Citation: Xin LI, Wen-Dou FENG, Xiang-Xin ZHANG, Wei WANG, Su-Jing CHEN, Yi-Ning ZHANG. Fabrication of Humidity Sensors Based on Laser Scribed Graphene Oxide/SnO2 Composite Layers[J]. Chinese Journal of Structural Chemistry, ;2020, 39(11): 1949-1957. doi: 10.14102/j.cnki.0254–5861.2011–2740 shu

Fabrication of Humidity Sensors Based on Laser Scribed Graphene Oxide/SnO2 Composite Layers

  • Corresponding author: Yi-Ning ZHANG, ynzhang@fjirsm.ac.cn
  • Received Date: 17 January 2020
    Accepted Date: 7 February 2020

    Fund Project: the Fujian Provincial Department of Science and Technology 2018H0041the Fujian Provincial Department of Science and Technology 2018H0042the Fujian Provincial Department of Science and Technology 2018T3010the Fujian Provincial Department of Science and Technology 2019T3017the Fujian Provincial Department of Science and Technology 2019T3024

Figures(9)

  • Humidity sensors have been widely applied to detect environment humidity in various fields. However, most of humidity sensors cannot provide performance needed for high sensitivity and fast response. We report one type of capacitive-type humidity sensors composed of laser-scribed graphene (LSG) as sensing electrodes and graphene oxide/tin dioxide (GO/SnO2) as a sensing layer. The LSG is reduced graphene oxide (rGO) electrodes resulted from selective reducing of GO within a GO/SnO2 composite layer by laser scribing method, and the sensing layer is the un-scribed GO/SnO2 composite. The sensor fabrication is a one-step process which is facile and cost-efficient. When a mass ratio of GO: SnO2 in the composite reaches 1:1, the humidity sensor (named as LSG-GS1) has the best properties than other ratios, which exhibits high sensitivity in the range of 11%~97% relative humidity (RH). In addition, the LSG-GS1 also has very quick response/recovery time (20 s for adsorption and 18 s for desorption) when RH changes from 23% to 84%, and very good stability after monitoring for 41 days. Such excellent performances of the humidity sensor can be attributed to synergistic effect of SnO2 and GO within the composite layer.
  • 
    1. [1]

      Peng, Y.; Zhao, Y.; Chen, M. Q.; Xia, F. Research advances in microfiber humidity sensors. Small 2018, 14, 1800524−20.  doi: 10.1002/smll.201800524

    2. [2]

      Chen, Z.; Lu, C. Humidity sensors: a review of materials and mechanisms. Sens. Lett. 2005, 3, 274−295.  doi: 10.1166/sl.2005.045

    3. [3]

      Najeeb, M. A.; Ahmad, Z.; Shakoor, R. A. Organic thin-film capacitive and resistive humidity sensors: a focus review. Adv. Mater. Interfaces 2018, 5, 1800969−19.  doi: 10.1002/admi.201800969

    4. [4]

      Schubert, P. J.; Nevin, J. H. A polyimide-based capacitive humidity sensor. IEEE. T. Electron. Dev. 1985, 32, 1220−1223.  doi: 10.1109/T-ED.1985.22104

    5. [5]

      Zhang, Y.; Yu, K.; Jiang, D.; Zhu, Z.; Geng, H.; Luo, L. Zinc oxide nanorod and nanowire for humidity sensor. Appl. Surf. Sci. 2005, 242, 212−217.  doi: 10.1016/j.apsusc.2004.08.013

    6. [6]

      Sun, C.; Karthik, K.; Pramana, S. S.; Wong, L. H.; Zhang, J.; Yizhong, H.; Sow, C. H.; Mathews, N.; Mhaisalkar, S. G. The role of tin oxide surface defects in determining nanonet FET response to humidity and photoexcitation. J. Mater. Chem. C 2014, 2, 940−945.  doi: 10.1039/C3TC31713G

    7. [7]

      Yeo, T.; Sun, T.; Grattan, K. Fibre-optic sensor technologies for humidity and moisture measurement. Sens. Actuators A: Phys. 2008, 144, 280−295.  doi: 10.1016/j.sna.2008.01.017

    8. [8]

      Wu, Y.; Huang, Q.; Nie, J.; Liang, J.; Joshi, N.; Hayasaka, T.; Zhao, S.; Zhang, M.; Wang, X.; Lin, L. All-carbon based flexible humidity sensor. J. Nanosci. Nanotechno. 2019, 19, 5310−5316.  doi: 10.1166/jnn.2019.16821

    9. [9]

      Fei, T.; Jiang, K.; Jiang, F.; Mu, R.; Zhang, T. Humidity switching properties of sensors based on multiwalled carbon nanotubes/polyvinyl alcohol composite films. J. Appl. Polym. Sci. 2014, 131, 39726−7.

    10. [10]

      Khanna, V.; Nahar, R. Carrier-transfer mechanisms and Al2O3 sensors for low and high humidities. J. Phys. D: Appl. Phys. 1986, 19, L141−L145.  doi: 10.1088/0022-3727/19/7/004

    11. [11]

      Ying, J.; Wan, C.; He, P. Sol-gel processed TiO2-K2O-LiZnVO4 ceramic thin films as innovative humidity sensors. Sens. Actuators B: Chem. 2000, 62, 165−170.  doi: 10.1016/S0925-4005(99)00364-0

    12. [12]

      Yadav, B.; Shukla, R. Titania films deposited by thermal evaporation as humidity sensor. Insian J. Pure. Ap. Phy. 2003, 41, 681−685.

    13. [13]

      Mukode, S.; Futata, H. Semiconductive humidity sensor. Sens. Actuators 1989, 16, 1−11.  doi: 10.1016/0250-6874(89)80001-0

    14. [14]

      Korotchenkov, G.; Brynzari, V.; Dmitriev, S. Electrical behavior of SnO2 thin films in humid atmosphere. Sens. Actuators B: Chem. 1999, 54, 197−201.  doi: 10.1016/S0925-4005(99)00016-7

    15. [15]

      Tahar, R. B. H.; Ban, T.; Ohya, Y.; Takahashi, Y. Humidity-sensing characteristics of divalent-metal-doped indium oxide thin films. J. Am. Ceram. Soc. 1998, 81, 321−327.

    16. [16]

      Arshak, K.; Twomey, K. Thin films of In2O3/SiO for humidity sensing applications. Sens. 2002, 2, 205−218.  doi: 10.3390/s20600205

    17. [17]

      Tsuchitani, S.; Sugawara, T.; Kinjo, N.; Ohara, S.; Tsunoda, T. A humidity sensor using ionic copolymer and its application to a humidity-temperature sensor module. Sens. Actuators 1988, 15, 375−386.  doi: 10.1016/0250-6874(88)81507-5

    18. [18]

      Sakai, Y.; Matsuguchi, M.; Yonesato, N. Humidity sensor based on alkali salts of poly (2-acrylamido-2-methylpropane sulfonic acid). Electrochim. Acta 2001, 46, 1509−1514.  doi: 10.1016/S0013-4686(00)00746-5

    19. [19]

      Li, Y.; Yang, M. Humidity sensitive properties of a novel soluble conjugated copolymer: Ethynylbenzene-co-propargyl alcohol. Sens. Actuators B: Chem. 2002, 85, 73−78.  doi: 10.1016/S0925-4005(02)00055-2

    20. [20]

      Kuang, Q.; Lao, C.; Wang, Z. L.; Xie, Z.; Zheng, L. High-sensitivity humidity sensor based on a single SnO2 nanowire. J. Am. Chem. Soc. 2007, 129, 6070−6071.  doi: 10.1021/ja070788m

    21. [21]

      Feng, H.; Li, C.; Li, T.; Diao, F.; Xin, T.; Liu, B.; Wang, Y. Three-dimensional hierarchical SnO2 dodecahedral nanocrystals with enhanced humidity sensing properties. Sens. Actuators B: Chem. 2017, 243, 704−714.  doi: 10.1016/j.snb.2016.12.043

    22. [22]

      Li, H.; Liu, B.; Cai, D.; Wang, Y.; Liu, Y.; Mei, L.; Wang, L.; Wang, D.; Li, Q.; Wang, T. High-temperature humidity sensors based on WO3-SnO2 composite hollow nanospheres. J. Mater. Chem. A 2014, 2, 6854−6862.  doi: 10.1039/C4TA00363B

    23. [23]

      Yang, Z.; Zhang, Z.; Liu, K.; Yuan, Q.; Dong, B. Controllable assembly of SnO2 nanocubes onto TiO2 electrospun nanofibers toward humidity sensing applications. J. Mater. Chem. C 2015, 3, 6701−6708.  doi: 10.1039/C5TC01171J

    24. [24]

      Parthibavarman, M.; Hariharan, V.; Sekar, C. High-sensitivity humidity sensor based on SnO2 nanoparticles synthesized by microwave irradiation method. Mater. Sci. Eng. : C 2011, 31, 840−844.  doi: 10.1016/j.msec.2011.01.002

    25. [25]

      Guo, S.; Dong, S. Graphene and its derivative-based sensing materials for analytical devices. J. Mater. Chem. 2011, 21, 18503−18516.  doi: 10.1039/c1jm13228h

    26. [26]

      Gao, W.; Singh, N.; Song, L.; Liu, Z.; Reddy, A. L. M.; Ci, L.; Vajtai, R.; Zhang, Q.; Wei, B.; Ajayan, P. M. Direct laser writing of micro-supercapacitors on hydrated graphite oxide films. Nat. Nanotechnol. 2011, 6, 496−500.  doi: 10.1038/nnano.2011.110

    27. [27]

      Yu, H. W.; Kim, H. K.; Kim, T.; Bae, K. M.; Seo, S. M.; Kim, J. M.; Kang, T. J.; Kim, Y. H. Self-powered humidity sensor based on graphene oxide composite film intercalated by poly (sodium 4-styrenesulfonate). ACS Appl. Mater. Inter. 2014, 6, 8320−8326.  doi: 10.1021/am501151v

    28. [28]

      Zhang, D.; Chang, H.; Li, P.; Liu, R.; Xue, Q. Fabrication and characterization of an ultrasensitive humidity sensor based on metal oxide/graphene hybrid nanocomposite. Sens. Actuators B: Chem. 2016, 225, 233−240.  doi: 10.1016/j.snb.2015.11.024

    29. [29]

      Xu, J.; Gu, S.; Lu, B. Graphene and graphene oxide double decorated SnO2 nanofibers with enhanced humidity sensing performance. RSC Adv. 2015, 5, 72046−72050.  doi: 10.1039/C5RA10571D

    30. [30]

      Ben, A. Z.; Zhang, K.; Baillargeat, D.; Zhang, Q. Enhancement of humidity sensitivity of graphene through functionalization with polyethylenimine. Appl. Phys. Lett. 2015, 107, 134102−6.  doi: 10.1063/1.4932124

    31. [31]

      Ali, S.; Hassan, A.; Hassan, G.; Bae, J.; Lee, C. H. All-printed humidity sensor based on graphene/methyl-red composite with high sensitivity. Carbon 2016, 105, 23−32.  doi: 10.1016/j.carbon.2016.04.013

    32. [32]

      Cai, J.; Lv, C.; Aoyagi, E.; Ogawa, S.; Watanabe, A. Laser direct writing of a high-performance all-graphene humidity sensor working in a novel sensing mode for portable electronics. ACS Appl. Mater. Interfaces 2018, 10, 23987−23996.  doi: 10.1021/acsami.8b07373

    33. [33]

      Marcano, D. C.; Kosynkin, D. V.; Berlin, J. M.; Sinitskii, A.; Sun, Z.; Slesarev, A.; Alemany, L. B.; Lu, W.; Tour, J. M. Improved synthesis of graphene oxide. ACS Nano 2010, 4, 4806−4814.  doi: 10.1021/nn1006368

    34. [34]

      Ding, X.; Chen, X. D.; Yu, X. L.; Yu, X. A GOQD modified IDE-PQC humidity sensor based on impedance-frequency tuning principle with enhanced sensitivity. Sens. Actuators B: Chem. 2018, 276, 288−295.  doi: 10.1016/j.snb.2018.08.102

    35. [35]

      El-Kady, M. F.; Strong, V.; Dubin, S.; Kaner, R. B. Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science 2012, 335, 1326−1330.  doi: 10.1126/science.1216744

    36. [36]

      Pokhrel, S.; Nagaraja, K. Electrical and humidity sensing properties of chromium(III) oxide-tungsten (VI) oxide composites. Sens. Actuators B: Chem. 2003, 92, 144−150.  doi: 10.1016/S0925-4005(03)00251-X

    37. [37]

      Lin, W. D.; Liao, C. T.; Chang, T. C.; Chen, S. H.; Wu, R. J. Humidity sensing properties of novel graphene/TiO2 composites by sol-gel process. Sens. Actuators B: Chem. 2015, 209, 555−561.  doi: 10.1016/j.snb.2014.12.013

    38. [38]

      Su, P. G.; Lin, Y. T. Low-humidity sensing properties of diamine-and β-cyclodextrin-functionalized graphene oxide films measured using a quartz-crystal microbalance. Sens. Actuators B: Chem. 2016, 238, 344−350.  doi: 10.1016/j.sna.2015.11.034

    39. [39]

      Su, P. G.; Lu, Z. M. Flexibility and electrical and humidity-sensing properties of diamine-functionalized graphene oxide films. Sens. Actuators B: Chem. 2015, 211, 157−163.  doi: 10.1016/j.snb.2015.01.089

    40. [40]

      Thakur, S.; Patil, P. Rapid synthesis of cerium oxide nanoparticles with superior humidity-sensing performance. Sens. Actuators B: Chem. 2014, 194, 260−268.  doi: 10.1016/j.snb.2013.12.067

    41. [41]

      Zhu, Y.; Chen, J.; Li, H.; Zhu, Y.; Xu, J. Synthesis of mesoporous SnO2-SiO2 composites and their application as quartz crystal microbalance humidity sensor. Sens. Actuators B: Chem. 2014, 193, 320−325.  doi: 10.1016/j.snb.2013.11.091

    42. [42]

      Bai, Y.; Zhang, C. Z.; Chen, B.; Sun, H. Enhanced humidity sensing of functionalized reduced graphene oxide with 4-chloro-3-sulfophenylazo groups. Sens. Actuators B: Chem. 2019, 287, 258−266.  doi: 10.1016/j.snb.2019.02.056

    1. [1]

      Peng, Y.; Zhao, Y.; Chen, M. Q.; Xia, F. Research advances in microfiber humidity sensors. Small 2018, 14, 1800524−20.  doi: 10.1002/smll.201800524

    2. [2]

      Chen, Z.; Lu, C. Humidity sensors: a review of materials and mechanisms. Sens. Lett. 2005, 3, 274−295.  doi: 10.1166/sl.2005.045

    3. [3]

      Najeeb, M. A.; Ahmad, Z.; Shakoor, R. A. Organic thin-film capacitive and resistive humidity sensors: a focus review. Adv. Mater. Interfaces 2018, 5, 1800969−19.  doi: 10.1002/admi.201800969

    4. [4]

      Schubert, P. J.; Nevin, J. H. A polyimide-based capacitive humidity sensor. IEEE. T. Electron. Dev. 1985, 32, 1220−1223.  doi: 10.1109/T-ED.1985.22104

    5. [5]

      Zhang, Y.; Yu, K.; Jiang, D.; Zhu, Z.; Geng, H.; Luo, L. Zinc oxide nanorod and nanowire for humidity sensor. Appl. Surf. Sci. 2005, 242, 212−217.  doi: 10.1016/j.apsusc.2004.08.013

    6. [6]

      Sun, C.; Karthik, K.; Pramana, S. S.; Wong, L. H.; Zhang, J.; Yizhong, H.; Sow, C. H.; Mathews, N.; Mhaisalkar, S. G. The role of tin oxide surface defects in determining nanonet FET response to humidity and photoexcitation. J. Mater. Chem. C 2014, 2, 940−945.  doi: 10.1039/C3TC31713G

    7. [7]

      Yeo, T.; Sun, T.; Grattan, K. Fibre-optic sensor technologies for humidity and moisture measurement. Sens. Actuators A: Phys. 2008, 144, 280−295.  doi: 10.1016/j.sna.2008.01.017

    8. [8]

      Wu, Y.; Huang, Q.; Nie, J.; Liang, J.; Joshi, N.; Hayasaka, T.; Zhao, S.; Zhang, M.; Wang, X.; Lin, L. All-carbon based flexible humidity sensor. J. Nanosci. Nanotechno. 2019, 19, 5310−5316.  doi: 10.1166/jnn.2019.16821

    9. [9]

      Fei, T.; Jiang, K.; Jiang, F.; Mu, R.; Zhang, T. Humidity switching properties of sensors based on multiwalled carbon nanotubes/polyvinyl alcohol composite films. J. Appl. Polym. Sci. 2014, 131, 39726−7.

    10. [10]

      Khanna, V.; Nahar, R. Carrier-transfer mechanisms and Al2O3 sensors for low and high humidities. J. Phys. D: Appl. Phys. 1986, 19, L141−L145.  doi: 10.1088/0022-3727/19/7/004

    11. [11]

      Ying, J.; Wan, C.; He, P. Sol-gel processed TiO2-K2O-LiZnVO4 ceramic thin films as innovative humidity sensors. Sens. Actuators B: Chem. 2000, 62, 165−170.  doi: 10.1016/S0925-4005(99)00364-0

    12. [12]

      Yadav, B.; Shukla, R. Titania films deposited by thermal evaporation as humidity sensor. Insian J. Pure. Ap. Phy. 2003, 41, 681−685.

    13. [13]

      Mukode, S.; Futata, H. Semiconductive humidity sensor. Sens. Actuators 1989, 16, 1−11.  doi: 10.1016/0250-6874(89)80001-0

    14. [14]

      Korotchenkov, G.; Brynzari, V.; Dmitriev, S. Electrical behavior of SnO2 thin films in humid atmosphere. Sens. Actuators B: Chem. 1999, 54, 197−201.  doi: 10.1016/S0925-4005(99)00016-7

    15. [15]

      Tahar, R. B. H.; Ban, T.; Ohya, Y.; Takahashi, Y. Humidity-sensing characteristics of divalent-metal-doped indium oxide thin films. J. Am. Ceram. Soc. 1998, 81, 321−327.

    16. [16]

      Arshak, K.; Twomey, K. Thin films of In2O3/SiO for humidity sensing applications. Sens. 2002, 2, 205−218.  doi: 10.3390/s20600205

    17. [17]

      Tsuchitani, S.; Sugawara, T.; Kinjo, N.; Ohara, S.; Tsunoda, T. A humidity sensor using ionic copolymer and its application to a humidity-temperature sensor module. Sens. Actuators 1988, 15, 375−386.  doi: 10.1016/0250-6874(88)81507-5

    18. [18]

      Sakai, Y.; Matsuguchi, M.; Yonesato, N. Humidity sensor based on alkali salts of poly (2-acrylamido-2-methylpropane sulfonic acid). Electrochim. Acta 2001, 46, 1509−1514.  doi: 10.1016/S0013-4686(00)00746-5

    19. [19]

      Li, Y.; Yang, M. Humidity sensitive properties of a novel soluble conjugated copolymer: Ethynylbenzene-co-propargyl alcohol. Sens. Actuators B: Chem. 2002, 85, 73−78.  doi: 10.1016/S0925-4005(02)00055-2

    20. [20]

      Kuang, Q.; Lao, C.; Wang, Z. L.; Xie, Z.; Zheng, L. High-sensitivity humidity sensor based on a single SnO2 nanowire. J. Am. Chem. Soc. 2007, 129, 6070−6071.  doi: 10.1021/ja070788m

    21. [21]

      Feng, H.; Li, C.; Li, T.; Diao, F.; Xin, T.; Liu, B.; Wang, Y. Three-dimensional hierarchical SnO2 dodecahedral nanocrystals with enhanced humidity sensing properties. Sens. Actuators B: Chem. 2017, 243, 704−714.  doi: 10.1016/j.snb.2016.12.043

    22. [22]

      Li, H.; Liu, B.; Cai, D.; Wang, Y.; Liu, Y.; Mei, L.; Wang, L.; Wang, D.; Li, Q.; Wang, T. High-temperature humidity sensors based on WO3-SnO2 composite hollow nanospheres. J. Mater. Chem. A 2014, 2, 6854−6862.  doi: 10.1039/C4TA00363B

    23. [23]

      Yang, Z.; Zhang, Z.; Liu, K.; Yuan, Q.; Dong, B. Controllable assembly of SnO2 nanocubes onto TiO2 electrospun nanofibers toward humidity sensing applications. J. Mater. Chem. C 2015, 3, 6701−6708.  doi: 10.1039/C5TC01171J

    24. [24]

      Parthibavarman, M.; Hariharan, V.; Sekar, C. High-sensitivity humidity sensor based on SnO2 nanoparticles synthesized by microwave irradiation method. Mater. Sci. Eng. : C 2011, 31, 840−844.  doi: 10.1016/j.msec.2011.01.002

    25. [25]

      Guo, S.; Dong, S. Graphene and its derivative-based sensing materials for analytical devices. J. Mater. Chem. 2011, 21, 18503−18516.  doi: 10.1039/c1jm13228h

    26. [26]

      Gao, W.; Singh, N.; Song, L.; Liu, Z.; Reddy, A. L. M.; Ci, L.; Vajtai, R.; Zhang, Q.; Wei, B.; Ajayan, P. M. Direct laser writing of micro-supercapacitors on hydrated graphite oxide films. Nat. Nanotechnol. 2011, 6, 496−500.  doi: 10.1038/nnano.2011.110

    27. [27]

      Yu, H. W.; Kim, H. K.; Kim, T.; Bae, K. M.; Seo, S. M.; Kim, J. M.; Kang, T. J.; Kim, Y. H. Self-powered humidity sensor based on graphene oxide composite film intercalated by poly (sodium 4-styrenesulfonate). ACS Appl. Mater. Inter. 2014, 6, 8320−8326.  doi: 10.1021/am501151v

    28. [28]

      Zhang, D.; Chang, H.; Li, P.; Liu, R.; Xue, Q. Fabrication and characterization of an ultrasensitive humidity sensor based on metal oxide/graphene hybrid nanocomposite. Sens. Actuators B: Chem. 2016, 225, 233−240.  doi: 10.1016/j.snb.2015.11.024

    29. [29]

      Xu, J.; Gu, S.; Lu, B. Graphene and graphene oxide double decorated SnO2 nanofibers with enhanced humidity sensing performance. RSC Adv. 2015, 5, 72046−72050.  doi: 10.1039/C5RA10571D

    30. [30]

      Ben, A. Z.; Zhang, K.; Baillargeat, D.; Zhang, Q. Enhancement of humidity sensitivity of graphene through functionalization with polyethylenimine. Appl. Phys. Lett. 2015, 107, 134102−6.  doi: 10.1063/1.4932124

    31. [31]

      Ali, S.; Hassan, A.; Hassan, G.; Bae, J.; Lee, C. H. All-printed humidity sensor based on graphene/methyl-red composite with high sensitivity. Carbon 2016, 105, 23−32.  doi: 10.1016/j.carbon.2016.04.013

    32. [32]

      Cai, J.; Lv, C.; Aoyagi, E.; Ogawa, S.; Watanabe, A. Laser direct writing of a high-performance all-graphene humidity sensor working in a novel sensing mode for portable electronics. ACS Appl. Mater. Interfaces 2018, 10, 23987−23996.  doi: 10.1021/acsami.8b07373

    33. [33]

      Marcano, D. C.; Kosynkin, D. V.; Berlin, J. M.; Sinitskii, A.; Sun, Z.; Slesarev, A.; Alemany, L. B.; Lu, W.; Tour, J. M. Improved synthesis of graphene oxide. ACS Nano 2010, 4, 4806−4814.  doi: 10.1021/nn1006368

    34. [34]

      Ding, X.; Chen, X. D.; Yu, X. L.; Yu, X. A GOQD modified IDE-PQC humidity sensor based on impedance-frequency tuning principle with enhanced sensitivity. Sens. Actuators B: Chem. 2018, 276, 288−295.  doi: 10.1016/j.snb.2018.08.102

    35. [35]

      El-Kady, M. F.; Strong, V.; Dubin, S.; Kaner, R. B. Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science 2012, 335, 1326−1330.  doi: 10.1126/science.1216744

    36. [36]

      Pokhrel, S.; Nagaraja, K. Electrical and humidity sensing properties of chromium(III) oxide-tungsten (VI) oxide composites. Sens. Actuators B: Chem. 2003, 92, 144−150.  doi: 10.1016/S0925-4005(03)00251-X

    37. [37]

      Lin, W. D.; Liao, C. T.; Chang, T. C.; Chen, S. H.; Wu, R. J. Humidity sensing properties of novel graphene/TiO2 composites by sol-gel process. Sens. Actuators B: Chem. 2015, 209, 555−561.  doi: 10.1016/j.snb.2014.12.013

    38. [38]

      Su, P. G.; Lin, Y. T. Low-humidity sensing properties of diamine-and β-cyclodextrin-functionalized graphene oxide films measured using a quartz-crystal microbalance. Sens. Actuators B: Chem. 2016, 238, 344−350.  doi: 10.1016/j.sna.2015.11.034

    39. [39]

      Su, P. G.; Lu, Z. M. Flexibility and electrical and humidity-sensing properties of diamine-functionalized graphene oxide films. Sens. Actuators B: Chem. 2015, 211, 157−163.  doi: 10.1016/j.snb.2015.01.089

    40. [40]

      Thakur, S.; Patil, P. Rapid synthesis of cerium oxide nanoparticles with superior humidity-sensing performance. Sens. Actuators B: Chem. 2014, 194, 260−268.  doi: 10.1016/j.snb.2013.12.067

    41. [41]

      Zhu, Y.; Chen, J.; Li, H.; Zhu, Y.; Xu, J. Synthesis of mesoporous SnO2-SiO2 composites and their application as quartz crystal microbalance humidity sensor. Sens. Actuators B: Chem. 2014, 193, 320−325.  doi: 10.1016/j.snb.2013.11.091

    42. [42]

      Bai, Y.; Zhang, C. Z.; Chen, B.; Sun, H. Enhanced humidity sensing of functionalized reduced graphene oxide with 4-chloro-3-sulfophenylazo groups. Sens. Actuators B: Chem. 2019, 287, 258−266.  doi: 10.1016/j.snb.2019.02.056

  • 加载中
    1. [1]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    2. [2]

      Tian TIANMeng ZHOUJiale WEIYize LIUYifan MOYuhan YEWenzhi JIABin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298

    3. [3]

      Tian CaoXuyin DingQiwen PengMin ZhangGuoyue Shi . Intelligent laser-induced graphene sensor for multiplex probing catechol isomers. Chinese Chemical Letters, 2024, 35(7): 109238-. doi: 10.1016/j.cclet.2023.109238

    4. [4]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    5. [5]

      Ying ChenLi LiJunyao ZhangTongrui SunXuan ZhangShiqi ZhangJia HuangYidong Zou . Tailored ionically conductive graphene oxide-encased metal ions for ultrasensitive cadaverine sensor. Chinese Chemical Letters, 2024, 35(8): 109102-. doi: 10.1016/j.cclet.2023.109102

    6. [6]

      Xingxing JiangYuxin ZhaoYan KongJianju SunShangzhao FengXin LuQi HuHengpan YangChuanxin He . Support effect and confinement effect of porous carbon loaded tin dioxide nanoparticles in high-performance CO2 electroreduction towards formate. Chinese Chemical Letters, 2025, 36(1): 109555-. doi: 10.1016/j.cclet.2024.109555

    7. [7]

      Sikai Wu Xuefei Wang Huogen Yu . Hydroxyl-enriched hydrous tin dioxide-coated BiVO4 with boosted photocatalytic H2O2 production. Chinese Journal of Structural Chemistry, 2024, 43(12): 100457-100457. doi: 10.1016/j.cjsc.2024.100457

    8. [8]

      Rui Liu Jinbo Pang Weijia Zhou . Monolayer water shepherding supertight MXene/graphene composite films. Chinese Journal of Structural Chemistry, 2024, 43(10): 100329-100329. doi: 10.1016/j.cjsc.2024.100329

    9. [9]

      Daheng WenWeiwei FangYongmei LiuTao Tu . Valorization of carbon dioxide with alcohols. Chinese Chemical Letters, 2024, 35(7): 109394-. doi: 10.1016/j.cclet.2023.109394

    10. [10]

      Xuhui FanFan WangMengjiao LiFaiza MeharbanYaying LiYuanyuan CuiXiaopeng LiJingsan XuQi XiaoWei Luo . Visible light excitation on CuPd/TiN with enhanced chemisorption for catalyzing Heck reaction. Chinese Chemical Letters, 2025, 36(1): 110299-. doi: 10.1016/j.cclet.2024.110299

    11. [11]

      Zhi WangLingpeng YanYelin HaoJingxia ZhengYongzhen YangXuguang Liu . Highly efficient and photothermally stable CDs@ZIF-8 for laser illumination. Chinese Chemical Letters, 2024, 35(10): 109430-. doi: 10.1016/j.cclet.2023.109430

    12. [12]

      Hanqing Zhang Xiaoxia Wang Chen Chen Xianfeng Yang Chungli Dong Yucheng Huang Xiaoliang Zhao Dongjiang Yang . Selective CO2-to-formic acid electrochemical conversion by modulating electronic environment of copper phthalocyanine with defective graphene. Chinese Journal of Structural Chemistry, 2023, 42(10): 100089-100089. doi: 10.1016/j.cjsc.2023.100089

    13. [13]

      Jia-Li XieTian-Jin XieYu-Jie LuoKai MaoCheng-Zhi HuangYuan-Fang LiShu-Jun Zhen . Octopus-like DNA nanostructure coupled with graphene oxide enhanced fluorescence anisotropy for hepatitis B virus DNA detection. Chinese Chemical Letters, 2024, 35(6): 109137-. doi: 10.1016/j.cclet.2023.109137

    14. [14]

      Qiang CaoXue-Feng ChengJia WangChang ZhouLiu-Jun YangGuan WangDong-Yun ChenJing-Hui HeJian-Mei Lu . Graphene from microwave-initiated upcycling of waste polyethylene for electrocatalytic reduction of chloramphenicol. Chinese Chemical Letters, 2024, 35(4): 108759-. doi: 10.1016/j.cclet.2023.108759

    15. [15]

      Cheng GuoXiaoxiao ZhangXiujuan HongYiqiu HuLingna MaoKezhi Jiang . Graphene as adsorbent for highly efficient extraction of modified nucleosides in urine prior to liquid chromatography-tandem mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(4): 108867-. doi: 10.1016/j.cclet.2023.108867

    16. [16]

      Jie ZhouChuanxiang ZhangChangchun HuShuo LiYuan LiuZhu ChenSong LiHui ChenRokayya SamiYan Deng . Electrochemical aptasensor based on black phosphorus-porous graphene nanocomposites for high-performance detection of Hg2+. Chinese Chemical Letters, 2024, 35(11): 109561-. doi: 10.1016/j.cclet.2024.109561

    17. [17]

      Yihong LiZhong QiuLei HuangShenghui ShenPing LiuHaomiao ZhangFeng CaoXinping HeJun ZhangYang XiaXinqi LiangChen WangWangjun WanYongqi ZhangMinghua ChenWenkui ZhangHui HuangYongping GanXinhui Xia . Plasma enhanced reduction method for synthesis of reduced graphene oxide fiber/Si anode with improved performance. Chinese Chemical Letters, 2024, 35(11): 109510-. doi: 10.1016/j.cclet.2024.109510

    18. [18]

      Wenhao FengChunli LiuZheng LiuHuan PangIn-situ growth of N-doped graphene-like carbon/MOF nanocomposites for high-performance supercapacitor. Chinese Chemical Letters, 2024, 35(12): 109552-. doi: 10.1016/j.cclet.2024.109552

    19. [19]

      Manman OuYunjian ZhuJiahao LiuZhaoxuan LiuJianjun WangJun SunChuanxiang QinLixing Dai . Polyvinyl alcohol fiber with enhanced strength and modulus and intense cyan fluorescence based on covalently functionalized graphene quantum dots. Chinese Chemical Letters, 2025, 36(2): 110510-. doi: 10.1016/j.cclet.2024.110510

    20. [20]

      Xin Wang Changzhao Chen Qishen Wang Kai Dai . Graphene quantum dot modified Bi2MoO6 nanoflower for efficient degradation of BPA under visible light. Chinese Journal of Structural Chemistry, 2024, 43(12): 100473-100473. doi: 10.1016/j.cjsc.2024.100473

Metrics
  • PDF Downloads(1)
  • Abstract views(297)
  • HTML views(13)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return