Citation: Bing-Kai ZHANG, Zeng-Zhu LI, Qiong LI, Zhan LIN, Jing LIU, Feng PAN. Insights into the H2O/V2O5 Interface Structure for Optimizing Water-splitting[J]. Chinese Journal of Structural Chemistry, ;2020, 39(2): 189-199. doi: 10.14102/j.cnki.0254–5861.2011–2748 shu

Insights into the H2O/V2O5 Interface Structure for Optimizing Water-splitting

  • Corresponding author: Zhan LIN, zhanlin@gdut.edu.cn Jing LIU, liujing@mail.hust.edu.cn Feng PAN, panfeng@pkusz.edu.cn
  • Received Date: 25 January 2020
    Accepted Date: 3 February 2020

    Fund Project: startup R&D funding from the One-Hundred Young Talents Program of Guangdong University of Technology 22041331901National Key R&D Program of China 2016YFB0700600Soft Science Research Project of Guangdong Province 2017B030301013Shenzhen Science and Technology Research Grant ZDSYS201707281026184

Figures(10)

  • The interaction of water (H2O) with metal oxide surfaces is of fundamental importance to various fields of science, ranging from batteries to catalysis. In particular, vanadium pentoxide (V2O5) has been widely used as electrode materials for aqueous-battery and catalysts. Herein, theoretical (density functional theory) study gives atomic-scale insights into water monolayers in V2O5 and single-molecule adsorption and dissociation at three low-index surfaces and oxygen-vacancy V2O5(001) surface. The H2O/V2O5 interface structure was identified. The results show that H2O is adsorbed on the stoichiometric V2O5(001) surface with physisorption mechanism, and the dissociation hardly occurs. Water adsorbs as an intact monomer with a computed binding energy of 0.75 eV. The formation of ordered water overlayers has been observed on V2O5(001) surface, suggesting a locally ordered superstructure of molecular water. The molecular H2O adsorption on oxygen-vacancy V2O5(001) surface is stronger than that on the stoichiometric V2O5(001) surface, and H2O can undergo dissociative chemisorption to form a surface hydroxyl group and a H adatom. V2O5 can take the oxygen from H2O, which is consistent with the experimental results.
  • 
    1. [1]

      Verdaguer, A.; Sacha, G. M.; Bluhm, H.; Salmeron, M. Molecular structure of water at interfaces:   wetting at the nanometer scale. Chem. Rev. 2006, 106, 1478–1510.  doi: 10.1021/cr040376l

    2. [2]

      Henderson, M. A. The interaction of water with solid surfaces: fundamental aspects revisited. Surf. Sci. Rep. 2002, 46, 1–308.  doi: 10.1016/S0167-5729(01)00020-6

    3. [3]

      Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37–38.  doi: 10.1038/238037a0

    4. [4]

      Chen, X.; Wang, L.; Li, H.; Cheng, F.; Chen, J. Porous V2O5 nanofibers as cathode materials for rechargeable aqueous zinc-ion batteries. J. Energy Chem. 2019, 38, 20–25.  doi: 10.1016/j.jechem.2018.12.023

    5. [5]

      Geng, H.; Cheng, M.; Wang, B.; Yang, Y.; Zhang, Y.; Li, C. C. Electronic structure regulation of layered vanadium oxide via interlayer doping strategy toward superior high-rate and low-temperature zinc-ion batteries. Adv. Funct. Mater. 2019, 1907684.

    6. [6]

      Zhang, B.; Liu, J.; Dai, G.; Chang, M.; Zheng, C. Insights into the mechanism of heterogeneous mercury oxidation by HCl over V2O5/TiO2 catalyst: periodic density functional theory study. P. Combust. Inst. 2015, 35, 2855–2865.  doi: 10.1016/j.proci.2014.06.051

    7. [7]

      Busca, G.; Ramis, G.; Lorenzelli, V. FT-IR study of the surface properties of polycrystalline vanadia. J. Mol. Catal. 1989, 50, 231–240.  doi: 10.1016/0304-5102(89)85066-7

    8. [8]

      Topsøe, N. Y. Characterization of the nature of surface sites on vanadia-titania catalysts by FTIR. J. Catal. 1991, 128, 499–511.  doi: 10.1016/0021-9517(91)90307-P

    9. [9]

      Costa, A. D.; Mathieu, C.; Barbaux, Y.; Poelman, H.; Dalmai-Vennik, G.; Fiermans, L. Observation of the V2O5(001) surface using ambient atomic force microscopy. Surf. Sci. 1997, 370, 339–344.  doi: 10.1016/S0039-6028(96)00956-9

    10. [10]

      Moshfegh, A. Z.; Ignatiev, A. A temperature programmed desorption study of the H2O/V2O5 system. Surf. Sci. 1992, 275, L650–L654.  doi: 10.1016/0039-6028(92)90636-K

    11. [11]

      Sadovskaya, E. M.; Goncharov, V. B.; Gulyaeva, Y. K.; Popova, G. Y.; Andrushkevich, T. V. Kinetics of the H218O/H216O isotope exchange over vanadia-titania catalyst. J. Mol. Catal. A: Chem. 2010, 316, 118–125.  doi: 10.1016/j.molcata.2009.10.009

    12. [12]

      Lee, E. L.; Wachs, I. E. In situ raman spectroscopy of SiO2-supported transition metal oxide catalysts: an isotopic 18O−16O exchange study. J. Phys. Chem. C 2008, 112, 6487–6498.  doi: 10.1021/jp076485w

    13. [13]

      Ma, J. B.; Zhao, Y. X.; He, S. G.; Ding, X. L. Experimental and theoretical study of the reactions between vanadium oxide cluster cations and water. J. Phys. Chem. A 2012, 116, 2049–2054.  doi: 10.1021/jp300279u

    14. [14]

      Goclon, J.; Grybos, R.; Witko, M.; Hafner, J. Oxygen vacancy formation on clean and hydroxylated low-index V2O5 surfaces: a density functional investigation. Phys. Rev. B 2009, 79, 075439.  doi: 10.1103/PhysRevB.79.075439

    15. [15]

      Yin, X.; Fahmi, A.; Han, H.; Endou, A.; Ammal, S. S. C.; Kubo, M.; Teraishi, K.; Miyamoto, A. Adsorption of H2O on the V2O5(010) surface studied by periodic density functional calculations. J. Phys. Chem. B 1999, 103, 3218–3224.  doi: 10.1021/jp9833395

    16. [16]

      Hejduk, P.; Szaleniec, M.; Witko, M. Molecular and dissociative adsorption of water at low-index V2O5 surfaces: DFT studies using cluster surface models. J. Mol. Catal. A: Chem. 2010, 325, 98–104.  doi: 10.1016/j.molcata.2010.04.004

    17. [17]

      Segall, M. D.; Lindan, P. J. D.; Probert, M. J.; Pickard, C. J.; Hasnip, P. J.; Clark, S. J.; Payne, M. C. First-principles simulation: ideas, illustrations and the CASTEP code. J. Phys. : Condens. Matter. 2002, 14, 2717–2744.  doi: 10.1088/0953-8984/14/11/301

    18. [18]

      Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.  doi: 10.1103/PhysRevLett.77.3865

    19. [19]

      Perdew, J. P.; Burke, K.; Wang, Y. Generalized gradient approximation for the exchange-correlation hole of a many-electron system. Phys. Rev. B 1996, 54, 16533–16539.  doi: 10.1103/PhysRevB.54.16533

    20. [20]

      Vanderbilt, D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 1990, 41, 7892–7895.  doi: 10.1103/PhysRevB.41.7892

    21. [21]

      Chadi, D. J. Special points for Brillouin-zone integrations. Phys. Rev. B 1977, 16, 1746–1747.  doi: 10.1103/PhysRevB.16.1746

    22. [22]

      Enjalbert, R.; Galy, J. A refinement of the structure of V2O5. Acta Crystallogr., Sect. C. 1986, 42, 1467–1469.  doi: 10.1107/S0108270186091825

    23. [23]

      Halgren, T. A.; Lipscomb, W. N. The synchronous-transit method for determining reaction pathways and locating molecular transition states. Chem. Phys. Lett. 1977, 49, 225–232.  doi: 10.1016/0009-2614(77)80574-5

    24. [24]

      Zhang, B.; Liu, J.; Shen, F. Heterogeneous mercury oxidation by HCl over CeO2 catalyst: density functional theory study. J. Phys. Chem. C 2015, 119, 15047–15055.  doi: 10.1021/acs.jpcc.5b00645

    25. [25]

      Zhang, B.; Liu, J.; Yang, Y.; Chang, M. Oxidation mechanism of elemental mercury by HCl over MnO2 catalyst: insights from first principles. Chem. Eng. J. 2015, 280, 354–362.  doi: 10.1016/j.cej.2015.06.056

    26. [26]

      Ranea, V. A.; Vicente, J. L.; Mola, E. E.; Uyewa Mananu, R. A theoretical study of water chemisorption on the (001) plane of V2O5. Surf. Sci. 1999, 442, 498–506.  doi: 10.1016/S0039-6028(99)00874-2

    27. [27]

      He, Y.; Tilocca, A.; Dulub, O.; Selloni, A.; Diebold, U. Local ordering and electronic signatures of submonolayer water on anatase TiO2(101). Nat Mater. 2009, 8, 585–589.  doi: 10.1038/nmat2466

    28. [28]

      Goclon, J.; Grybos, R.; Witko, M.; Hafner, J. Relative stability of low-index V2O5 surfaces: a density functional investigation. J. Phys. : Condens. Matter. 2009, 21, 095008.  doi: 10.1088/0953-8984/21/9/095008

    1. [1]

      Verdaguer, A.; Sacha, G. M.; Bluhm, H.; Salmeron, M. Molecular structure of water at interfaces:   wetting at the nanometer scale. Chem. Rev. 2006, 106, 1478–1510.  doi: 10.1021/cr040376l

    2. [2]

      Henderson, M. A. The interaction of water with solid surfaces: fundamental aspects revisited. Surf. Sci. Rep. 2002, 46, 1–308.  doi: 10.1016/S0167-5729(01)00020-6

    3. [3]

      Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37–38.  doi: 10.1038/238037a0

    4. [4]

      Chen, X.; Wang, L.; Li, H.; Cheng, F.; Chen, J. Porous V2O5 nanofibers as cathode materials for rechargeable aqueous zinc-ion batteries. J. Energy Chem. 2019, 38, 20–25.  doi: 10.1016/j.jechem.2018.12.023

    5. [5]

      Geng, H.; Cheng, M.; Wang, B.; Yang, Y.; Zhang, Y.; Li, C. C. Electronic structure regulation of layered vanadium oxide via interlayer doping strategy toward superior high-rate and low-temperature zinc-ion batteries. Adv. Funct. Mater. 2019, 1907684.

    6. [6]

      Zhang, B.; Liu, J.; Dai, G.; Chang, M.; Zheng, C. Insights into the mechanism of heterogeneous mercury oxidation by HCl over V2O5/TiO2 catalyst: periodic density functional theory study. P. Combust. Inst. 2015, 35, 2855–2865.  doi: 10.1016/j.proci.2014.06.051

    7. [7]

      Busca, G.; Ramis, G.; Lorenzelli, V. FT-IR study of the surface properties of polycrystalline vanadia. J. Mol. Catal. 1989, 50, 231–240.  doi: 10.1016/0304-5102(89)85066-7

    8. [8]

      Topsøe, N. Y. Characterization of the nature of surface sites on vanadia-titania catalysts by FTIR. J. Catal. 1991, 128, 499–511.  doi: 10.1016/0021-9517(91)90307-P

    9. [9]

      Costa, A. D.; Mathieu, C.; Barbaux, Y.; Poelman, H.; Dalmai-Vennik, G.; Fiermans, L. Observation of the V2O5(001) surface using ambient atomic force microscopy. Surf. Sci. 1997, 370, 339–344.  doi: 10.1016/S0039-6028(96)00956-9

    10. [10]

      Moshfegh, A. Z.; Ignatiev, A. A temperature programmed desorption study of the H2O/V2O5 system. Surf. Sci. 1992, 275, L650–L654.  doi: 10.1016/0039-6028(92)90636-K

    11. [11]

      Sadovskaya, E. M.; Goncharov, V. B.; Gulyaeva, Y. K.; Popova, G. Y.; Andrushkevich, T. V. Kinetics of the H218O/H216O isotope exchange over vanadia-titania catalyst. J. Mol. Catal. A: Chem. 2010, 316, 118–125.  doi: 10.1016/j.molcata.2009.10.009

    12. [12]

      Lee, E. L.; Wachs, I. E. In situ raman spectroscopy of SiO2-supported transition metal oxide catalysts: an isotopic 18O−16O exchange study. J. Phys. Chem. C 2008, 112, 6487–6498.  doi: 10.1021/jp076485w

    13. [13]

      Ma, J. B.; Zhao, Y. X.; He, S. G.; Ding, X. L. Experimental and theoretical study of the reactions between vanadium oxide cluster cations and water. J. Phys. Chem. A 2012, 116, 2049–2054.  doi: 10.1021/jp300279u

    14. [14]

      Goclon, J.; Grybos, R.; Witko, M.; Hafner, J. Oxygen vacancy formation on clean and hydroxylated low-index V2O5 surfaces: a density functional investigation. Phys. Rev. B 2009, 79, 075439.  doi: 10.1103/PhysRevB.79.075439

    15. [15]

      Yin, X.; Fahmi, A.; Han, H.; Endou, A.; Ammal, S. S. C.; Kubo, M.; Teraishi, K.; Miyamoto, A. Adsorption of H2O on the V2O5(010) surface studied by periodic density functional calculations. J. Phys. Chem. B 1999, 103, 3218–3224.  doi: 10.1021/jp9833395

    16. [16]

      Hejduk, P.; Szaleniec, M.; Witko, M. Molecular and dissociative adsorption of water at low-index V2O5 surfaces: DFT studies using cluster surface models. J. Mol. Catal. A: Chem. 2010, 325, 98–104.  doi: 10.1016/j.molcata.2010.04.004

    17. [17]

      Segall, M. D.; Lindan, P. J. D.; Probert, M. J.; Pickard, C. J.; Hasnip, P. J.; Clark, S. J.; Payne, M. C. First-principles simulation: ideas, illustrations and the CASTEP code. J. Phys. : Condens. Matter. 2002, 14, 2717–2744.  doi: 10.1088/0953-8984/14/11/301

    18. [18]

      Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.  doi: 10.1103/PhysRevLett.77.3865

    19. [19]

      Perdew, J. P.; Burke, K.; Wang, Y. Generalized gradient approximation for the exchange-correlation hole of a many-electron system. Phys. Rev. B 1996, 54, 16533–16539.  doi: 10.1103/PhysRevB.54.16533

    20. [20]

      Vanderbilt, D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 1990, 41, 7892–7895.  doi: 10.1103/PhysRevB.41.7892

    21. [21]

      Chadi, D. J. Special points for Brillouin-zone integrations. Phys. Rev. B 1977, 16, 1746–1747.  doi: 10.1103/PhysRevB.16.1746

    22. [22]

      Enjalbert, R.; Galy, J. A refinement of the structure of V2O5. Acta Crystallogr., Sect. C. 1986, 42, 1467–1469.  doi: 10.1107/S0108270186091825

    23. [23]

      Halgren, T. A.; Lipscomb, W. N. The synchronous-transit method for determining reaction pathways and locating molecular transition states. Chem. Phys. Lett. 1977, 49, 225–232.  doi: 10.1016/0009-2614(77)80574-5

    24. [24]

      Zhang, B.; Liu, J.; Shen, F. Heterogeneous mercury oxidation by HCl over CeO2 catalyst: density functional theory study. J. Phys. Chem. C 2015, 119, 15047–15055.  doi: 10.1021/acs.jpcc.5b00645

    25. [25]

      Zhang, B.; Liu, J.; Yang, Y.; Chang, M. Oxidation mechanism of elemental mercury by HCl over MnO2 catalyst: insights from first principles. Chem. Eng. J. 2015, 280, 354–362.  doi: 10.1016/j.cej.2015.06.056

    26. [26]

      Ranea, V. A.; Vicente, J. L.; Mola, E. E.; Uyewa Mananu, R. A theoretical study of water chemisorption on the (001) plane of V2O5. Surf. Sci. 1999, 442, 498–506.  doi: 10.1016/S0039-6028(99)00874-2

    27. [27]

      He, Y.; Tilocca, A.; Dulub, O.; Selloni, A.; Diebold, U. Local ordering and electronic signatures of submonolayer water on anatase TiO2(101). Nat Mater. 2009, 8, 585–589.  doi: 10.1038/nmat2466

    28. [28]

      Goclon, J.; Grybos, R.; Witko, M.; Hafner, J. Relative stability of low-index V2O5 surfaces: a density functional investigation. J. Phys. : Condens. Matter. 2009, 21, 095008.  doi: 10.1088/0953-8984/21/9/095008

  • 加载中
    1. [1]

      Mengxiang ZhuTao DingYunzhang LiYuanjie PengRuiping LiuQuan ZouLeilei YangShenglei SunPin ZhouGuosheng ShiDongting Yue . Graphene controlled solid-state growth of oxygen vacancies riched V2O5 catalyst to highly activate Fenton-like reaction. Chinese Chemical Letters, 2024, 35(12): 109833-. doi: 10.1016/j.cclet.2024.109833

    2. [2]

      Haohao SunWenxuan WangYuli XiongZelang JianWen Chen . Boosting the electrochromic properties by large V2O5 nanobelts interlayer spacing tuned via PEDOT. Chinese Chemical Letters, 2024, 35(9): 109213-. doi: 10.1016/j.cclet.2023.109213

    3. [3]

      Chaozheng HeMenghui XiChenxu ZhaoRan WangLing FuJinrong Huo . Highly N2 dissociation catalyst: Ir(100) and Ir(110) surfaces. Chinese Chemical Letters, 2025, 36(3): 109671-. doi: 10.1016/j.cclet.2024.109671

    4. [4]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    5. [5]

      Yue PanWenping SiYahao LiHaotian TanJi LiangFeng Hou . Promoting exciton dissociation by metal ion modification in polymeric carbon nitride for photocatalysis. Chinese Chemical Letters, 2024, 35(12): 109877-. doi: 10.1016/j.cclet.2024.109877

    6. [6]

      Lili WangYa YanRulin LiXujie HanJiahui LiTing RanJialu LiBaichuan XiongXiaorong SongZhaohui YinHong WangQingjun ZhuBowen ChengZhen Yin . Interface engineering of 2D NiFe LDH/NiFeS heterostructure for highly efficient 5-hydroxymethylfurfural electrooxidation. Chinese Chemical Letters, 2024, 35(9): 110011-. doi: 10.1016/j.cclet.2024.110011

    7. [7]

      Changyuan BaoYunpeng JiangHaoyin ZhongHuaizheng RenJunhui WangBinbin LiuQi ZhaoFan JinYan Meng ChongJianguo SunFei WangBo WangXimeng LiuDianlong WangJohn Wang . Synergizing 3D-printed structure and sodiophilic interface enables highly efficient sodium metal anodes. Chinese Chemical Letters, 2024, 35(11): 109353-. doi: 10.1016/j.cclet.2023.109353

    8. [8]

      Renshu Huang Jinli Chen Xingfa Chen Tianqi Yu Huyi Yu Kaien Li Bin Li Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171

    9. [9]

      Xu HuangKai-Yin WuChao SuLei YangBei-Bei Xiao . Metal-organic framework Cu-BTC for overall water splitting: A density functional theory study. Chinese Chemical Letters, 2025, 36(4): 109720-. doi: 10.1016/j.cclet.2024.109720

    10. [10]

      Yaping WangPengcheng YuanZeyuan XuXiong-Xiong LiuShengfa FengMufan CaoChen CaoXiaoqiang WangLong PanZheng-Ming Sun . Ti3C2Tx MXene in-situ transformed Li2TiO3 interface layer enabling 4.5 V-LiCoO2/sulfide all-solid-state lithium batteries with superior rate capability and cyclability. Chinese Chemical Letters, 2024, 35(6): 108776-. doi: 10.1016/j.cclet.2023.108776

    11. [11]

      Shuangxi LiHuijun YuTianwei LanLiyi ShiDanhong ChengLupeng HanDengsong Zhang . NOx reduction against alkali poisoning over Ce(SO4)2-V2O5/TiO2 catalysts by constructing the Ce4+–SO42− pair sites. Chinese Chemical Letters, 2024, 35(5): 108240-. doi: 10.1016/j.cclet.2023.108240

    12. [12]

      Xi TangChunlei ZhuYulu YangShihan QiMengqiu CaiAbdullah N. AlodhaybJianmin Ma . Additive regulating Li+ solvation structure to construct dual LiF−rich electrode electrolyte interphases for sustaining 4.6 V Li||LiCoO2 batteries. Chinese Chemical Letters, 2024, 35(12): 110014-. doi: 10.1016/j.cclet.2024.110014

    13. [13]

      Xin LiWanting FuRuiqing GuanYue YuanQinmei ZhongGang YaoSheng-Tao YangLiandong JingSong Bai . Nucleophiles promotes the decomposition of electrophilic functional groups of tetracycline in ZVI/H2O2 system: Efficiency and mechanism. Chinese Chemical Letters, 2024, 35(10): 109625-. doi: 10.1016/j.cclet.2024.109625

    14. [14]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    15. [15]

      Jinyuan Cui Tingting Yang Teng Xu Jin Lin Kunlong Liu Pengxin Liu . Hydrogen spillover enhances the selective hydrogenation of α,β-unsaturated aldehydes on the Cu-O-Ce interface. Chinese Journal of Structural Chemistry, 2025, 44(1): 100438-100438. doi: 10.1016/j.cjsc.2024.100438

    16. [16]

      Linlu BaiWensen LiXiaoyu ChuHaochun YinYang QuEkaterina KozlovaZhao-Di YangLiqiang Jing . Effects of nanosized Au on the interface of zinc phthalocyanine/TiO2 for CO2 photoreduction. Chinese Chemical Letters, 2025, 36(2): 109931-. doi: 10.1016/j.cclet.2024.109931

    17. [17]

      Huyi Yu Renshu Huang Qian Liu Xingfa Chen Tianqi Yu Haiquan Wang Xincheng Liang Shibin Yin . Te-doped Fe3O4 flower enabling low overpotential cycling of Li-CO2 batteries at high current density. Chinese Journal of Structural Chemistry, 2024, 43(3): 100253-100253. doi: 10.1016/j.cjsc.2024.100253

    18. [18]

      Haitao YinLiang MengLi LiJiamu XiaoLongrui LiangNannan HuangYansong ShiAngang ZhaoJingwen Hou . Polydopamine-modified biochar supported polylactic acid and zero-valent iron affects the functional microbial community structure for 1,1,1-trichloroethane removal in simulated groundwater. Chinese Chemical Letters, 2025, 36(1): 110313-. doi: 10.1016/j.cclet.2024.110313

    19. [19]

      Zhen Shi Wei Jin Yuhang Sun Xu Li Liang Mao Xiaoyan Cai Zaizhu Lou . Interface charge separation in Cu2CoSnS4/ZnIn2S4 heterojunction for boosting photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100201-100201. doi: 10.1016/j.cjsc.2023.100201

    20. [20]

      Peng ZhangYitao YangTian QinXueqiu WuYuechang WeiJing XiongXi LiuYu WangZhen ZhaoJinqing JiaoLiwei Chen . Interface engineering of Pt/CeO2-{100} catalysts for enhancing catalytic activity in auto-exhaust carbon particles oxidation. Chinese Chemical Letters, 2025, 36(2): 110396-. doi: 10.1016/j.cclet.2024.110396

Metrics
  • PDF Downloads(4)
  • Abstract views(370)
  • HTML views(26)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return