Citation: Shuan-Kui LI, Wei-Ming ZHU, Yin-Guo XIAO, Feng PAN. Improving the Performance of Thermoelectric Materials by Atomic Layer Deposition-based Grain Boundary Engineering①[J]. Chinese Journal of Structural Chemistry, ;2020, 39(5): 831-837. doi: 10.14102/j.cnki.0254–5861.2011–2867 shu

Improving the Performance of Thermoelectric Materials by Atomic Layer Deposition-based Grain Boundary Engineering①

  • Corresponding author: Yin-Guo XIAO, y.xiao@pku.edu.cn Feng PAN, panfeng@pkusz.edu.cn
  • Received Date: 30 April 2020
    Accepted Date: 8 May 2020

    Fund Project: the National Natural Science Foundation of China 21905007Guangdong Key Lab Project 2017B0303010130Shenzhen Science and Technology Research Grant JCYJ20150629144612861Shenzhen Science and Technology Research Grant JCYJ20150827155136104

Figures(3)

  • Thermoelectric materials can directly achieve the conversion between heat and electricity, providing a clean and reliable way to alleviate energy crisis. However, the wide use of thermoelectric materials is subjected to their low energy conversion efficiency. Grain boundary engineering is considered as an effective strategy to improve thermoelectric performance, particularly for the most polycrystalline thermoelectric materials in bulk state. Recently, the precise controlling over the microstructure and composition of grain boundary at atomic scale has been achieved by atomic layer deposition (ALD) technology, which has been confirmed in various thermoelectric materials, such as Bi2Te2.7Se0.3, Bi0.4Sb1.6Te3, and ZrNiSn. Importantly, it is demonstrated that the decoupling between three key thermoelectric parameters, i.e. Seebeck coefficient, electrical conductivity and thermal conductivity, can be realized by ALD-based grain boundary engineering. Moreover, these key parameters can be optimized simultaneously toward the desired direction, which is extremely important for improving the thermoelectric performance. In this review, the relevant progress on the grain boundary engineering by ALD-based strategy is reviewed and some prospects are proposed.
  • 加载中
    1. [1]

      Snyder, G. J.; Toberer, E. S. Complex thermoelectric materials. Nat. Mater. 2008, 7, 105–114.  doi: 10.1038/nmat2090

    2. [2]

      Ding, Y.; Qiu, Y.; Cai, K.; Yao, Q.; Chen, S.; Chen, L.; He, J. High performance n-type Ag2Se film on nylon membrane for flexible thermoelectric power generator. Nat. Commun. 2019, 10, 841.  doi: 10.1038/s41467-019-08835-5

    3. [3]

      Novak, T. G.; Kim, K.; Jeon, S. 2D and 3D Nanostructuring Strategies for Thermoelectric Materials. Nanoscale 2019, 11, 19684–19699.  doi: 10.1039/C9NR07406F

    4. [4]

      Rodenkirchen, C.; Cagnoni, M.; Jakobs, S.; Cheng, Y.; Keutgen, J.; Yu, Y.; Wuttig, M.; Cojocaru-Mirédin, O. Employing Interfaces with Metavalently Bonded Materials for Phonon Scattering and Control of the Thermal Conductivity in TAGS-x Thermoelectric Materials. Adv. Funct. Mater. 2020, 30, 1910039.  doi: 10.1002/adfm.201910039

    5. [5]

      Minnich, A. J.; Dresselhaus, M. S.; Ren, Z. F.; Chen, G. Bulk nanostructured thermoelectric materials: current research and future prospects. Energy Environ. Sci. 2009, 2, 466–479.  doi: 10.1039/b822664b

    6. [6]

      Neophytou, N.; Kosina, H. Optimizing thermoelectric power factor by means of a potential barrier. Journal of Applied Physics 2013, 114, 044315.  doi: 10.1063/1.4816792

    7. [7]

      Kim, R.; Lundstrom, M. S. Computational study of energy filtering effects in one-dimensional composite nanostructures. Journal of Applied Physics 2012, 111, 024508.  doi: 10.1063/1.3678001

    8. [8]

      Li, S.; Liu, X.; Liu, Y.; Liu, F.; Luo, J.; Pan, F. Optimized hetero-interfaces by tuning 2D SnS2 thickness in Bi2Te2.7Se0.3/SnS2 nanocomposites to enhance thermoelectric performance. Nano Energy 2017, 39, 297–305.  doi: 10.1016/j.nanoen.2017.07.011

    9. [9]

      Li, S.; Liu, Y.; Liu, F.; He, D.; He, J.; Luo, J.; Xiao, Y.; Pan, F. Effective atomic interface engineering in Bi2Te2.7Se0.3 thermoelectric material by atomic-layer-deposition approach. Nano Energy 2018, 49, 257–266.  doi: 10.1016/j.nanoen.2018.04.047

    10. [10]

      Fang, H.; Wu, Y. Telluride nanowire and nanowire heterostructure based thermoelectric energy harvesting. J. Mater. Chem. A 2014, 2, 6004–6014.  doi: 10.1039/C3TA14129B

    11. [11]

      Li, S.; Fan, T.; Liu, X.; Liu, F.; Meng, H.; Liu, Y.; Pan, F. Graphene Quantum Dots Embedded in Bi2Te3 Nanosheets To Enhance Thermoelectric Performance. ACS Appl. Mater. Interfaces 2017, 9, 3677–3685.  doi: 10.1021/acsami.6b14274

    12. [12]

      Tan, G.; Zhao, L.; Kanatzidis, M. G. Rationally Designing High-Performance Bulk Thermoelectric Materials. Chem. Rev. 2016, 116, 12123–12149.  doi: 10.1021/acs.chemrev.6b00255

    13. [13]

      DeCoster, M. E.; Chen, X.; Zhang, K.; Rost, C. M.; Hoglund, E. R.; Howe, J. M.; Beechem, T. E.; Baumgart, H.; Hopkins, P. E. Thermal Conductivity and Phonon Scattering Processes of ALD Grown PbTe–PbSe Thermoelectric Thin Films. Adv. Funct. Mater. 2019, 29, 1904073.  doi: 10.1002/adfm.201904073

    14. [14]

      Väyrynen, K.; Vihervaara, A.; Hatanpää, T.; Mattinen, M.; Heikkilä, M. J.; Mizohata, K.; Räisänen, J.; Ritala, M.; Leskelä. M. Nickel Germanide Thin Films by Atomic Layer Deposition. Chem. Mater. 2019, 31, 14, 5314–5319.

    15. [15]

      Warburton, R. E.; Young, M. J.; Letourneau, S.; Elam, J. W.; Greeley, J. Descriptor-Based Analysis of Atomic Layer Deposition Mechanisms on Spinel LiMn2O4 Lithium-Ion Battery Cathodes. Chem. Mater. 2020, 32, 5, 1794–1806.

    16. [16]

      Kim, K. C.; Lim, S. S.; Lee, S. H.; Hong, J.; Cho, D. Y.; Mohamed, A. Y.; Koo, C. M.; Baek, S. H.; Kim, J. S.; Kim, S. K. Precision Interface Engineering of an Atomic Layer in Bulk Bi2Te3 Alloys for High Thermoelectric Performance. ACS Nano 2019, 13, 6, 7146–7154.

    17. [17]

      Mao, J.; Liu, Z.; Ren, Z. Size effect in thermoelectric materials. npj Quant Mater. 2016, 1, 16028.  doi: 10.1038/npjquantmats.2016.28

    18. [18]

      Hicks, L. D.; Dresselhaus, M. S. Effect of quantum-well structures on the thermoelectric figure of merit. Phys. Rev. B 1993, 47, 12727–12731.  doi: 10.1103/PhysRevB.47.12727

    19. [19]

      Harman, T. C.; Taylor, P. J.; Walsh, M. P.; LaForge, B. E. Quantum dot superlattice thermoelectric materials and devices. Science 2002, 297, 2229–2232.  doi: 10.1126/science.1072886

    20. [20]

      Harman, T. C.; Spears, D. L.; Manfra, M. J. High thermoelectric figures of merit in PbTe quantum wells. J. Electron. Mater. 1996, 25, 1121–1127.  doi: 10.1007/BF02659913

    21. [21]

      Zhu, T.; Fu, C.; Xie, H.; Liu, Y.; Zhao, X. High Efficiency Half-Heusler Thermoelectric Materials for Energy Harvesting. Adv. Energy Mater. 2015, 5, 1500588.  doi: 10.1002/aenm.201500588

    22. [22]

      Shi, X. L.; Tao, X.; Zou, J.; Chen, Z. G. High-Performance Thermoelectric SnSe: Aqueous Synthesis, Innovations, and Challenges. Adv. Sci. 2020, 7, 1902923.  doi: 10.1002/advs.201902923

    23. [23]

      Li, S.; Xin, C.; Liu, X.; Feng, Y.; Liu, Y.; Zheng, J.; Liu, F.; Huang, Q.; Qiu, Y.; He, J.; Luo, J.; Pan, F. 2D hetero-nanosheets to enable ultralow thermal conductivity by all scale phonon scattering for highly thermoelectric performance. Nano Energy 2016, 30, 780–789.  doi: 10.1016/j.nanoen.2016.09.018

    24. [24]

      Hwang, J.; Kim, H.; Han, M. K.; Hong, J.; Shim, J. H.; Tak, J. Y.; Lim, Y. S.; Jin, Y.; Kim, J.; Park, H.; Lee, D.; Bahk, J. H.; Kim, S. J.; Kim, W. Gigantic Phonon-Scattering Cross Section To Enhance Thermoelectric Performance in Bulk Crystals. ACS Nano 2019, 13, 8347–8355.  doi: 10.1021/acsnano.9b03805

    25. [25]

      Li, S.; Chu, M.; Zhu, W.; Wang, R.; Wang, Q.; Liu, F.; Gu, M.; Xiao, Y.; Pan, F. Atomic-scale tuning oxygen-doped Bi2Te2.7Se0.3 to simultaneously enhance seebeck coefficient and electrical conductivity. Nanoscale 2020, 12, 1580–1588.  doi: 10.1039/C9NR07591G

    26. [26]

      Zhang, Y.; Li, S.; Liu, F.; Zhang, C.; Hu, L.; Ao, W.; Li, Y.; Li, J.; Xie, H.; Xiao, Y.; Pan, F. Zr vacancy interfaces: an effective strategy for collaborative optimization of ZrNiSn-based thermoelectric performance. J. Mater. Chem. A 2019, 7, 26053–26061.  doi: 10.1039/C9TA09550K

  • 加载中
    1. [1]

      Shaohua ZhangLiyao LiuYingqiao MaChong-an Di . Advances in theoretical calculations of organic thermoelectric materials. Chinese Chemical Letters, 2024, 35(8): 109749-. doi: 10.1016/j.cclet.2024.109749

    2. [2]

      Mingjiao LuZhixing WangGui LuoHuajun GuoXinhai LiGuochun YanQihou LiXianglin LiDing WangJiexi Wang . Boosting the performance of LiNi0.90Co0.06Mn0.04O2 electrode by uniform Li3PO4 coating via atomic layer deposition. Chinese Chemical Letters, 2024, 35(5): 108638-. doi: 10.1016/j.cclet.2023.108638

    3. [3]

      Jianmei HanPeng WangHua ZhangNing SongXuguang AnBaojuan XiShenglin Xiong . Performance optimization of chalcogenide catalytic materials in lithium-sulfur batteries: Structural and electronic engineering. Chinese Chemical Letters, 2024, 35(7): 109543-. doi: 10.1016/j.cclet.2024.109543

    4. [4]

      Jia FuShilong ZhangLirong LiangChunyu DuZhenqiang YeGuangming Chen . PEDOT-based thermoelectric composites: Preparation, mechanism and applications. Chinese Chemical Letters, 2024, 35(9): 109804-. doi: 10.1016/j.cclet.2024.109804

    5. [5]

      Ziyang YinLingbin XieWeinan YinTing ZhiKang ChenJunan PanYingbo ZhangJingwen LiLonglu Wang . Advanced development of grain boundaries in TMDs from fundamentals to hydrogen evolution application. Chinese Chemical Letters, 2024, 35(5): 108628-. doi: 10.1016/j.cclet.2023.108628

    6. [6]

      Ruizhi Yang Xia Li Weiping Guo Zixuan Chen Hongwei Ming Zhong-Zhen Luo Zhigang Zou . New thermoelectric semiconductors Pb5Sb12+xBi6-xSe32 with ultralow thermal conductivity. Chinese Journal of Structural Chemistry, 2024, 43(3): 100268-100268. doi: 10.1016/j.cjsc.2024.100268

    7. [7]

      Junjie WangYan WangZhengdong LiChangqiang XieMusammir KhanXingzhou PengFabiao Yu . Triphenylamine-AIEgens photoactive materials for cancer theranostics. Chinese Chemical Letters, 2024, 35(6): 108934-. doi: 10.1016/j.cclet.2023.108934

    8. [8]

      Rui PANYuting MENGRuigang XIEDaixiang CHENJiefa SHENShenghu YANJianwu LIUYue ZHANG . Selective electrocatalytic reduction of Sn(Ⅳ) by carbon nitrogen materials prepared with different precursors. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1015-1024. doi: 10.11862/CJIC.20230433

    9. [9]

      Chao Ma Cong Lin Jian Li . MicroED as a powerful technique for the structure determination of complex porous materials. Chinese Journal of Structural Chemistry, 2024, 43(3): 100209-100209. doi: 10.1016/j.cjsc.2023.100209

    10. [10]

      Yuhan Wu Qing Zhao Zhijie Wang . Layered vanadium oxides: Promising cathode materials for calcium-ion batteries. Chinese Journal of Structural Chemistry, 2024, 43(5): 100271-100271. doi: 10.1016/j.cjsc.2024.100271

    11. [11]

      Pingfan ZhangShihuan HongNing SongZhonghui HanFei GeGang DaiHongjun DongChunmei Li . Alloy as advanced catalysts for electrocatalysis: From materials design to applications. Chinese Chemical Letters, 2024, 35(6): 109073-. doi: 10.1016/j.cclet.2023.109073

    12. [12]

      Gaojie ZhuZhen YangShijun LiWeihua ZhuRui CaoJunlong ZhangJianzhang ZhaoJonathan L. SesslerXunjin ZhuJianxin SongYongshu XieJianzhuang Jiang . The 2nd Asian Conference on Porphyrins, Phthalocyanines and Related Materials. Chinese Chemical Letters, 2024, 35(7): 109535-. doi: 10.1016/j.cclet.2024.109535

    13. [13]

      Yuqing ZhuHaohao ChenLi WangLiqun YeHoule ZhouQintian PengHuaiyong ZhuYingping Huang . Piezoelectric materials for pollutants degradation: State-of-the-art accomplishments and prospects. Chinese Chemical Letters, 2024, 35(4): 108884-. doi: 10.1016/j.cclet.2023.108884

    14. [14]

      Fangling Cui Zongjie Hu Jiayu Huang Xiaoju Li Ruihu Wang . MXene-based materials for separator modification of lithium-sulfur batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100337-100337. doi: 10.1016/j.cjsc.2024.100337

    15. [15]

      Ting HuYuxuan GuoYixuan MengZe ZhangJi YuJianxin CaiZhenyu Yang . Uniform lithium deposition induced by copper phthalocyanine additive for durable lithium anode in lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(5): 108603-. doi: 10.1016/j.cclet.2023.108603

    16. [16]

      Dong ChengYouyou FengBingxi FengKe WangGuoxin SongGen WangXiaoli ChengYonghui DengJing Wei . Polyphenol-mediated interfacial deposition strategy for supported manganese oxide catalysts with excellent pollutant degradation performance. Chinese Chemical Letters, 2024, 35(5): 108623-. doi: 10.1016/j.cclet.2023.108623

    17. [17]

      Tao WeiJiahao LuPan ZhangQi ZhangGuang YangRuizhi YangDaifen ChenQian WangYongfu Tang . An intermittent lithium deposition model based on bimetallic MOFs derivatives for dendrite-free lithium anode with ultrahigh areal capacity. Chinese Chemical Letters, 2024, 35(8): 109122-. doi: 10.1016/j.cclet.2023.109122

    18. [18]

      Yue Wang Caixia Xu Xingtao Tian Siyu Wang Yan Zhao . Challenges and Modification Strategies of High-Voltage Cathode Materials for Li-ion Batteries. Chinese Journal of Structural Chemistry, 2023, 42(10): 100167-100167. doi: 10.1016/j.cjsc.2023.100167

    19. [19]

      Xiping DongXuan WangZhixiu LuQinhao ShiZhengyi YangXuan YuWuliang FengXingli ZouYang LiuYufeng Zhao . Construction of Cu-Zn Co-doped layered materials for sodium-ion batteries with high cycle stability. Chinese Chemical Letters, 2024, 35(5): 108605-. doi: 10.1016/j.cclet.2023.108605

    20. [20]

      Yongkang YueZhou XuKaiqing MaFangjun HuoXuemei QinKuanshou ZhangCaixia Yin . HSA shrinkage optimizes the photostability of embedded dyes fundamentally to amplify their efficiency as photothermal materials. Chinese Chemical Letters, 2024, 35(8): 109223-. doi: 10.1016/j.cclet.2023.109223

Metrics
  • PDF Downloads(10)
  • Abstract views(266)
  • HTML views(20)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return