Fabrication of Humidity Sensors Based on Laser Scribed Graphene Oxide/SnO2 Composite Layers
- Corresponding author: Yi-Ning ZHANG, ynzhang@fjirsm.ac.cn
Citation:
Xin LI, Wen-Dou FENG, Xiang-Xin ZHANG, Wei WANG, Su-Jing CHEN, Yi-Ning ZHANG. Fabrication of Humidity Sensors Based on Laser Scribed Graphene Oxide/SnO2 Composite Layers[J]. Chinese Journal of Structural Chemistry,
;2020, 39(11): 1949-1957.
doi:
10.14102/j.cnki.0254–5861.2011–2740
Peng, Y.; Zhao, Y.; Chen, M. Q.; Xia, F. Research advances in microfiber humidity sensors. Small 2018, 14, 1800524−20.
doi: 10.1002/smll.201800524
Chen, Z.; Lu, C. Humidity sensors: a review of materials and mechanisms. Sens. Lett. 2005, 3, 274−295.
doi: 10.1166/sl.2005.045
Najeeb, M. A.; Ahmad, Z.; Shakoor, R. A. Organic thin-film capacitive and resistive humidity sensors: a focus review. Adv. Mater. Interfaces 2018, 5, 1800969−19.
doi: 10.1002/admi.201800969
Schubert, P. J.; Nevin, J. H. A polyimide-based capacitive humidity sensor. IEEE. T. Electron. Dev. 1985, 32, 1220−1223.
doi: 10.1109/T-ED.1985.22104
Zhang, Y.; Yu, K.; Jiang, D.; Zhu, Z.; Geng, H.; Luo, L. Zinc oxide nanorod and nanowire for humidity sensor. Appl. Surf. Sci. 2005, 242, 212−217.
doi: 10.1016/j.apsusc.2004.08.013
Sun, C.; Karthik, K.; Pramana, S. S.; Wong, L. H.; Zhang, J.; Yizhong, H.; Sow, C. H.; Mathews, N.; Mhaisalkar, S. G. The role of tin oxide surface defects in determining nanonet FET response to humidity and photoexcitation. J. Mater. Chem. C 2014, 2, 940−945.
doi: 10.1039/C3TC31713G
Yeo, T.; Sun, T.; Grattan, K. Fibre-optic sensor technologies for humidity and moisture measurement. Sens. Actuators A: Phys. 2008, 144, 280−295.
doi: 10.1016/j.sna.2008.01.017
Wu, Y.; Huang, Q.; Nie, J.; Liang, J.; Joshi, N.; Hayasaka, T.; Zhao, S.; Zhang, M.; Wang, X.; Lin, L. All-carbon based flexible humidity sensor. J. Nanosci. Nanotechno. 2019, 19, 5310−5316.
doi: 10.1166/jnn.2019.16821
Fei, T.; Jiang, K.; Jiang, F.; Mu, R.; Zhang, T. Humidity switching properties of sensors based on multiwalled carbon nanotubes/polyvinyl alcohol composite films. J. Appl. Polym. Sci. 2014, 131, 39726−7.
Khanna, V.; Nahar, R. Carrier-transfer mechanisms and Al2O3 sensors for low and high humidities. J. Phys. D: Appl. Phys. 1986, 19, L141−L145.
doi: 10.1088/0022-3727/19/7/004
Ying, J.; Wan, C.; He, P. Sol-gel processed TiO2-K2O-LiZnVO4 ceramic thin films as innovative humidity sensors. Sens. Actuators B: Chem. 2000, 62, 165−170.
doi: 10.1016/S0925-4005(99)00364-0
Yadav, B.; Shukla, R. Titania films deposited by thermal evaporation as humidity sensor. Insian J. Pure. Ap. Phy. 2003, 41, 681−685.
Mukode, S.; Futata, H. Semiconductive humidity sensor. Sens. Actuators 1989, 16, 1−11.
doi: 10.1016/0250-6874(89)80001-0
Korotchenkov, G.; Brynzari, V.; Dmitriev, S. Electrical behavior of SnO2 thin films in humid atmosphere. Sens. Actuators B: Chem. 1999, 54, 197−201.
doi: 10.1016/S0925-4005(99)00016-7
Tahar, R. B. H.; Ban, T.; Ohya, Y.; Takahashi, Y. Humidity-sensing characteristics of divalent-metal-doped indium oxide thin films. J. Am. Ceram. Soc. 1998, 81, 321−327.
Arshak, K.; Twomey, K. Thin films of In2O3/SiO for humidity sensing applications. Sens. 2002, 2, 205−218.
doi: 10.3390/s20600205
Tsuchitani, S.; Sugawara, T.; Kinjo, N.; Ohara, S.; Tsunoda, T. A humidity sensor using ionic copolymer and its application to a humidity-temperature sensor module. Sens. Actuators 1988, 15, 375−386.
doi: 10.1016/0250-6874(88)81507-5
Sakai, Y.; Matsuguchi, M.; Yonesato, N. Humidity sensor based on alkali salts of poly (2-acrylamido-2-methylpropane sulfonic acid). Electrochim. Acta 2001, 46, 1509−1514.
doi: 10.1016/S0013-4686(00)00746-5
Li, Y.; Yang, M. Humidity sensitive properties of a novel soluble conjugated copolymer: Ethynylbenzene-co-propargyl alcohol. Sens. Actuators B: Chem. 2002, 85, 73−78.
doi: 10.1016/S0925-4005(02)00055-2
Kuang, Q.; Lao, C.; Wang, Z. L.; Xie, Z.; Zheng, L. High-sensitivity humidity sensor based on a single SnO2 nanowire. J. Am. Chem. Soc. 2007, 129, 6070−6071.
doi: 10.1021/ja070788m
Feng, H.; Li, C.; Li, T.; Diao, F.; Xin, T.; Liu, B.; Wang, Y. Three-dimensional hierarchical SnO2 dodecahedral nanocrystals with enhanced humidity sensing properties. Sens. Actuators B: Chem. 2017, 243, 704−714.
doi: 10.1016/j.snb.2016.12.043
Li, H.; Liu, B.; Cai, D.; Wang, Y.; Liu, Y.; Mei, L.; Wang, L.; Wang, D.; Li, Q.; Wang, T. High-temperature humidity sensors based on WO3-SnO2 composite hollow nanospheres. J. Mater. Chem. A 2014, 2, 6854−6862.
doi: 10.1039/C4TA00363B
Yang, Z.; Zhang, Z.; Liu, K.; Yuan, Q.; Dong, B. Controllable assembly of SnO2 nanocubes onto TiO2 electrospun nanofibers toward humidity sensing applications. J. Mater. Chem. C 2015, 3, 6701−6708.
doi: 10.1039/C5TC01171J
Parthibavarman, M.; Hariharan, V.; Sekar, C. High-sensitivity humidity sensor based on SnO2 nanoparticles synthesized by microwave irradiation method. Mater. Sci. Eng. : C 2011, 31, 840−844.
doi: 10.1016/j.msec.2011.01.002
Guo, S.; Dong, S. Graphene and its derivative-based sensing materials for analytical devices. J. Mater. Chem. 2011, 21, 18503−18516.
doi: 10.1039/c1jm13228h
Gao, W.; Singh, N.; Song, L.; Liu, Z.; Reddy, A. L. M.; Ci, L.; Vajtai, R.; Zhang, Q.; Wei, B.; Ajayan, P. M. Direct laser writing of micro-supercapacitors on hydrated graphite oxide films. Nat. Nanotechnol. 2011, 6, 496−500.
doi: 10.1038/nnano.2011.110
Yu, H. W.; Kim, H. K.; Kim, T.; Bae, K. M.; Seo, S. M.; Kim, J. M.; Kang, T. J.; Kim, Y. H. Self-powered humidity sensor based on graphene oxide composite film intercalated by poly (sodium 4-styrenesulfonate). ACS Appl. Mater. Inter. 2014, 6, 8320−8326.
doi: 10.1021/am501151v
Zhang, D.; Chang, H.; Li, P.; Liu, R.; Xue, Q. Fabrication and characterization of an ultrasensitive humidity sensor based on metal oxide/graphene hybrid nanocomposite. Sens. Actuators B: Chem. 2016, 225, 233−240.
doi: 10.1016/j.snb.2015.11.024
Xu, J.; Gu, S.; Lu, B. Graphene and graphene oxide double decorated SnO2 nanofibers with enhanced humidity sensing performance. RSC Adv. 2015, 5, 72046−72050.
doi: 10.1039/C5RA10571D
Ben, A. Z.; Zhang, K.; Baillargeat, D.; Zhang, Q. Enhancement of humidity sensitivity of graphene through functionalization with polyethylenimine. Appl. Phys. Lett. 2015, 107, 134102−6.
doi: 10.1063/1.4932124
Ali, S.; Hassan, A.; Hassan, G.; Bae, J.; Lee, C. H. All-printed humidity sensor based on graphene/methyl-red composite with high sensitivity. Carbon 2016, 105, 23−32.
doi: 10.1016/j.carbon.2016.04.013
Cai, J.; Lv, C.; Aoyagi, E.; Ogawa, S.; Watanabe, A. Laser direct writing of a high-performance all-graphene humidity sensor working in a novel sensing mode for portable electronics. ACS Appl. Mater. Interfaces 2018, 10, 23987−23996.
doi: 10.1021/acsami.8b07373
Marcano, D. C.; Kosynkin, D. V.; Berlin, J. M.; Sinitskii, A.; Sun, Z.; Slesarev, A.; Alemany, L. B.; Lu, W.; Tour, J. M. Improved synthesis of graphene oxide. ACS Nano 2010, 4, 4806−4814.
doi: 10.1021/nn1006368
Ding, X.; Chen, X. D.; Yu, X. L.; Yu, X. A GOQD modified IDE-PQC humidity sensor based on impedance-frequency tuning principle with enhanced sensitivity. Sens. Actuators B: Chem. 2018, 276, 288−295.
doi: 10.1016/j.snb.2018.08.102
El-Kady, M. F.; Strong, V.; Dubin, S.; Kaner, R. B. Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science 2012, 335, 1326−1330.
doi: 10.1126/science.1216744
Pokhrel, S.; Nagaraja, K. Electrical and humidity sensing properties of chromium(III) oxide-tungsten (VI) oxide composites. Sens. Actuators B: Chem. 2003, 92, 144−150.
doi: 10.1016/S0925-4005(03)00251-X
Lin, W. D.; Liao, C. T.; Chang, T. C.; Chen, S. H.; Wu, R. J. Humidity sensing properties of novel graphene/TiO2 composites by sol-gel process. Sens. Actuators B: Chem. 2015, 209, 555−561.
doi: 10.1016/j.snb.2014.12.013
Su, P. G.; Lin, Y. T. Low-humidity sensing properties of diamine-and β-cyclodextrin-functionalized graphene oxide films measured using a quartz-crystal microbalance. Sens. Actuators B: Chem. 2016, 238, 344−350.
doi: 10.1016/j.sna.2015.11.034
Su, P. G.; Lu, Z. M. Flexibility and electrical and humidity-sensing properties of diamine-functionalized graphene oxide films. Sens. Actuators B: Chem. 2015, 211, 157−163.
doi: 10.1016/j.snb.2015.01.089
Thakur, S.; Patil, P. Rapid synthesis of cerium oxide nanoparticles with superior humidity-sensing performance. Sens. Actuators B: Chem. 2014, 194, 260−268.
doi: 10.1016/j.snb.2013.12.067
Zhu, Y.; Chen, J.; Li, H.; Zhu, Y.; Xu, J. Synthesis of mesoporous SnO2-SiO2 composites and their application as quartz crystal microbalance humidity sensor. Sens. Actuators B: Chem. 2014, 193, 320−325.
doi: 10.1016/j.snb.2013.11.091
Bai, Y.; Zhang, C. Z.; Chen, B.; Sun, H. Enhanced humidity sensing of functionalized reduced graphene oxide with 4-chloro-3-sulfophenylazo groups. Sens. Actuators B: Chem. 2019, 287, 258−266.
doi: 10.1016/j.snb.2019.02.056
Peng, Y.; Zhao, Y.; Chen, M. Q.; Xia, F. Research advances in microfiber humidity sensors. Small 2018, 14, 1800524−20.
doi: 10.1002/smll.201800524
Chen, Z.; Lu, C. Humidity sensors: a review of materials and mechanisms. Sens. Lett. 2005, 3, 274−295.
doi: 10.1166/sl.2005.045
Najeeb, M. A.; Ahmad, Z.; Shakoor, R. A. Organic thin-film capacitive and resistive humidity sensors: a focus review. Adv. Mater. Interfaces 2018, 5, 1800969−19.
doi: 10.1002/admi.201800969
Schubert, P. J.; Nevin, J. H. A polyimide-based capacitive humidity sensor. IEEE. T. Electron. Dev. 1985, 32, 1220−1223.
doi: 10.1109/T-ED.1985.22104
Zhang, Y.; Yu, K.; Jiang, D.; Zhu, Z.; Geng, H.; Luo, L. Zinc oxide nanorod and nanowire for humidity sensor. Appl. Surf. Sci. 2005, 242, 212−217.
doi: 10.1016/j.apsusc.2004.08.013
Sun, C.; Karthik, K.; Pramana, S. S.; Wong, L. H.; Zhang, J.; Yizhong, H.; Sow, C. H.; Mathews, N.; Mhaisalkar, S. G. The role of tin oxide surface defects in determining nanonet FET response to humidity and photoexcitation. J. Mater. Chem. C 2014, 2, 940−945.
doi: 10.1039/C3TC31713G
Yeo, T.; Sun, T.; Grattan, K. Fibre-optic sensor technologies for humidity and moisture measurement. Sens. Actuators A: Phys. 2008, 144, 280−295.
doi: 10.1016/j.sna.2008.01.017
Wu, Y.; Huang, Q.; Nie, J.; Liang, J.; Joshi, N.; Hayasaka, T.; Zhao, S.; Zhang, M.; Wang, X.; Lin, L. All-carbon based flexible humidity sensor. J. Nanosci. Nanotechno. 2019, 19, 5310−5316.
doi: 10.1166/jnn.2019.16821
Fei, T.; Jiang, K.; Jiang, F.; Mu, R.; Zhang, T. Humidity switching properties of sensors based on multiwalled carbon nanotubes/polyvinyl alcohol composite films. J. Appl. Polym. Sci. 2014, 131, 39726−7.
Khanna, V.; Nahar, R. Carrier-transfer mechanisms and Al2O3 sensors for low and high humidities. J. Phys. D: Appl. Phys. 1986, 19, L141−L145.
doi: 10.1088/0022-3727/19/7/004
Ying, J.; Wan, C.; He, P. Sol-gel processed TiO2-K2O-LiZnVO4 ceramic thin films as innovative humidity sensors. Sens. Actuators B: Chem. 2000, 62, 165−170.
doi: 10.1016/S0925-4005(99)00364-0
Yadav, B.; Shukla, R. Titania films deposited by thermal evaporation as humidity sensor. Insian J. Pure. Ap. Phy. 2003, 41, 681−685.
Mukode, S.; Futata, H. Semiconductive humidity sensor. Sens. Actuators 1989, 16, 1−11.
doi: 10.1016/0250-6874(89)80001-0
Korotchenkov, G.; Brynzari, V.; Dmitriev, S. Electrical behavior of SnO2 thin films in humid atmosphere. Sens. Actuators B: Chem. 1999, 54, 197−201.
doi: 10.1016/S0925-4005(99)00016-7
Tahar, R. B. H.; Ban, T.; Ohya, Y.; Takahashi, Y. Humidity-sensing characteristics of divalent-metal-doped indium oxide thin films. J. Am. Ceram. Soc. 1998, 81, 321−327.
Arshak, K.; Twomey, K. Thin films of In2O3/SiO for humidity sensing applications. Sens. 2002, 2, 205−218.
doi: 10.3390/s20600205
Tsuchitani, S.; Sugawara, T.; Kinjo, N.; Ohara, S.; Tsunoda, T. A humidity sensor using ionic copolymer and its application to a humidity-temperature sensor module. Sens. Actuators 1988, 15, 375−386.
doi: 10.1016/0250-6874(88)81507-5
Sakai, Y.; Matsuguchi, M.; Yonesato, N. Humidity sensor based on alkali salts of poly (2-acrylamido-2-methylpropane sulfonic acid). Electrochim. Acta 2001, 46, 1509−1514.
doi: 10.1016/S0013-4686(00)00746-5
Li, Y.; Yang, M. Humidity sensitive properties of a novel soluble conjugated copolymer: Ethynylbenzene-co-propargyl alcohol. Sens. Actuators B: Chem. 2002, 85, 73−78.
doi: 10.1016/S0925-4005(02)00055-2
Kuang, Q.; Lao, C.; Wang, Z. L.; Xie, Z.; Zheng, L. High-sensitivity humidity sensor based on a single SnO2 nanowire. J. Am. Chem. Soc. 2007, 129, 6070−6071.
doi: 10.1021/ja070788m
Feng, H.; Li, C.; Li, T.; Diao, F.; Xin, T.; Liu, B.; Wang, Y. Three-dimensional hierarchical SnO2 dodecahedral nanocrystals with enhanced humidity sensing properties. Sens. Actuators B: Chem. 2017, 243, 704−714.
doi: 10.1016/j.snb.2016.12.043
Li, H.; Liu, B.; Cai, D.; Wang, Y.; Liu, Y.; Mei, L.; Wang, L.; Wang, D.; Li, Q.; Wang, T. High-temperature humidity sensors based on WO3-SnO2 composite hollow nanospheres. J. Mater. Chem. A 2014, 2, 6854−6862.
doi: 10.1039/C4TA00363B
Yang, Z.; Zhang, Z.; Liu, K.; Yuan, Q.; Dong, B. Controllable assembly of SnO2 nanocubes onto TiO2 electrospun nanofibers toward humidity sensing applications. J. Mater. Chem. C 2015, 3, 6701−6708.
doi: 10.1039/C5TC01171J
Parthibavarman, M.; Hariharan, V.; Sekar, C. High-sensitivity humidity sensor based on SnO2 nanoparticles synthesized by microwave irradiation method. Mater. Sci. Eng. : C 2011, 31, 840−844.
doi: 10.1016/j.msec.2011.01.002
Guo, S.; Dong, S. Graphene and its derivative-based sensing materials for analytical devices. J. Mater. Chem. 2011, 21, 18503−18516.
doi: 10.1039/c1jm13228h
Gao, W.; Singh, N.; Song, L.; Liu, Z.; Reddy, A. L. M.; Ci, L.; Vajtai, R.; Zhang, Q.; Wei, B.; Ajayan, P. M. Direct laser writing of micro-supercapacitors on hydrated graphite oxide films. Nat. Nanotechnol. 2011, 6, 496−500.
doi: 10.1038/nnano.2011.110
Yu, H. W.; Kim, H. K.; Kim, T.; Bae, K. M.; Seo, S. M.; Kim, J. M.; Kang, T. J.; Kim, Y. H. Self-powered humidity sensor based on graphene oxide composite film intercalated by poly (sodium 4-styrenesulfonate). ACS Appl. Mater. Inter. 2014, 6, 8320−8326.
doi: 10.1021/am501151v
Zhang, D.; Chang, H.; Li, P.; Liu, R.; Xue, Q. Fabrication and characterization of an ultrasensitive humidity sensor based on metal oxide/graphene hybrid nanocomposite. Sens. Actuators B: Chem. 2016, 225, 233−240.
doi: 10.1016/j.snb.2015.11.024
Xu, J.; Gu, S.; Lu, B. Graphene and graphene oxide double decorated SnO2 nanofibers with enhanced humidity sensing performance. RSC Adv. 2015, 5, 72046−72050.
doi: 10.1039/C5RA10571D
Ben, A. Z.; Zhang, K.; Baillargeat, D.; Zhang, Q. Enhancement of humidity sensitivity of graphene through functionalization with polyethylenimine. Appl. Phys. Lett. 2015, 107, 134102−6.
doi: 10.1063/1.4932124
Ali, S.; Hassan, A.; Hassan, G.; Bae, J.; Lee, C. H. All-printed humidity sensor based on graphene/methyl-red composite with high sensitivity. Carbon 2016, 105, 23−32.
doi: 10.1016/j.carbon.2016.04.013
Cai, J.; Lv, C.; Aoyagi, E.; Ogawa, S.; Watanabe, A. Laser direct writing of a high-performance all-graphene humidity sensor working in a novel sensing mode for portable electronics. ACS Appl. Mater. Interfaces 2018, 10, 23987−23996.
doi: 10.1021/acsami.8b07373
Marcano, D. C.; Kosynkin, D. V.; Berlin, J. M.; Sinitskii, A.; Sun, Z.; Slesarev, A.; Alemany, L. B.; Lu, W.; Tour, J. M. Improved synthesis of graphene oxide. ACS Nano 2010, 4, 4806−4814.
doi: 10.1021/nn1006368
Ding, X.; Chen, X. D.; Yu, X. L.; Yu, X. A GOQD modified IDE-PQC humidity sensor based on impedance-frequency tuning principle with enhanced sensitivity. Sens. Actuators B: Chem. 2018, 276, 288−295.
doi: 10.1016/j.snb.2018.08.102
El-Kady, M. F.; Strong, V.; Dubin, S.; Kaner, R. B. Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science 2012, 335, 1326−1330.
doi: 10.1126/science.1216744
Pokhrel, S.; Nagaraja, K. Electrical and humidity sensing properties of chromium(III) oxide-tungsten (VI) oxide composites. Sens. Actuators B: Chem. 2003, 92, 144−150.
doi: 10.1016/S0925-4005(03)00251-X
Lin, W. D.; Liao, C. T.; Chang, T. C.; Chen, S. H.; Wu, R. J. Humidity sensing properties of novel graphene/TiO2 composites by sol-gel process. Sens. Actuators B: Chem. 2015, 209, 555−561.
doi: 10.1016/j.snb.2014.12.013
Su, P. G.; Lin, Y. T. Low-humidity sensing properties of diamine-and β-cyclodextrin-functionalized graphene oxide films measured using a quartz-crystal microbalance. Sens. Actuators B: Chem. 2016, 238, 344−350.
doi: 10.1016/j.sna.2015.11.034
Su, P. G.; Lu, Z. M. Flexibility and electrical and humidity-sensing properties of diamine-functionalized graphene oxide films. Sens. Actuators B: Chem. 2015, 211, 157−163.
doi: 10.1016/j.snb.2015.01.089
Thakur, S.; Patil, P. Rapid synthesis of cerium oxide nanoparticles with superior humidity-sensing performance. Sens. Actuators B: Chem. 2014, 194, 260−268.
doi: 10.1016/j.snb.2013.12.067
Zhu, Y.; Chen, J.; Li, H.; Zhu, Y.; Xu, J. Synthesis of mesoporous SnO2-SiO2 composites and their application as quartz crystal microbalance humidity sensor. Sens. Actuators B: Chem. 2014, 193, 320−325.
doi: 10.1016/j.snb.2013.11.091
Bai, Y.; Zhang, C. Z.; Chen, B.; Sun, H. Enhanced humidity sensing of functionalized reduced graphene oxide with 4-chloro-3-sulfophenylazo groups. Sens. Actuators B: Chem. 2019, 287, 258−266.
doi: 10.1016/j.snb.2019.02.056
Jie XIE , Hongnan XU , Jianfeng LIAO , Ruoyu CHEN , Lin SUN , Zhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216
Tian TIAN , Meng ZHOU , Jiale WEI , Yize LIU , Yifan MO , Yuhan YE , Wenzhi JIA , Bin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298
Tian Cao , Xuyin Ding , Qiwen Peng , Min Zhang , Guoyue Shi . Intelligent laser-induced graphene sensor for multiplex probing catechol isomers. Chinese Chemical Letters, 2024, 35(7): 109238-. doi: 10.1016/j.cclet.2023.109238
Zhihuan XU , Qing KANG , Yuzhen LONG , Qian YUAN , Cidong LIU , Xin LI , Genghuai TANG , Yuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447
Ying Chen , Li Li , Junyao Zhang , Tongrui Sun , Xuan Zhang , Shiqi Zhang , Jia Huang , Yidong Zou . Tailored ionically conductive graphene oxide-encased metal ions for ultrasensitive cadaverine sensor. Chinese Chemical Letters, 2024, 35(8): 109102-. doi: 10.1016/j.cclet.2023.109102
Xingxing Jiang , Yuxin Zhao , Yan Kong , Jianju Sun , Shangzhao Feng , Xin Lu , Qi Hu , Hengpan Yang , Chuanxin He . Support effect and confinement effect of porous carbon loaded tin dioxide nanoparticles in high-performance CO2 electroreduction towards formate. Chinese Chemical Letters, 2025, 36(1): 109555-. doi: 10.1016/j.cclet.2024.109555
Sikai Wu , Xuefei Wang , Huogen Yu . Hydroxyl-enriched hydrous tin dioxide-coated BiVO4 with boosted photocatalytic H2O2 production. Chinese Journal of Structural Chemistry, 2024, 43(12): 100457-100457. doi: 10.1016/j.cjsc.2024.100457
Rui Liu , Jinbo Pang , Weijia Zhou . Monolayer water shepherding supertight MXene/graphene composite films. Chinese Journal of Structural Chemistry, 2024, 43(10): 100329-100329. doi: 10.1016/j.cjsc.2024.100329
Daheng Wen , Weiwei Fang , Yongmei Liu , Tao Tu . Valorization of carbon dioxide with alcohols. Chinese Chemical Letters, 2024, 35(7): 109394-. doi: 10.1016/j.cclet.2023.109394
Xuhui Fan , Fan Wang , Mengjiao Li , Faiza Meharban , Yaying Li , Yuanyuan Cui , Xiaopeng Li , Jingsan Xu , Qi Xiao , Wei Luo . Visible light excitation on CuPd/TiN with enhanced chemisorption for catalyzing Heck reaction. Chinese Chemical Letters, 2025, 36(1): 110299-. doi: 10.1016/j.cclet.2024.110299
Zhi Wang , Lingpeng Yan , Yelin Hao , Jingxia Zheng , Yongzhen Yang , Xuguang Liu . Highly efficient and photothermally stable CDs@ZIF-8 for laser illumination. Chinese Chemical Letters, 2024, 35(10): 109430-. doi: 10.1016/j.cclet.2023.109430
Hanqing Zhang , Xiaoxia Wang , Chen Chen , Xianfeng Yang , Chungli Dong , Yucheng Huang , Xiaoliang Zhao , Dongjiang Yang . Selective CO2-to-formic acid electrochemical conversion by modulating electronic environment of copper phthalocyanine with defective graphene. Chinese Journal of Structural Chemistry, 2023, 42(10): 100089-100089. doi: 10.1016/j.cjsc.2023.100089
Jia-Li Xie , Tian-Jin Xie , Yu-Jie Luo , Kai Mao , Cheng-Zhi Huang , Yuan-Fang Li , Shu-Jun Zhen . Octopus-like DNA nanostructure coupled with graphene oxide enhanced fluorescence anisotropy for hepatitis B virus DNA detection. Chinese Chemical Letters, 2024, 35(6): 109137-. doi: 10.1016/j.cclet.2023.109137
Qiang Cao , Xue-Feng Cheng , Jia Wang , Chang Zhou , Liu-Jun Yang , Guan Wang , Dong-Yun Chen , Jing-Hui He , Jian-Mei Lu . Graphene from microwave-initiated upcycling of waste polyethylene for electrocatalytic reduction of chloramphenicol. Chinese Chemical Letters, 2024, 35(4): 108759-. doi: 10.1016/j.cclet.2023.108759
Cheng Guo , Xiaoxiao Zhang , Xiujuan Hong , Yiqiu Hu , Lingna Mao , Kezhi Jiang . Graphene as adsorbent for highly efficient extraction of modified nucleosides in urine prior to liquid chromatography-tandem mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(4): 108867-. doi: 10.1016/j.cclet.2023.108867
Jie Zhou , Chuanxiang Zhang , Changchun Hu , Shuo Li , Yuan Liu , Zhu Chen , Song Li , Hui Chen , Rokayya Sami , Yan Deng . Electrochemical aptasensor based on black phosphorus-porous graphene nanocomposites for high-performance detection of Hg2+. Chinese Chemical Letters, 2024, 35(11): 109561-. doi: 10.1016/j.cclet.2024.109561
Yihong Li , Zhong Qiu , Lei Huang , Shenghui Shen , Ping Liu , Haomiao Zhang , Feng Cao , Xinping He , Jun Zhang , Yang Xia , Xinqi Liang , Chen Wang , Wangjun Wan , Yongqi Zhang , Minghua Chen , Wenkui Zhang , Hui Huang , Yongping Gan , Xinhui Xia . Plasma enhanced reduction method for synthesis of reduced graphene oxide fiber/Si anode with improved performance. Chinese Chemical Letters, 2024, 35(11): 109510-. doi: 10.1016/j.cclet.2024.109510
Wenhao Feng , Chunli Liu , Zheng Liu , Huan Pang . In-situ growth of N-doped graphene-like carbon/MOF nanocomposites for high-performance supercapacitor. Chinese Chemical Letters, 2024, 35(12): 109552-. doi: 10.1016/j.cclet.2024.109552
Manman Ou , Yunjian Zhu , Jiahao Liu , Zhaoxuan Liu , Jianjun Wang , Jun Sun , Chuanxiang Qin , Lixing Dai . Polyvinyl alcohol fiber with enhanced strength and modulus and intense cyan fluorescence based on covalently functionalized graphene quantum dots. Chinese Chemical Letters, 2025, 36(2): 110510-. doi: 10.1016/j.cclet.2024.110510
Xin Wang , Changzhao Chen , Qishen Wang , Kai Dai . Graphene quantum dot modified Bi2MoO6 nanoflower for efficient degradation of BPA under visible light. Chinese Journal of Structural Chemistry, 2024, 43(12): 100473-100473. doi: 10.1016/j.cjsc.2024.100473