Citation: Kai GUO, Hao-Jie HUO, Jun LUO. Point Defect Engineering Boosting the Thermoelectric Properties of Layered 122 Zintl Compounds[J]. Chinese Journal of Structural Chemistry, ;2020, 39(5): 815-820. doi: 10.14102/j.cnki.0254–5861.2011–2830 shu

Point Defect Engineering Boosting the Thermoelectric Properties of Layered 122 Zintl Compounds

  • Corresponding author: Jun LUO, junluo@shu.edu.cn
  • Received Date: 30 March 2020
    Accepted Date: 5 May 2020

    Fund Project: the National Key Research and Development Program of China 2018YFA0702100the National Natural Science Foundation of China 21771123the National Natural Science Foundation of China 51772186the National Natural Science Foundation of China 51632005the Program of Introducing Talents of Discipline to Universities D16002

Figures(4)

  • The layered 122 Zintl compounds have become an intriguing class of thermoelectric materials due to the promising electronic transport properties and inherently low thermal conductivity, showing the typical characteristics of "phonon-glass electron-crystal". Owing to the unprecedented performance tunability, the thermoelectric properties of the layered-structure compounds are completive with some traditional thermoelectric materials. Point defects involving vacancy, aliovalent doping and equivalent alloying atoms have been introduced to further enhance the thermoelectric properties. This review emphasizes the effects of various point defects on the thermoelectric parameters, and provides perspective on the strategies for increasing the thermoelectric figure of merit zT, which are believed to be applicable for improving the thermoelectric properties of many other compounds.
  • 加载中
    1. [1]

      Bell, L. E. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 2008, 321, 1457-1461.  doi: 10.1126/science.1158899

    2. [2]

      Snyder, G. J.; Toberer, E. S. Complex thermoelectric materials. Nat. Mater. 2008, 7, 105-114.  doi: 10.1038/nmat2090

    3. [3]

      Slack, G. A.; Rowe, D. M. ed. CRC Handbook of thermoelectrics. Boca Raton: CRC Press 1995, 407-440.

    4. [4]

      Sales, B. C.; Mandrus, D.; Williams, R. K. Filled skutterudite antimonides: a new class of thermoelectric materials. Science 1996, 272, 1325-1328.  doi: 10.1126/science.272.5266.1325

    5. [5]

      Shi, X.; Yang, J.; Salvador, J. R.; Chi, M.; Cho, J. Y.; Wang, H.; Bai, S.; Yang, J.; Zhang, W.; Chen, L. Multiple-filled skutterudites: high thermoelectric figure of merit through separately optimizing electrical and thermal transports. J. Am. Chem. Soc. 2011, 133, 7837-7846.  doi: 10.1021/ja111199y

    6. [6]

      Toberer, E. S.; May, A. F.; Melot, B. C.; Flage-Larsen, E.; Snyder, G. J. Electronic structure and transport in thermoelectric compounds AZn2Sb2 (A = Sr, Ca, Yb, Eu). Dalton Trans. 2010, 39, 1046-1054.  doi: 10.1039/B914172C

    7. [7]

      Guo, K.; Cao, Q. G.; Zhao, J. T. Zintl phase compounds AM2Sb2 (A = Ca, Sr, Ba, Eu, Yb; M = Zn, Cd) and their substitution variants: a class of potential thermoelectric materials. J. Rare Earth 2013, 31, 1029-1038.  doi: 10.1016/S1002-0721(12)60398-6

    8. [8]

      Pomrehn, G. S.; Zevalkink, A.; Zeier, W. G.; Walle, A. V. D.; Snyder, G. J. Defect-controlled electronic properties in AZn2Sb2 Zintl phases. Angew. Chem. Int. Ed. 2014, 53, 3422-3426.  doi: 10.1002/anie.201311125

    9. [9]

      Peng, W. Y.; Chanakian, S.; Zevalkink, A. Crystal chemistry and thermoelectric transport of layered AM2X2 compounds. Inorg. Chem. Front. 2018, 5, 1744-1759.  doi: 10.1039/C7QI00813A

    10. [10]

      Zhang, X.; Gu, H.; Zhang, Y.; Guo, L.; Yang, J.; Luo, S.; Lu, X.; Chen, K.; Chai, H.; Wang, H.; Zhang, X.; Zhou, X. Enhanced thermoelectric properties of YbZn2Sb2-xBix through a synergistic effect via Bi-doping. Chem. Eng. J. 2019, 374, 589–595.  doi: 10.1016/j.cej.2019.05.206

    11. [11]

      Zheng, L.; Li, W.; Sun, C.; Shi, X.; Zhang, X.; Pei, Y. Ternary thermoelectric AB2C2 Zintls. J. Alloys Compd. 2020, 821, 153497.  doi: 10.1016/j.jallcom.2019.153497

    12. [12]

      Guo, M. C.; Guo, F. K.; Zhu, J. B.; Yin, L.; Qin, H. X.; Zhang, Q.; Cai, W.; Sui, J. H. Enhanced thermoelectric properties of p-type CaMg2Bi2 via a synergistic effect originated from Zn and alkali-metal Co-doping. ACS Appl. Mater. Interfaces 2020, 12, 6015-6021.  doi: 10.1021/acsami.9b22333

    13. [13]

      Zhou, T.; Feng, Z.; Mao, J.; Jiang, J.; Zhu, H.; Singh, D. J.; Wang, C. Ren, Z. Thermoelectric properties of Zintl phase YbMg2Sb2. Chem. Mater. 2020, 32, 776-784.  doi: 10.1021/acs.chemmater.9b04131

    14. [14]

      Yang, X.; Gu, Y. Y.; Li, Y. P.; Guo, K.; Zhang, J. Y.; Zhao, J. T. The equivalent and aliovalent dopants boosting the thermoelectric properties of YbMg2Sb2. Sci. China Mater. 2020, 63, 437-443.  doi: 10.1007/s40843-019-1199-4

    15. [15]

      Toberer, E. S.; May, A. F.; Snyder, G. J. Zintl chemistry for designing high efficiency thermoelectric materials. Chem. Mater. 2010, 22, 624-634.  doi: 10.1021/cm901956r

    16. [16]

      Kauzlarich, S. M.; Brown, S. R.; Snyder, G. J. Zintl phases for thermoelectric devices. Dalton Trans. 2007, 21, 2099-2107.

    17. [17]

      Zevalkink, A.; Zeier, W. G.; Cheng, E.; Snyder, J.; Fleurial, J. P.; Bux, S. Nonstoichiometry in the Zintl phase Yb1-δZn2Sb2 as a route to thermoelectric optimization. Chem. Mater. 2014, 26, 5710-5717.  doi: 10.1021/cm502588r

    18. [18]

      Takagiwa, Y.; Sato, Y.; Zevalkink, A.; Kanazawa, I.; Kimura, K.; Isoda, Y.; Shinohara, Y. Thermoelectric properties of EuZn2Sb2 Zintl compounds: zT enhancement through Yb substitution for Eu. J. Alloys Compd. 2017, 703, 73-79.  doi: 10.1016/j.jallcom.2017.01.350

    19. [19]

      Guo, K.; Lin, J.; Li, Y.; Zhu, Y.; Li, X.; Yang, X.; Xing, J.; Yang, J.; Luo J.; Zhao, J. T. Suppressing the dynamic precipitation and lowering the thermal conductivity for stable and high thermoelectric performance in BaCu2Te2 based materials. J. Mater. Chem. A 2020, 8, 5323-5331.  doi: 10.1039/D0TA00245C

    20. [20]

      Wang, X.; Li, W.; Zhou, B.; Sun, C.; Zheng, L.; Tang, J.; Shi, X.; Pei, Y. Experimental revelation of multiband transport in heavily doped BaCd2Sb2 with promising thermoelectric performance. Mater. Today Phys. 2019, 8, 123-127.  doi: 10.1016/j.mtphys.2019.03.002

    21. [21]

      Kunioka, H.; Kihou, K.; Nishiate, H.; Yamamoto, A.; Usui, H.; Kurokib, K.; Lee, C. H. Thermoelectric properties of (Ba, K)Cd2As2 crystallized in the CaAl2Si2-type structure. Dalton Trans. 2018, 47, 16205-16210.  doi: 10.1039/C8DT02955E

    22. [22]

      Sun, C.; Shi, X.; Zheng, L.; Chen, B.; Li, W. Transport properties of p-type CaMg2Bi2 thermoelectrics. J. Mater. 2019, 5, 567-573.

    23. [23]

      Wang, X.; Li, W.; Wang, C.; Li, J.; Zhang, X. Y.; Zhou, B. Q.; Chen, Y.; Pei, Y. Z. Single parabolic band transport in p-type EuZn2Sb2 thermoelectrics. J. Mater. Chem. A 2017, 5, 24185-24192.  doi: 10.1039/C7TA08869H

    24. [24]

      Pei, Y.; Shi, X.; LaLonde, A.; Wang, H.; Chen, L.; Snyder, G. J. Convergence of electronic bands for high performance bulk thermoelectrics. Nature 2011, 473, 66-69.  doi: 10.1038/nature09996

    25. [25]

      Zhang, J.; Song, L.; Madsen, G. K. H.; Fischer, K. F. F.; Zhang W.; Shi X.; Iversen, B. B. Designing high-performance layered thermoelectric materials through orbital engineering. Nat. Commun. 2016, 7, 10892.  doi: 10.1038/ncomms10892

    26. [26]

      Zheng, L.; Li, W.; Wang, X.; Pei, Y. Alloying for orbital alignment enables thermoelectric enhancement of EuCd2Sb2. J. Mater. Chem. A 2019, 7, 12773-12778.  doi: 10.1039/C9TA03502H

    27. [27]

      Wang, X.; Li, J.; Wang, C.; Zhou, B.; Zheng, L.; Gao, B.; Chen, Y.; Pei, Y. Orbital alignment for high performance thermoelectric YbCd2Sb2 alloys. Chem. Mater. 2018, 30, 5339-5345  doi: 10.1021/acs.chemmater.8b02155

    28. [28]

      Saparamadu, U.; Tan, X.; Song, S.; Ren, Z.; Sun, J.; Singh, D. J.; Shuai, J.; Jiang J.; Ren, Z. Achieving high-performance p-type SmMg2Bi2 thermoelectric materials through band engineering and alloying effects. J. Mater. Chem. A 2020, accepted. doi.org/10.1039/C9TA13224D.

    29. [29]

      Callaway, J.; von Baeyer, H. C. Effect of point imperfections on lattice thermal conductivity. Phys. Rev. 1960, 120, 1149-1154.  doi: 10.1103/PhysRev.120.1149

  • 加载中
    1. [1]

      Ce LiangQiuhui SunAdel Al-SalihyMengxin ChenPing Xu . Recent advances in crystal phase induced surface-enhanced Raman scattering. Chinese Chemical Letters, 2024, 35(9): 109306-. doi: 10.1016/j.cclet.2023.109306

    2. [2]

      Zhuoer Cai Yinan Zhang Xiu-Ni Hua Baiwang Sun . Phase transition arising from order-disorder motion in stable layered two-dimensional perovskite. Chinese Journal of Structural Chemistry, 2024, 43(11): 100426-100426. doi: 10.1016/j.cjsc.2024.100426

    3. [3]

      Zhengzheng LIUPengyun ZHANGChengri WANGShengli HUANGGuoyu YANG . Synthesis, structure, and electrochemical properties of a sandwich-type {Co6}-cluster-added germanotungstate. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1173-1179. doi: 10.11862/CJIC.20240039

    4. [4]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    5. [5]

      Ya-Nan YangZi-Sheng LiSourav MondalLei QiaoCui-Cui WangWen-Juan TianZhong-Ming SunJohn E. McGrady . Metal-metal bonds in Zintl clusters: Synthesis, structure and bonding in [Fe2Sn4Bi8]3– and [Cr2Sb12]3–. Chinese Chemical Letters, 2024, 35(8): 109048-. doi: 10.1016/j.cclet.2023.109048

    6. [6]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    7. [7]

      Jian Ji Jie Yan Honggen Peng . Modulation of dinuclear site by orbital coupling to boost catalytic performance. Chinese Journal of Structural Chemistry, 2024, 43(8): 100360-100360. doi: 10.1016/j.cjsc.2024.100360

    8. [8]

      Shaohua ZhangLiyao LiuYingqiao MaChong-an Di . Advances in theoretical calculations of organic thermoelectric materials. Chinese Chemical Letters, 2024, 35(8): 109749-. doi: 10.1016/j.cclet.2024.109749

    9. [9]

      Jia FuShilong ZhangLirong LiangChunyu DuZhenqiang YeGuangming Chen . PEDOT-based thermoelectric composites: Preparation, mechanism and applications. Chinese Chemical Letters, 2024, 35(9): 109804-. doi: 10.1016/j.cclet.2024.109804

    10. [10]

      Shengkai LiYuqin ZouChen ChenShuangyin WangZhao-Qing Liu . Defect engineered electrocatalysts for C–N coupling reactions toward urea synthesis. Chinese Chemical Letters, 2024, 35(8): 109147-. doi: 10.1016/j.cclet.2023.109147

    11. [11]

      Chengde WangLiping HuangShanshan WangLihao WuYi WangJun Dong . A distinction of gliomas at cellular and tissue level by surface-enhanced Raman scattering spectroscopy. Chinese Chemical Letters, 2024, 35(5): 109383-. doi: 10.1016/j.cclet.2023.109383

    12. [12]

      Ruizhi Yang Xia Li Weiping Guo Zixuan Chen Hongwei Ming Zhong-Zhen Luo Zhigang Zou . New thermoelectric semiconductors Pb5Sb12+xBi6-xSe32 with ultralow thermal conductivity. Chinese Journal of Structural Chemistry, 2024, 43(3): 100268-100268. doi: 10.1016/j.cjsc.2024.100268

    13. [13]

      Jie RenHao ZongYaqun HanTianyi LiuShufen ZhangQiang XuSuli Wu . Visual identification of silver ornament by the structural color based on Mie scattering of ZnO spheres. Chinese Chemical Letters, 2024, 35(9): 109350-. doi: 10.1016/j.cclet.2023.109350

    14. [14]

      Rongliang DengYihang ChenXiaotong FanGuolong ChenShuli WangChangzhi YuXiao YangTingzhu WuZhong ChenYue Lin . Break of thermal equilibrium between optical and acoustic phonon branches of CsPbI3 under continuous-wave light excitation and cryogenic temperature. Chinese Chemical Letters, 2024, 35(7): 109346-. doi: 10.1016/j.cclet.2023.109346

    15. [15]

      Jiayuan Liang Xin Mi Songhao Guo Hui Luo Kejun Bu Tonghuan Fu Menglin Duan Yang Wang Qingyang Hu Rengen Xiong Peng Qin Fuqiang Huang Xujie Lü . Pressure-induced emission in 0D metal halide (EATMP)SbBr5 by regulating exciton-phonon coupling. Chinese Journal of Structural Chemistry, 2024, 43(7): 100333-100333. doi: 10.1016/j.cjsc.2024.100333

    16. [16]

      Tengjia Ni Xianbiao Hou Huanlei Wang Lei Chu Shuixing Dai Minghua Huang . Controllable defect engineering based on cobalt metal-organic framework for boosting oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100210-100210. doi: 10.1016/j.cjsc.2023.100210

    17. [17]

      Ziruo Zhou Wenyu Guo Tingyu Yang Dandan Zheng Yuanxing Fang Xiahui Lin Yidong Hou Guigang Zhang Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245

    18. [18]

      Yuhan Wu Qing Zhao Zhijie Wang . Layered vanadium oxides: Promising cathode materials for calcium-ion batteries. Chinese Journal of Structural Chemistry, 2024, 43(5): 100271-100271. doi: 10.1016/j.cjsc.2024.100271

    19. [19]

      Zihao WangJing XueZhicui SongJianxiong XingAijun ZhouJianmin MaJingze Li . Li-Zn alloy patch for defect-free polymer interface film enables excellent protection effect towards stable Li metal anode. Chinese Chemical Letters, 2024, 35(10): 109489-. doi: 10.1016/j.cclet.2024.109489

    20. [20]

      Chao Ma Cong Lin Jian Li . MicroED as a powerful technique for the structure determination of complex porous materials. Chinese Journal of Structural Chemistry, 2024, 43(3): 100209-100209. doi: 10.1016/j.cjsc.2023.100209

Metrics
  • PDF Downloads(3)
  • Abstract views(172)
  • HTML views(5)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return