Y. G.; Lu, D. P.; Zhang, X. F.; Xu, R.; Belharouak, I.; Zu, X. T.; Xiao, J.; Amine, K.; Liu, J.; Gao, F.; Shahbazian-Yassar, R.; Zhang, J. G.; Wang, C. M. Evolution of lattice structure and chemical composition of the surface reconstruction layer in Li1.2Ni0.2Mn0.6O2 cathode material for lithium ion batteries. Nano Lett. 2015, 15, 514–522.  doi: 10.1021/nl5038598

    16. [16]

      Huang, Z. M.; Li, X. H.; Liang, Y. H.; He, Z. J.; Chen, H.; Wang, Z. X.; Guo, H. J. Structural and electrochemical characterization of Mg-doped Li1.2[Mn0.54Ni0.13Co0.13]O2 cathode material for lithium ion batteries. Solid State Ionics 2015, 282, 88–94.  doi: 10.1016/j.ssi.2015.10.005

    17. [17]

      Nayak, P. K.; Grinblat, J.; Levi, M.; Levi, E.; Kim, S.; Choi, J. W.; Aurbach, D. Al doping for mitigating the capacity fading and voltage decay of layered Li and Mn-rich cathodes for Li-ion batteries. Adv. Energy Mater. 2016, 6, 1502398–13.  doi: 10.1002/aenm.201502398

    18. [18]

      Yu, Z. X.; Shang, S. L.; Gordin, M. L.; Mousharraf, A.; Liu, Z. K.; Wang, D. H. Ti-substituted Li Li0.26Mn0.6TixNi0.07Co0.07O2 layered cathode material with improved structural stability and suppressed voltage fading. J. Mater. Chem. A 2015, 3, 17376–17384.  doi: 10.1039/C5TA03764F

    19. [19]

      Liu, S.; Liu, Z. P.; Shen, X.; Li, W. H.; Gao, Y. R.; Banis, M. N.; Li, M. S.; Chen, K.; Zhu, L.; Yu, R. C.; Wang, Z. X.; Sun, X. L.; Lu, G.; Kong, Q. Y.; Bai, X. D.; Chen, L. Q. Surface doping to enhance structural integrity and performance of Li-rich layered oxide. Adv. Energy Mater. 2018, 8, 1802105–8.  doi: 10.1002/aenm.201802105

    20. [20]

      Pan, L. C.; Xia, Y. G.; Qiu, B.; Zhao, H.; Guo, H. C.; Jia, K.; Gu, Q. W.; Liu, Z. P. Structure and electrochemistry of B doped Li(Li0.2Ni0.13Co0.13Mn0.54)(1-x)BxO2 as cathode materials for lithium-ion batteries. J. Power Sources 2016, 327, 273–280.  doi: 10.1016/j.jpowsour.2016.07.064

    21. [21]

      Zheng, J. M.; Gu, M.; Xiao, J.; Polzin, B. J.; Yan, P.; Chen, X. L.; Wang, C. M.; Zhang, J. G. Functioning mechanism of AlF3 coating on the Li- and Mn-rich cathode materials. Chem. Mat. 2014, 26, 6320–6327.  doi: 10.1021/cm502071h

    22. [22]

      Zhang, X. D.; Shi, J. L.; Liang, J. Y.; Yin, Y. X.; Zhang, J. N.; Yu, X. Q.; Guo, Y. G. Suppressing surface lattice oxygen release of Li-rich cathode materials via heterostructured spinel Li4Mn5O12 coating. Adv. Mater. 2018, 30, 1801751–8.  doi: 10.1002/adma.201801751

    23. [23]

      Zheng, J. M.; Li, J.; Zhang, Z. R.; Guo, X. J.; Yang, Y. The effects of TiO2 coating on the electrochemical performance of Li Li0.2Mn0.54Ni0.13CO0.13O2 cathode material for lithium-ion battery. Solid State Ionics 2008, 179, 1794–1799.  doi: 10.1016/j.ssi.2008.01.091

    24. [24]

      Han, S. J.; Qiu, B.; Wei, Z.; Xia, Y. G.; Liu, Z. P. Surface structural conversion and electrochemical enhancement by heat treatment of chemical pre-delithiation processed lithium-rich layered cathode material. J. Power Sources 2014, 268, 683–691.  doi: 10.1016/j.jpowsour.2014.06.106

    25. [25]

      Yu, D. Y. W.; Yanagida, K.; Nakamura, H. Surface modification of Li-excess Mn-based cathode materials. J. Electrochem. Soc. 2010, 157, A1177–A1182.  doi: 10.1149/1.3479382

    26. [26]

      Fan, J. M.; Li, G. S.; Li, B. Y.; Zhang, D.; Chen, D. D.; Li, L. P. Reconstructing the surface structure of Li-rich cathodes for high-energy lithium-ion batteries. ACS Appl. Mater. Inter 2019, 11, 19950–19958.  doi: 10.1021/acsami.9b02827

    27. [27]

      Piao, J. Y.; Gu, L.; Wei, Z. X.; Ma, J. M.; Wu, J. P.; Yang, W. L.; Gong, Y.; Sun, Y. G.; Duan, S. Y.; Tao, X. S.; Bin, D. S.; Cao, A. M.; Wan, L. J. Phase control on surface for the stabilization of high energy cathode materials of lithium ion batteries. J. Am. Chem. Soc. 2019, 141, 4900–4907.  doi: 10.1021/jacs.8b13438

    28. [28]

      Thackeray, M. M.; Kang, S. H.; Johnson, C. S.; Vaughey, J. T.; Benedek, R.; Hackney, S. A. Li2MnO3-stabilized LiMO2 (M = Mn, Ni, Co) electrodes for lithium-ion batteries. J. Mater. Chem. 2007, 17, 3112–3125.  doi: 10.1039/b702425h

    29. [29]

      Lu, Z. H.; Chen, Z. H.; Dahn, J. R. Lack of cation clustering in Li[NixLi1/3-2x/3Mn2/3-x/3]O2 (0 < x≤1/2) and Li[CrxLi(1-x)/3Mn(2-2x)/3]O2 (0 < x < 1). Chem. Mater. 2003, 15, 3214–3220.  doi: 10.1021/cm030194s

    30. [30]

      Zheng, Z.; Weng, M. Y.; Yang, L. Y.; Hu, Z. X.; Chen, Z. F.; Pan, F. Thermodynamically revealing the essence of order and disorder structures in layered cathode materials. Chin. J. Struct. Chem. 2019, 38, 2020–2026.

    31. [31]

      Lin, C.; Li, J. Y.; Wang, C. M.; Pan, F. Transmission electron microscopy as a powerful tool for investigating lithium-ion battery materials. Chin. J. Struct. Chem. 2019, 38, 2015–2019.

    32. [32]

      Fan, J. M.; Li, G. S.; Luo, D.; Fu, C. C.; Li, Q.; Zheng, J.; Li, L. P. Hydrothermal-assisted synthesis of Li-rich layered oxide microspheres with high capacity and superior rate-capability as a cathode for lithium-ion batteries. Electrochim. Acta 2015, 173, 7–16.  doi: 10.1016/j.electacta.2015.05.028

    33. [33]

      Yu, R. Z.; Zhang, Z. J.; Jamil, S.; Chen, J. C.; Zhang, X. H.; Wang, X. Y.; Yang, Z. H.; Shu, H. B.; Yang, X. K. Effects of nanofiber architecture and antimony doping on the performance of lithium-rich layered oxides: enhancing lithium diffusivity and lattice oxygen stability. ACS Appl. Mater. Inter. 2018, 10, 16561–16571.  doi: 10.1021/acsami.8b03608

    34. [34]

      Song, B. H.; Zhou, C. F.; Chen, Y.; Liu, Z. W.; Lai, M. O.; Xue, J. M.; Lu, L. Role of carbon coating in improving electrochemical performance of Li-rich Li(Li0. 2Mn0.54Ni0.13Co0.13)O2 cathode. RSC Adv. 2014, 4, 44244–44252.  doi: 10.1039/C4RA04976D

    35. [35]

      Liu, W. M.; Qin, M. L.; Xu, L.; Yi, S.; Deng, J. Y.; Huang, Z. H. Washing effect on properties of LiNi0.8Co0.15Al0.05O2 cathode material by ethanol solvent. T Nonferr. Metal Soc. 2018, 28, 1626–1631.  doi: 10.1016/S1003-6326(18)64805-8

    36. [36]

      Xiong, X.; Wang, Z.; Yue, P.; Guo, H.; Wu, F.; Wang, J.; Li, X. Washing effects on electrochemical performance and storage characteristics of LiNi0.8Co0.1Mn0.1O2 as cathode material for lithium-ion batteries. J. Power Sources 2013, 222, 318–325.  doi: 10.1016/j.jpowsour.2012.08.029

    37. [37]

      Kim, J.; Hong, Y. S.; Ryu, K. S.; Kim, M. G.; Cho, J. Washing effect of a LiNi0.83Co0.15Al0.02O2 cathode in water. Electrochem. Solid St. 2006, 9, A19–A23.  doi: 10.1149/1.2135427

    38. [38]

      Zheng, X.; Li, X.; Wang, Z.; Guo, H.; Huang, Z.; Yan, G.; Wang, D. Investigation and improvement on the electrochemical performance and storage characteristics of LiNiO2-based materials for lithium ion battery. Electrochim. Acta 2016, 191, 832–840.  doi: 10.1016/j.electacta.2016.01.142

    39. [39]

      Zhang, M. J.; Hu, X. B.; Li, M. F.; Duan, Y. D.; Yang, L. Y.; Yin, C.; Ge, M. Y.; Xiao, X. H.; Lee, W. K.; Ko, J. Y. P.; Amine, K.; Chen, Z. H.; Zhu, Y. M.; Dooryhee, E.; Bai, J. M.; Pan, F.; Wang, F. Cooling induced surface reconstruction during synthesis of high-Ni layered oxides. Adv. Energy Mater. 2019, 9, 1901915–10.  doi: 10.1002/aenm.201901915

    40. [40]

      Zhang, M. J.; Chen, Y. S.; Pan, F.; Ren, Y. Understanding structural evolution in the synthesis of advanced energy materials. Chin. J. Struc. Chem. 2020, 39, 26–30.

    41. [41]

      Assat, G.; Foix, D.; Delacourt, C.; Iadecola, A.; Dedryvere, R.; Tarascon, J. M. Fundamental interplay between anionic/cationic redox governing the kinetics and thermodynamics of lithium-rich cathodes. Nat. Commun. 2017, 8, 2219–12.  doi: 10.1038/s41467-017-02291-9

    42. [42]

      Hekmatfar, M.; Kazzazi, A.; Eshetu, G. G.; Hasa, I.; Passerini, S. Understanding the electrode/electrolyte interface layer on the Li-rich nickel manganese cobalt layered oxide cathode by XPS. ACS Appl. Mater. Inter. 2019, 11, 43166–43179.  doi: 10.1021/acsami.9b14389

    43. [43]

      Shimoda, K.; Minato, T.; Nakanishi, K.; Komatsu, H.; Matsunaga, T.; Tanida, H.; Arai, H.; Ukyo, Y.; Uchimoto, Y.; Ogumi, Z. Oxidation behaviour of lattice oxygen in Li-rich manganese-based layered oxide studied by hard X-ray photoelectron spectroscopy. J. Mater. Chem. A 2016, 4, 5909–5916.  doi: 10.1039/C6TA01152G

  • 加载中
    1. [1]

      Guo-Hong GaoRun-Ze ZhaoYa-Jun WangXiao MaYan LiJian ZhangJi-Sen Li . Core–shell heterostructure engineering of CoP nanowires coupled NiFe LDH nanosheets for highly efficient water/seawater oxidation. Chinese Chemical Letters, 2024, 35(8): 109181-. doi: 10.1016/j.cclet.2023.109181

    2. [2]

      Min SongQian ZhangTao ShenGuanyu LuoDeli Wang . Surface reconstruction enabled o-PdTe@Pd core-shell electrocatalyst for efficient oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(8): 109083-. doi: 10.1016/j.cclet.2023.109083

    3. [3]

      Shaonan Tian Yu Zhang Qing Zeng Junyu Zhong Hui Liu Lin Xu Jun Yang . Core-shell gold-copper nanoparticles: Evolution of copper shells on gold cores at different gold/copper precursor ratios. Chinese Journal of Structural Chemistry, 2023, 42(11): 100160-100160. doi: 10.1016/j.cjsc.2023.100160

    4. [4]

      Hengying XiangNanping DengLu GaoWen YuBowen ChengWeimin Kang . 3D core-shell nanofibers framework and functional ceramic nanoparticles synergistically reinforced composite polymer electrolytes for high-performance all-solid-state lithium metal battery. Chinese Chemical Letters, 2024, 35(8): 109182-. doi: 10.1016/j.cclet.2023.109182

    5. [5]

      Yuan ZhangShenghao GongA.R. Mahammed ShaheerRong CaoTianfu Liu . Plasmon-enhanced photocatalytic oxidative coupling of amines in the air using a delicate Ag nanowire@NH2-UiO-66 core-shell nanostructures. Chinese Chemical Letters, 2024, 35(4): 108587-. doi: 10.1016/j.cclet.2023.108587

    6. [6]

      Jingxuan LiuShiqi ZhaoXiang Wu . Flexible electrochemical capacitor based NiMoSSe electrode material with superior cycling and structural stability. Chinese Chemical Letters, 2024, 35(7): 109059-. doi: 10.1016/j.cclet.2023.109059

    7. [7]

      Jiayao Li Xinru Peng Shiwei Yin Changwei Wang Yirong Mo . Metastability of π-π stacking between the closed-shell ions of like charges. Chinese Journal of Structural Chemistry, 2024, 43(5): 100213-100213. doi: 10.1016/j.cjsc.2023.100213

    8. [8]

      Xiping DongXuan WangZhixiu LuQinhao ShiZhengyi YangXuan YuWuliang FengXingli ZouYang LiuYufeng Zhao . Construction of Cu-Zn Co-doped layered materials for sodium-ion batteries with high cycle stability. Chinese Chemical Letters, 2024, 35(5): 108605-. doi: 10.1016/j.cclet.2023.108605

    9. [9]

      Ningning GaoYue ZhangZhenhao YangLijing XuKongyin ZhaoQingping XinJunkui GaoJunjun ShiJin ZhongHuiguo Wang . Ba2+/Ca2+ co-crosslinked alginate hydrogel filtration membrane with high strength, high flux and stability for dye/salt separation. Chinese Chemical Letters, 2024, 35(5): 108820-. doi: 10.1016/j.cclet.2023.108820

    10. [10]

      Huyi Yu Renshu Huang Qian Liu Xingfa Chen Tianqi Yu Haiquan Wang Xincheng Liang Shibin Yin . Te-doped Fe3O4 flower enabling low overpotential cycling of Li-CO2 batteries at high current density. Chinese Journal of Structural Chemistry, 2024, 43(3): 100253-100253. doi: 10.1016/j.cjsc.2024.100253

    11. [11]

      Qian-Qian TangLi-Fang FengZhi-Peng LiShi-Hao WuLong-Shuai ZhangQing SunMei-Feng WuJian-Ping Zou . Single-atom sites regulation by the second-shell doping for efficient electrochemical CO2 reduction. Chinese Chemical Letters, 2024, 35(9): 109454-. doi: 10.1016/j.cclet.2023.109454

    12. [12]

      Xinpin PanYongjian CuiZhe WangBowen LiHailong WangJian HaoFeng LiJing Li . Robust chemo-mechanical stability of additives-free SiO2 anode realized by honeycomb nanolattice for high performance Li-ion batteries. Chinese Chemical Letters, 2024, 35(10): 109567-. doi: 10.1016/j.cclet.2024.109567

    13. [13]

      Jiahao XieJin LiuBin LiuXin MengZhuang CaiXiaoqin XuCheng WangShijie YouJinlong Zou . Yolk shell-structured pyrite-type cobalt sulfide grafted by nitrogen-doped carbon-needles with enhanced electrical conductivity for oxygen electrocatalysis. Chinese Chemical Letters, 2024, 35(7): 109236-. doi: 10.1016/j.cclet.2023.109236

    14. [14]

      Ruiying Liu Li Zhao Baishan Liu Jiayuan Yu Yujie Wang Wanqiang Yu Di Xin Chaoqiong Fang Xuchuan Jiang Riming Hu Hong Liu Weijia Zhou . Modulating pollutant adsorption and peroxymonosulfate activation sites on Co3O4@N,O doped-carbon shell for boosting catalytic degradation activity. Chinese Journal of Structural Chemistry, 2024, 43(8): 100332-100332. doi: 10.1016/j.cjsc.2023.100332

    15. [15]

      Dongmei DaiXiaobing LaiXiaojuan WangYunting YaoMengmin JiaLiang WangPengyao YanYaru QiaoZhuangzhuang ZhangBao LiDai-Huo Liu . Increasing (010) active plane of P2-type layered cathodes with hexagonal prism towards improved sodium-storage. Chinese Chemical Letters, 2024, 35(10): 109405-. doi: 10.1016/j.cclet.2023.109405

    16. [16]

      Guangchang YangShenglong YangJinlian YuYishun XieChunlei TanFeiyan LaiQianqian JinHongqiang WangXiaohui Zhang . Regulating local chemical environment in O3-type layered sodium oxides by dual-site Mg2+/B3+ substitution achieves durable and high-rate cathode. Chinese Chemical Letters, 2024, 35(9): 109722-. doi: 10.1016/j.cclet.2024.109722

    17. [17]

      Yan-Bo LiYi LiLiang Yin . Copper(Ⅰ)-catalyzed diastereodivergent construction of vicinal P-chiral and C-chiral centers facilitated by dual "soft-soft" interaction. Chinese Chemical Letters, 2024, 35(7): 109294-. doi: 10.1016/j.cclet.2023.109294

    18. [18]

      Zhe WangLi-Peng HouQian-Kui ZhangNan YaoAibing ChenJia-Qi HuangXue-Qiang Zhang . High-performance localized high-concentration electrolytes by diluent design for long-cycling lithium metal batteries. Chinese Chemical Letters, 2024, 35(4): 108570-. doi: 10.1016/j.cclet.2023.108570

    19. [19]

      Yang Deng Yitao Ouyang Chao Han . Constriction-susceptible makes fast cycling of lithium metal in solid-state batteries: Silicon as an example. Chinese Journal of Structural Chemistry, 2024, 43(7): 100276-100276. doi: 10.1016/j.cjsc.2024.100276

    20. [20]

      Xinzhi Ding Chong Liu Jing Niu Nan Chen Shutao Xu Yingxu Wei Zhongmin Liu . Solid-state NMR study of the stability of MOR framework aluminum. Chinese Journal of Structural Chemistry, 2024, 43(4): 100247-100247. doi: 10.1016/j.cjsc.2024.100247

Metrics
  • PDF Downloads(5)
  • Abstract views(205)
  • HTML views(7)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return