Phase and Defect Engineering of GeTe-based Alloys for High Thermoelectric Performance
- Corresponding author: Chao-Hua ZHANG, zhangch@szu.edu.cn Jun-Qin LI, junqinli@szu.edu.cn
Citation: Chao-Hua ZHANG, Yi-Bo WANG, Jun-Qin LI, Fu-Sheng LIU. Phase and Defect Engineering of GeTe-based Alloys for High Thermoelectric Performance[J]. Chinese Journal of Structural Chemistry, ;2020, 39(5): 821-830. doi: 10.14102/j.cnki.0254–5861.2011–2850
He, J.; Tritt, T. M. Advances in thermoelectric materials research: looking back and moving forward. Science 2017, 357, eaak9997.
doi: 10.1126/science.aak9997
Snyder, G. J.; Toberer, E. S. Complex thermoelectric materials. Nat. Mater. 2008, 7, 105-114.
doi: 10.1038/nmat2090
Liu, W.; Hu, J.; Zhang, S.; Deng, M.; Han, C. G.; Liu, Y. New trends, strategies and opportunities in thermoelectric materials: a perspective. Mater. Today Phys. 2017, 1, 50-60.
doi: 10.1016/j.mtphys.2017.06.001
Yang, L.; Chen, Z. G.; Dargusch, M. S.; Zou, J. High performance thermoelectric materials: progress and their applications. Adv. Energy Mater. 2018, 8, 1701797.
doi: 10.1002/aenm.201701797
Zhu, T.; Liu, Y.; Fu, C.; Heremans, J. P.; Snyder, J. G.; Zhao, X. Compromise and synergy in high-efficiency thermoelectric materials. Adv. Mater. 2017, 29, 1605884.
doi: 10.1002/adma.201605884
Pei, Y.; Wang, H.; Snyder, G. J. Band engineering of thermoelectric materials. Adv. Mater. 2012, 24, 6125-6135.
doi: 10.1002/adma.201202919
Heremans, J. P.; Wiendlocha, B.; Chamoire, A. M. Resonant levels in bulk thermoelectric semiconductors. Energy Environ. Sci. 2012, 5, 5510-5530.
doi: 10.1039/C1EE02612G
Chang, C.; Zhao, L. D. Anharmoncity and low thermal conductivity in thermoelectrics. Mater. Today Phys. 2018, 4, 50-57.
doi: 10.1016/j.mtphys.2018.02.005
Kim, W. Strategies for engineering phonon transport in thermoelectrics. J. Mater. Chem. C 2015, 3, 10336-10348.
doi: 10.1039/C5TC01670C
Chen, Z.; Zhang, X.; Pei, Y. Manipulation of phonon transport in thermoelectrics. Adv. Mater. 2018, 30, 1705617.
doi: 10.1002/adma.201705617
Kim, S. I.; Lee, K. H.; Mun, H. A.; Kim, H. S.; Hwang, S. W.; Roh, J. W.; Yang, D. J.; Shin, W. H.; Li, X. S.; Lee, Y. H.; Snyder, G. J.; Kim, S. W. Dense dislocation arrays embedded in grain boundaries for high-performance bulk thermoelectrics. Science 2015, 348, 109-114.
doi: 10.1126/science.aaa4166
Zhang, C.; Zhang, C.; Ng, H.; Xiong, Q. Solution-processed n-type Bi2Te3–xSex nanocomposites with enhanced thermoelectric performance via liquid-phase sintering. Sci. China Mater. 2019, 62, 389-398.
doi: 10.1007/s40843-018-9312-5
Zheng, G.; Su, X.; Liang, T.; Lu, Q.; Yan, Y.; Uher, C.; Tang, X. High thermoelectric performance of mechanically robust n-type Bi2Te3–xSex prepared by combustion synthesis. J. Mater. Chem. A 2015, 3, 6603-6613.
doi: 10.1039/C5TA00470E
Biswas, K.; He, J.; Blum, I. D.; Wu, C. I.; Hogan, T. P.; Seidman, D. N.; Dravid, V. P.; Kanatzidis, M. G. High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature 2012, 489, 414-418.
doi: 10.1038/nature11439
Hong, M.; Zou, J.; Chen, Z. G. Thermoelectric GeTe with diverse degrees of freedom having secured superhigh performance. Adv. Mater. 2019, 31, 1807071.
doi: 10.1002/adma.201807071
Wang, L.; Li, J.; Zhang, C.; Ding, T.; Xie, Y.; Li, Y.; Liu, F.; Ao, W.; Zhang, C. Discovery of low-temperature GeTe-based thermoelectric alloys with high performance competing with Bi2Te3. J. Mater. Chem. A 2020, 8, 1660-1667.
doi: 10.1039/C9TA11901A
Zheng, L.; Li, W.; Lin, S.; Li, J.; Chen, Z.; Pei, Y. Interstitial defects improving thermoelectric SnTe in addition to band convergence. ACS Energy Lett. 2017, 2, 563-568.
doi: 10.1021/acsenergylett.6b00671
Zhao, L. D.; Tan, G.; Hao, S.; He, J.; Pei, Y.; Chi, H.; Wang, H.; Gong, S.; Xu, H.; Dravid, V. P.; Uher, C.; Snyder, G. J.; Wolverton, C.; Kanatzidis, M. G. Ultrahigh power factor and thermoelectric performance in hole-doped single-crystal SnSe. Science 2016, 351, 141-144.
doi: 10.1126/science.aad3749
Ahmad, S.; Singh, A.; Bohra, A.; Basu, R.; Bhattacharya, S.; Bhatt, R.; Meshram, K. N.; Roy, M.; Sarkar, S. K.; Hayakawa, Y.; Debnath, A. K.; Aswal, D. K.; Gupta, S. K. Boosting thermoelectric performance of p-type SiGe alloys through in-situ metallic YSi2 nanoinclusions. Nano Energy 2016, 27, 282-297.
doi: 10.1016/j.nanoen.2016.07.002
Zeier, W. G.; Schmitt, J.; Hautier, G.; Aydemir, U.; Gibbs, Z. M.; Felser, C.; Snyder, G. J. Engineering half-Heusler thermoelectric materials using Zintl chemistry. Nat. Rev. Mater. 2016, 1, 16032.
doi: 10.1038/natrevmats.2016.32
Zhao, L. D.; He, J.; Berardan, D.; Lin, Y.; Li, J. F.; Nan, C. W.; Dragoe, N. BiCuSeO oxyselenides: new promising thermoelectric materials. Energy Environ. Sci. 2014, 7, 2900-2924.
doi: 10.1039/C4EE00997E
Tang, Y.; Gibbs, Z. M.; Agapito, L. A.; Li, G.; Kim, H. S.; Nardelli, M. B.; Curtarolo, S.; Snyder, G. J. Convergence of multi-valley bands as the electronic origin of high thermoelectric performance in CoSb3 skutterudites. Nat. Mater. 2015, 14, 1223-1228.
doi: 10.1038/nmat4430
Russ, B.; Glaudell, A.; Urban, J. J.; Chabinyc, M. L.; Segalman, R. A. Organic thermoelectric materials for energy harvesting and temperature control. Nat. Rev. Mater. 2016, 1, 16050.
doi: 10.1038/natrevmats.2016.50
Bauer Pereira, P.; Sergueev, I.; Gorsse, S.; Dadda, J.; Müller, E.; Hermann, R. P. Lattice dynamics and structure of GeTe, SnTe and PbTe. Phys. Status Solidi B 2013, 250, 1300-1307.
doi: 10.1002/pssb.201248412
Roychowdhury, S.; Samanta, M.; Perumal, S.; Biswas, K. Germanium chalcogenide thermoelectrics: electronic structure modulation and low lattice thermal conductivity. Chem. Mater. 2018, 30, 5799-5813.
doi: 10.1021/acs.chemmater.8b02676
Gelbstein, Y.; Dado, B.; Ben-Yehuda, O.; Sadia, Y.; Dashevsky, Z.; Dariel, M. P. Highly efficient Ge-Rich GexPb1–xTe thermoelectric alloys. J. Electron. Mater. 2009, 39, 2049-2052.
Gelbstein, Y.; Davidow, J.; Leshem, E.; Pinshow, O.; Moisa, S. Significant lattice thermal conductivity reduction following phase separation of the highly efficient GexPb1-xTe thermoelectric alloys. Phys. Status Solidi B 2014, 251, 1431-1437.
doi: 10.1002/pssb.201451088
Li, S. P.; Li, J. Q.; Wang, Q. B.; Wang, L.; Liu, F. S.; Ao, W. Q. Synthesis and thermoelectric properties of the (GeTe)1-x(PbTe)x alloys. Solid State Sci. 2011, 13, 399-403.
doi: 10.1016/j.solidstatesciences.2010.11.045
Li, J.; Zhang, X.; Wang, X.; Bu, Z.; Zheng, L.; Zhou, B.; Xiong, F.; Chen, Y.; Pei, Y. High-performance GeTe thermoelectrics in both rhombohedral and cubic phases. J. Am. Chem. Soc. 2018, 140, 16190-16197.
doi: 10.1021/jacs.8b09147
Zhang, X.; Li, J.; Wang, X.; Chen, Z.; Mao, J.; Chen, Y.; Pei, Y. Vacancy manipulation for thermoelectric enhancements in GeTe alloys. J. Am. Chem. Soc. 2018, 140, 15883-15888.
doi: 10.1021/jacs.8b09375
Li, J.; Zhang, X.; Chen, Z.; Lin, S.; Li, W.; Shen, J.; Witting, I. T.; Faghaninia, A.; Chen, Y.; Jain, A.; Chen, L.; Snyder, G. J.; Pei, Y. Low-symmetry rhombohedral GeTe thermoelectrics. Joule 2018, 2, 976-987.
doi: 10.1016/j.joule.2018.02.016
Wu, D.; Zhao, L. D.; Hao, S.; Jiang, Q.; Zheng, F.; Doak, J. W.; Wu, H.; Chi, H.; Gelbstein, Y.; Uher, C.; Wolverton, C.; Kanatzidis, M.; He, J. Origin of the high performance in GeTe-based thermoelectric materials upon Bi2Te3 doping. J. Am. Chem. Soc. 2014, 136, 11412-11419.
doi: 10.1021/ja504896a
Gelbstein, Y.; Davidow, J. Highly efficient functional GexPb1-xTe based thermoelectric alloys. Phys. Chem. Chem. Phys. 2014, 16, 20120-20126.
doi: 10.1039/C4CP02399D
Gelbstein, Y.; Davidow, J.; Girard, S. N.; Chung, D. Y.; Kanatzidis, M. Controlling metallurgical phase separation reactions of the Ge0. 87Pb0.13Te alloy for high thermoelectric performance. Adv. Energy Mater. 2013, 3, 815-820.
doi: 10.1002/aenm.201200970
Li, J.; Xie, Y.; Zhang, C.; Ma, K.; Liu, F.; Ao, W.; Li, Y.; Zhang, C. Stacking fault-induced minimized lattice thermal conductivity in the high-performance GeTe-based thermoelectric materials upon Bi2Te3 alloying. ACS Appl. Mater. Interfaces 2019, 11, 20064-20072.
doi: 10.1021/acsami.9b04984
Hazan, E.; Ben-Yehuda, O.; Madar, N.; Gelbstein, Y. Functional graded germanium-lead chalcogenide-based thermoelectric module for renewable energy applications. Adv. Energy Mater. 2015, 5, 1500272.
doi: 10.1002/aenm.201500272
Li, J.; Chen, Z.; Zhang, X.; Yu, H.; Wu, Z.; Xie, H.; Chen, Y.; Pei, Y. Simultaneous optimization of carrier concentration and alloy scattering for ultrahigh performance GeTe thermoelectrics. Adv. Sci. 2017, 4, 1700341.
doi: 10.1002/advs.201700341
Li, J.; Wu, H.; Wu, D.; Wang, C.; Zhang, Z.; Li, Y.; Liu, F.; Ao, W. Q.; He, J. Extremely low thermal conductivity in thermoelectric Ge0.55Pb0.45Te solid solutions via Se substitution. Chem. Mater. 2016, 28, 6367-6373.
doi: 10.1021/acs.chemmater.6b02772
Li, J. Q.; Lu, Z. W.; Wu, H. J.; Li, H. T.; Liu, F. S.; Ao, W. Q.; Luo, J.; He, J. Q. High thermoelectric performance of Ge1–xPbxSe0.5Te0.5 due to (Pb, Se) co-doping. Acta Mater. 2014, 74, 215-223.
doi: 10.1016/j.actamat.2014.04.036
Dong, J. F.; Sun, F. H.; Tang, H. C.; Pei, J.; Zhuang, H. L.; Hu, H. H.; Zhang, B. P.; Pan, Y.; Li, J. F. Medium-temperature thermoelectric GeTe: vacancy suppression and band structure engineering leading to high performance. Energy Environ. Sci. 2019, 12, 1396-1403.
doi: 10.1039/C9EE00317G
Perumal, S.; Roychowdhury, S.; Biswas, K. Reduction of thermal conductivity through nanostructuring enhances the thermoelectric figure of merit in Ge1–xBixTe. Inorg. Chem. Front. 2016, 3, 125-132.
doi: 10.1039/C5QI00230C
Wu, D.; Feng, D.; Xu, X.; He, M.; Xu, J.; He, J. Realizing high figure of merit plateau in Ge1-xBixTe via enhanced Bi solution and Ge precipitation. J. Alloys Compd. 2019, 805, 831-839.
doi: 10.1016/j.jallcom.2019.07.120
Wu, D.; Xie, L.; Xu, X.; He, J. High thermoelectric performance achieved in GeTe–Bi2Te3 pseudo‐binary via Van der Waals gap-induced hierarchical ferroelectric domain structure. Adv. Funct. Mater. 2019, 29, 1806613.
doi: 10.1002/adfm.201806613
Madar, N.; Givon, T.; Mogilyansky, D.; Gelbstein, Y. High thermoelectric potential of Bi2Te3 alloyed GeTe-rich phases. J. Appl. Phys. 2016, 120, 035102.
doi: 10.1063/1.4958973
Perumal, S.; Bellare, P.; Shenoy, U. S.; Waghmare, U. V.; Biswas, K. Low thermal conductivity and high thermoelectric performance in Sb and Bi codoped GeTe: complementary effect of band convergence and nanostructuring. Chem. Mater. 2017, 29, 10426-10435.
doi: 10.1021/acs.chemmater.7b04023
Shimano, S.; Tokura, Y.; Taguchi, Y. Carrier density control and enhanced thermoelectric performance of Bi and Cu co-doped GeTe. APL Mater. 2017, 5, 056103.
doi: 10.1063/1.4983404
Liu, Z.; Sun, J.; Mao, J.; Zhu, H.; Ren, W.; Zhou, J.; Wang, Z.; Singh, D. J.; Sui, J.; Chu, C. W.; Ren, Z. Phase-transition temperature suppression to achieve cubic GeTe and high thermoelectric performance by Bi and Mn codoping. Proc. Natl. Acad. Sci. USA 2018, 115, 5332-5337.
doi: 10.1073/pnas.1802020115
Li, J.; Li, W.; Bu, Z.; Wang, X.; Gao, B.; Xiong, F.; Chen, Y.; Pei, Y. Thermoelectric transport properties of CdxBiyGe1-x-yTe alloys. ACS Appl. Mater. Interfaces 2018, 10, 39904-39911.
doi: 10.1021/acsami.8b15080
Hong, M.; Wang, Y.; Liu, W.; Matsumura, S.; Wang, H.; Zou, J.; Chen, Z. G. Arrays of planar vacancies in superior thermoelectric Ge1–x–yCdxBiyTe with band convergence. Adv. Energy Mater. 2018, 8, 1801837.
doi: 10.1002/aenm.201801837
Nshimyimana, E.; Su, X.; Xie, H.; Liu, W.; Deng, R.; Luo, T.; Yan, Y.; Tang, X. Realization of non-equilibrium process for high thermoelectric performance Sb-doped GeTe. Sci. Bull. 2018, 63, 717-725.
doi: 10.1016/j.scib.2018.04.012
Perumal, S.; Roychowdhury, S.; Negi, D. S.; Datta, R.; Biswas, K. High thermoelectric performance and enhanced mechanical stability of p-type Ge1–xSbxTe. Chem. Mater. 2015, 27, 7171-7178.
Xu, X.; Xie, L.; Lou, Q.; Wu, D.; He, J. Boosting the thermoelectric performance of pseudo-layered Sb2Te3(GeTe)n via vacancy engineering. Adv. Sci. 2018, 5, 1801514.
doi: 10.1002/advs.201801514
Rosenthal, T.; Schneider, M. N.; Stiewe, C.; Döblinger, M.; Oeckler, O. Real structure and thermoelectric properties of GeTe-rich germanium antimony tellurides. Chem. Mater. 2011, 23, 4349-4356.
doi: 10.1021/cm201717z
Zheng, Z.; Su, X.; Deng, R.; Stoumpos, C.; Xie, H.; Liu, W.; Yan, Y.; Hao, S.; Uher, C.; Wolverton, C.; Kanatzidis, M. G.; Tang, X. Rhombohedral to cubic conversion of GeTe via MnTe alloying leads to ultralow thermal conductivity, electronic band convergence, and high thermoelectric performance. J. Am. Chem. Soc. 2018, 140, 2673-2686.
doi: 10.1021/jacs.7b13611
Hong, M.; Wang, Y.; Feng, T.; Sun, Q.; Xu, S.; Matsumura, S.; Pantelides, S. T.; Zou, J.; Chen, Z. G. Strong phonon-phonon interactions securing extraordinary thermoelectric Ge1-xSbxTe with Zn-alloying-induced band alignment. J. Am. Chem. Soc. 2019, 141, 1742-1748.
doi: 10.1021/jacs.8b12624
Hong, M.; Chen, Z. G.; Yang, L.; Zou, Y. C.; Dargusch, M. S.; Wang, H.; Zou, J. Realizing zT of 2.3 in Ge1-x-ySbxInyTe via reducing the phase-transition temperature and introducing resonant energy doping. Adv. Mater. 2018, 30, 1705942.
doi: 10.1002/adma.201705942
Yue, L.; Fang, T.; Zheng, S.; Cui, W.; Wu, Y.; Chang, S.; Wang, L.; Bai, P.; Zhao, H. Cu/Sb Codoping for tuning carrier concentration and thermoelectric performance of GeTe-based alloys with ultralow lattice thermal conductivity. ACS Appl. Energy Mater. 2019, 2, 2596-2603.
doi: 10.1021/acsaem.8b02213
Li, J.; Zhang, X.; Lin, S.; Chen, Z.; Pei, Y. Realizing the high thermoelectric performance of GeTe by Sb-doping and Se-alloying. Chem. Mater. 2016, 29, 605-611.
Rosenthal, T.; Urban, P.; Nimmrich, K.; Schenk, L.; de Boor, J.; Stiewe, C.; Oeckler, O. Enhancing the thermoelectric properties of germanium antimony tellurides by substitution with selenium in compounds GenSb2(Te1–xSex)n+3 (0≤x≤0. 5; n≥7). Chem. Mater. 2014, 26, 2567-2578.
doi: 10.1021/cm404115k
Fahrnbauer, F.; Souchay, D.; Wagner, G.; Oeckler, O. High thermoelectric figure of merit values of germanium antimony tellurides with kinetically stable cobalt germanide precipitates. J. Am. Chem. Soc. 2015, 137, 12633-12638.
doi: 10.1021/jacs.5b07856
Kim, H. S.; Dharmaiah, P.; Madavali, B.; Ott, R.; Lee, K. H.; Hong, S. J. Large-scale production of (GeTe)x(AgSbTe2)100–x (x = 75, 80, 85, 90) with enhanced thermoelectric properties via gas-atomization and spark plasma sintering. Acta Mater. 2017, 128, 43-53.
doi: 10.1016/j.actamat.2017.01.053
Cook, B. A.; Kramer, M. J.; Wei, X.; Harringa, J. L.; Levin, E. M. Nature of the cubic to rhombohedral structural transformation in (AgSbTe2)15(GeTe)85 thermoelectric material. J. Appl. Phys. 2007, 101, 053715.
doi: 10.1063/1.2645675
Samanta, M.; Roychowdhury, S.; Ghatak, J.; Perumal, S.; Biswas, K. Ultrahigh average thermoelectric figure of merit, low lattice thermal conductivity and enhanced microhardness in nanostructured (GeTe)x(AgSbSe2)100-x. Chem. Eur. J. 2017, 23, 7438-7443.
doi: 10.1002/chem.201701480
Yang, L.; Li, J. Q.; Chen, R.; Li, Y.; Liu, F. S.; Ao, W. Q. Influence of Se substitution in GeTe on phase and thermoelectric properties. J. Electron. Mater. 2016, 45, 5533-5539.
doi: 10.1007/s11664-016-4770-4
Samanta, M.; Biswas, K. Low thermal conductivity and high thermoelectric performance in (GeTe)1-2x(GeSe)x(GeS)x: competition between solid solution and phase separation. J. Am. Chem. Soc. 2017, 139, 9382-9391.
doi: 10.1021/jacs.7b05143
Wu, L.; Li, X.; Wang, S.; Zhang, T.; Yang, J.; Zhang, W.; Chen, L.; Yang, J. Resonant level-induced high thermoelectric response in indium-doped GeTe. NPG Asia Mater. 2017, 9, e343.
doi: 10.1038/am.2016.203
Lewis, J. E. Optical properties and energy gap of GeTe from reflectance studies. Phys. Status Solidi B 1973, 59, 367-377.
doi: 10.1002/pssb.2220590138
Xing, T.; Song, Q.; Qiu, P.; Zhang, Q.; Xia, X.; Liao, J.; Liu, R.; Huang, H.; Yang, J.; Bai, S.; Ren, D.; Shi, X.; Chen, L. Superior performance and high service stability for GeTe-based thermoelectric compounds. Nat. Sci. Rev. 2019, 6, 944-954.
doi: 10.1093/nsr/nwz052
Samanta, M.; Ghosh, T.; Arora, R.; Waghmare, U. V.; Biswas, K. Realization of both n- and p-type GeTe thermoelectrics: electronic structure modulation by AgBiSe2 alloying. J. Am. Chem. Soc. 2019, 141, 19505-19512.
doi: 10.1021/jacs.9b11405
Li, P.; Ding, T.; Li, J.; Zhang, C.; Dou, Y.; Li, Y.; Hu, L.; Liu, F.; Zhang, C. Positive effect of Ge vacancies on facilitating band convergence and suppressing bipolar transport in GeTe‐based alloys for high thermoelectric performance. Adv. Funct. Mater. 2020, 1910059.
Bayikadi, K. S.; Sankar, R.; Wu, C. T.; Xia, C.; Chen, Y.; Chen, L. C.; Chen, K. H.; Chou, F. C. Enhanced thermoelectric performance of GeTe through in situ microdomain and Ge-vacancy control. J. Mater. Chem. A 2019, 7, 15181-15189.
doi: 10.1039/C9TA03503F
Sist, M.; Kasai, H.; Hedegaard, E. M. J.; Iversen, B. B. Role of vacancies in the high-temperature pseudodisplacive phase transition in GeTe. Phys. Rev. B 2018, 97, 094116.
doi: 10.1103/PhysRevB.97.094116
Peng, W.; Smiadak, D. M.; Boehlert, M. G.; Mather, S.; Williams, J. B.; Morelli, D. T.; Zevalkink, A. Lattice hardening due to vacancy diffusion in (GeTe)mSb2Te3 alloys. J. Appl. Phys. 2019, 126, 055106.
doi: 10.1063/1.5108659
Qiu, Y.; Jin, Y.; Wang, D.; Guan, M.; He, W.; Peng, S.; Liu, R.; Gao, X.; Zhao, L. D. Realizing high thermoelectric performance in GeTe through decreasing the phase transition temperature via entropy engineering. J. Mater. Chem. A 2019, 7, 26393-26401.
doi: 10.1039/C9TA10963C
Shuai, J.; Sun, Y.; Tan, X.; Mori, T. Manipulating the Ge vacancies and Ge precipitates through Cr doping for realizing the high-performance GeTe thermoelectric material. Small 2020, 16, 1906921.
doi: 10.1002/smll.201906921
Nshimyimana, E.; Hao, S.; Su, X.; Zhang, C.; Liu, W.; Yan, Y.; Uher, C.; Wolverton, C.; Kanatzidis, M. G.; Tang, X. Discordant nature of Cd in GeTe enhances phonon scattering and improves band convergence for high thermoelectric performance. J. Mater. Chem. A 2020, 8, 1193-1204.
doi: 10.1039/C9TA10436D
Xie, L.; Chen, Y.; Liu, R.; Song, E.; Xing, T.; Deng, T.; Song, Q.; Liu, J.; Zheng, R.; Gao, X.; Bai, S.; Chen, L. Stacking faults modulation for scattering optimization in GeTe-based thermoelectric materials. Nano Energy 2020, 68, 104347.
doi: 10.1016/j.nanoen.2019.104347
Xu, X.; Huang, Y.; Xie, L.; Wu, D.; Ge, Z.; He, J. Realizing improved thermoelectric performance in BiI3-doped Sb2Te3(GeTe)17 via introducing dual vacancy defects. Chem. Mater. 2020, 32, 1693-1701.
doi: 10.1021/acs.chemmater.0c00113
Borup, K. A.; de Boor, J.; Wang, H.; Drymiotis, F.; Gascoin, F.; Shi, X.; Chen, L.; Fedorov, M. I.; Müller, E.; Iversen, B. B.; Snyder, G. J. Measuring thermoelectric transport properties of materials. Energy Environ. Sci. 2015, 8, 423-435.
doi: 10.1039/C4EE01320D
Li, J.; Zhao, S.; Chen, J.; Han, C.; Hu, L.; Liu, F.; Ao, W.; Li, Y.; Xie, H.; Zhang, C. Al-Si Alloy as a diffusion barrier for GeTe-based thermoelectric legs with high interfacial reliability and mechanical strength. ACS Appl. Mater. Interfaces 2020, 12, 18562-18569.
doi: 10.1021/acsami.0c02028
Shaohua Zhang , Liyao Liu , Yingqiao Ma , Chong-an Di . Advances in theoretical calculations of organic thermoelectric materials. Chinese Chemical Letters, 2024, 35(8): 109749-. doi: 10.1016/j.cclet.2024.109749
Jia Fu , Shilong Zhang , Lirong Liang , Chunyu Du , Zhenqiang Ye , Guangming Chen . PEDOT-based thermoelectric composites: Preparation, mechanism and applications. Chinese Chemical Letters, 2024, 35(9): 109804-. doi: 10.1016/j.cclet.2024.109804
Shengkai Li , Yuqin Zou , Chen Chen , Shuangyin Wang , Zhao-Qing Liu . Defect engineered electrocatalysts for C–N coupling reactions toward urea synthesis. Chinese Chemical Letters, 2024, 35(8): 109147-. doi: 10.1016/j.cclet.2023.109147
Ruizhi Yang , Xia Li , Weiping Guo , Zixuan Chen , Hongwei Ming , Zhong-Zhen Luo , Zhigang Zou . New thermoelectric semiconductors Pb5Sb12+xBi6-xSe32 with ultralow thermal conductivity. Chinese Journal of Structural Chemistry, 2024, 43(3): 100268-100268. doi: 10.1016/j.cjsc.2024.100268
Tengjia Ni , Xianbiao Hou , Huanlei Wang , Lei Chu , Shuixing Dai , Minghua Huang . Controllable defect engineering based on cobalt metal-organic framework for boosting oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100210-100210. doi: 10.1016/j.cjsc.2023.100210
Ziruo Zhou , Wenyu Guo , Tingyu Yang , Dandan Zheng , Yuanxing Fang , Xiahui Lin , Yidong Hou , Guigang Zhang , Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245
Pengcheng Su , Shizheng Chen , Zhihong Yang , Ningning Zhong , Chenzi Jiang , Wanbin Li . Vapor-phase postsynthetic amination of hypercrosslinked polymers for efficient iodine capture. Chinese Chemical Letters, 2024, 35(9): 109357-. doi: 10.1016/j.cclet.2023.109357
Ce Liang , Qiuhui Sun , Adel Al-Salihy , Mengxin Chen , Ping Xu . Recent advances in crystal phase induced surface-enhanced Raman scattering. Chinese Chemical Letters, 2024, 35(9): 109306-. doi: 10.1016/j.cclet.2023.109306
Zihao Wang , Jing Xue , Zhicui Song , Jianxiong Xing , Aijun Zhou , Jianmin Ma , Jingze Li . Li-Zn alloy patch for defect-free polymer interface film enables excellent protection effect towards stable Li metal anode. Chinese Chemical Letters, 2024, 35(10): 109489-. doi: 10.1016/j.cclet.2024.109489
Shengyu Zhao , Qinhao Shi , Wuliang Feng , Yang Liu , Xinxin Yang , Xingli Zou , Xionggang Lu , Yufeng Zhao . Suppression of multistep phase transitions of O3-type cathode for sodium-ion batteries. Chinese Chemical Letters, 2024, 35(5): 108606-. doi: 10.1016/j.cclet.2023.108606
Xue Xin , Qiming Qu , Islam E. Khalil , Yuting Huang , Mo Wei , Jie Chen , Weina Zhang , Fengwei Huo , Wenjing Liu . Hetero-phase zirconia encapsulated with Au nanoparticles for boosting electrocatalytic nitrogen reduction. Chinese Chemical Letters, 2024, 35(5): 108654-. doi: 10.1016/j.cclet.2023.108654
Tian Yang , Yi Liu , Lina Hua , Yaoyao Chen , Wuqian Guo , Haojie Xu , Xi Zeng , Changhao Gao , Wenjing Li , Junhua Luo , Zhihua Sun . Lead-free hybrid two-dimensional double perovskite with switchable dielectric phase transition. Chinese Chemical Letters, 2024, 35(6): 108707-. doi: 10.1016/j.cclet.2023.108707
Shu Lin , Kezhen Qi . Phase-dependent lithium-alloying reactions for lithium-metal batteries. Chinese Chemical Letters, 2024, 35(4): 109431-. doi: 10.1016/j.cclet.2023.109431
Wangyan Hu , Ke Li , Xiangnan Dou , Ning Li , Xiayan Wang . Nano-sized stationary phase packings retained by single-particle frit for microchip liquid chromatography. Chinese Chemical Letters, 2024, 35(4): 108806-. doi: 10.1016/j.cclet.2023.108806
Zhaohong Chen , Mengzhen Li , Jinfei Lan , Shengqian Hu , Xiaogang Chen . Organic ferroelastic enantiomers with high Tc and large dielectric switching ratio triggered by order-disorder and displacive phase transition. Chinese Chemical Letters, 2024, 35(10): 109548-. doi: 10.1016/j.cclet.2024.109548
Zhi-Yuan Yue , Hua-Kai Li , Na Wang , Shan-Shan Liu , Le-Ping Miao , Heng-Yun Ye , Chao Shi . Dehydration-triggered structural phase transition-associated ferroelectricity in a hybrid perovskite-type crystal. Chinese Chemical Letters, 2024, 35(10): 109355-. doi: 10.1016/j.cclet.2023.109355
Zhuoer Cai , Yinan Zhang , Xiu-Ni Hua , Baiwang Sun . Phase transition arising from order-disorder motion in stable layered two-dimensional perovskite. Chinese Journal of Structural Chemistry, 2024, 43(11): 100426-100426. doi: 10.1016/j.cjsc.2024.100426
Bei Li , Zhaoke Zheng . In situ monitoring of the spatial distribution of oxygen vacancies at the single-particle level. Chinese Journal of Structural Chemistry, 2024, 43(10): 100331-100331. doi: 10.1016/j.cjsc.2024.100331
Shuangying Li , Qingxiang Zhou , Zhi Li , Menghua Liu , Yanhui Li . Sensitive measurement of silver ions in environmental water samples integrating magnetic ion-imprinted solid phase extraction and carbon dot fluorescent sensor. Chinese Chemical Letters, 2024, 35(5): 108693-. doi: 10.1016/j.cclet.2023.108693
Le Ye , Wei-Xiong Zhang . Structural phase transition in a new organic-inorganic hybrid post-perovskite: (N,N-dimethylpyrrolidinium)[Mn(N(CN)2)3]. Chinese Journal of Structural Chemistry, 2024, 43(6): 100257-100257. doi: 10.1016/j.cjsc.2024.100257