Citation: Hong-Yun LAN, Shang-Chao HUO, Dao-Zhan HUANG, Yu-zhou LU. Synthesis, Crystal Structure and Antimicrobial Activity of (E)-2-(2-(4, 8, 8-Trimethyldecahydro-1, 4-methanoazulen-9-ylidene)ethyl)benzo[d]isothiazol-3(2H)-one[J]. Chinese Journal of Structural Chemistry, ;2020, 39(8): 1546-1552. doi: 10.14102/j.cnki.0254–5861.2011–2688 shu

Synthesis, Crystal Structure and Antimicrobial Activity of (E)-2-(2-(4, 8, 8-Trimethyldecahydro-1, 4-methanoazulen-9-ylidene)ethyl)benzo[d]isothiazol-3(2H)-one

  • Corresponding author: Dao-Zhan HUANG, huangdaozhan@gxun.edu.cn; hdz547008601@163.com
  • Received Date: 2 August 2019
    Accepted Date: 13 March 2020

    Fund Project: the Natural Science Foundation of Guangxi Zhuang Autonomous Region 2017GXNSFAA198027Special Fund for Innovation-driven Devlopment of Guangxi GUIKE AA17204087-21National Training Program of Innovation and Entrepreneurship for Undergraduates 201510608042

Figures(3)

  • The title compound (E)-2-(2-(4, 8, 8-trimethyldecahydro-1, 4-methanoazulen-9-ylidene)ethyl)benzo[d]isothiazol-3(2H)-one (Ic) was synthesized from longifolene and 1, 2-benzoisothiazolinone (short as BIT) through Prins, halogenation and nitro-alkylation reaction and structurally identified by means of HRMS, IR, 1H-NMR, 13C-NMR and single-crystal X-ray diffraction. The crystal of compound Ic is of bi-molecular structure and belongs to orthorhombic system, P212121 space group with a = 7.5715(7), b = 16.8824(9), c = 31.1926(14) Å, V = 3987.2(5) Å3, Mr = 367.53, Dc = 1.225 mg/m3, Z = 8, μ = 0.174 mm–1 and F(000) = 1584. A total of 17045 reflections were collected, of which 7306 were unique (Rint = 0.0566). The structure was refined to R = 0.0967 and wR = 0.1998 for 7306 observed reflections with I > 2σ(I). 1D chain along the a-axis is formed by two types of π-π interactions between benzene rings from adjacent molecules. Especially, compound Ic shows improved solubility in nonpolar organic solvents and higher antimicrobial activity than longifolene and BIT against bacteria and fungi. The minimum inhibition concentration (MIC) of Ic against two Gram-positive bacteria (S. aureus and B. subtili), two Gram-negative bacteria (E. coli and K. pneumoniae) and three fungi (C. albicans, C. tropicalis and A. niger) are 0.242, 0.242, 15.6, 15.6, 1.95, 1.95 and 1.95 µg/mL, respectively.
  • 加载中
    1. [1]

      Siegemund, A.; Taubert, K.; Schulze, B. 1, 2-Benzisothiazol-3(2H)-ones and heterocyclic annelated isothiazol-3(2H)-ones. Part 2. Synthesis, reactions, and biological activity. Sulfur Reports. 2002, 23, 279–319.

    2. [2]

      Wang, X. X.; Zhang, T. Y.; Dao, G. H.; Hu, H. Y. Interaction between 1, 2-benzisothiazol-3(2H)-one and microalgae: growth inhibition and detoxification mechanism. Aquat. Toxicol. 2018, 205, 66–75.  doi: 10.1016/j.aquatox.2018.10.002

    3. [3]

      Wang, X. X.; Zhang, Q. Q.; Wu, Y. H.; Dao, G. H.; Zhang, T. Y.; Tao, Y.; Hu, H. Y. The light-dependent lethal effects of 1, 2-benzisothiazol-3(2H)-one and its biodegradation by freshwater microalgae. Sci. Total Environ. 2019, 672, 563–571.  doi: 10.1016/j.scitotenv.2019.03.468

    4. [4]

      Lugg, M. J. Photodegradation of the biocide 1, 2-benziothiazolin-3-one used in a paper-based. Int. Biodeter. Biodegr. 2001, 48, 252–254.  doi: 10.1016/S0964-8305(01)00091-9

    5. [5]

      Zhang, K. Q.; Wang, J. H.; Wang, M.; Bu, R. Synthesis of N-alkyl-1, 2-benzisothiazdin-3-one. Chem. World 2019, 60, 291–294.

    6. [6]

      Noda, T.; Yamano, T.; Shimizu, M. Toxicity studies of N-n-butyl-1, 2-benzisothiazolin-3-one 1. Contact allergenicity of N-n-butyl-1, 2-benzisothiazolin-3-one in Guinea pigs. Seikatsu Eisei. 2001, 45, 137–142.

    7. [7]

      Dou, D.; Alex, D.; Du, B.; Tiew, K. C.; Aravapalli, S.; Mandadapu, S. R.; Calderone, R.; Groutas, W. C. Antifungal activity of a series of 1, 2-benzisothiazol-3(2H)-one derivatives. Bioorg. Med. Chem. 2011, 19, 5782–5787.  doi: 10.1016/j.bmc.2011.08.029

    8. [8]

      Wang, Z. C.; Deng, X. Z.; Wu, X. L.; J ian, L. S.; Zheng, Q. H. The synthesis of new odorous substances by isomerixation, oxidation & Prins reaction of longifolene. Chem. Res. Appl. 1996, 8, 364–368.

    9. [9]

      Luo, S. Y. A pesticide solvent. CN Patent, 104082283 A 2014-10-08.

    10. [10]

      Tsuruta, K.; Yoshida, Y.; Kusumoto, N.; Sekine, N.; Ashitani, T.; Takahashi, K. Inhibition activity of essential oils obtained from Japanese trees against Skeletonema costatum. J. Wood Sci. 2011, 57, 520–525.  doi: 10.1007/s10086-011-1209-7

    11. [11]

      Labib, R. M.; Youssef, F. S.; Ashour, M. L.; Búfalo, J.; Ross, S. A. Chemical composition and bioactivity of the essential oil of Pinus roxburghii bark. Planta Med. 2016, 81, S1–S381.

    12. [12]

      Bourgou, S.; Pichette, A.; Marzouk, B.; Legaul, J. Bioactivities of black cumin essential oil and its main terpenes from Tunisia. S. Af. J. Bot. 2010, 76, 210–216.  doi: 10.1016/j.sajb.2009.10.009

    13. [13]

      Himejima, M.; Hobson, K. R.; Otsuka, T.; Wood, D. L.; Kubo, I. Antimicrobial terpenes from oleoresin of ponderosa pine treepinus ponderosa: a defense mechanism against microbial invasion. J. Chem. Ecol. 1992, 18, 1809–1818.  doi: 10.1007/BF02751105

    14. [14]

      Lan, H. Y.; Li, Q. Y.; Huang, D. Z.; Li, L.; Li, Z. Y.; Zou, Y. Synthesis and antimicrobial activity of ω-chloromethyl longifolene. Fine Chem. 2018, 35, 125–1260.

    15. [15]

      Huang, D. Z.; Lan, H. Y.; Zhao, Z. Y. Preparation of highly pure longifolene and β-caryophyllene epoxide from heavy turpentine via catalytic oxidation. Fine Chem. 2016, 33, 674–692.

    16. [16]

      Nayak, U. R.; Santhanakrishnan, T. S.; Dev, S. Studies in sesquiterpenes—XX: acetoxymethylation of longifolene. Tetrahedron 1963, 19, 2281–2292.  doi: 10.1016/0040-4020(63)85044-9

    17. [17]

      Yadav, V. K.; Babu, K. G. Acetyl chloride-ethanol brings about a remarkably efficient conversion of allyl acetates into allyl chlorides. Tetrahedron 2003, 59, 9111–9116.  doi: 10.1016/j.tet.2003.09.063

    18. [18]

      Liu, W. D.; Wang, J. N.; Wu, J. M. Study on determining MIC of itraconazole and fluconazole against dermatophyte by microdilution test. J. Clin. Dermatol. 1997, 26, 228–230.

    19. [19]

      Xu, Z. G.; Gu, G. B.; Liu, H. Y. Crystal structure of dibenzothiophene sulfoxide and theoretical calculations on its π-π stacking interaction. Chem. 2007, 70, 782–786.

    20. [20]

      Mishra, B. K.; Sathyamurthy, N. π-π Interaction in pyridine. J. Phys. Chem. A 2005, 109, 6–8.

    21. [21]

      Janiak, C. A critical account on π-π stacking in metal complexes with aromatic nitrogen-containing ligands . J. Chem. Soc. Dalton Trans. 2000, 0, 3885–3896.

    22. [22]

      Sinnokrot, M. O.; Valeev, E. F.; Sherrill, C. D. Estimates of the ab initio limit for π-π interactions:  the benzene dimer. J. Am. Chem. Soc. 2002, 124, 10887–10893.  doi: 10.1021/ja025896h

    23. [23]

      Jacobs, D. L.; Chan, B. C.; O'Connor, A. R. N-[2-(Pyridin-2-yl)ethyl]-derivatives of methane-, benzene- and toluenesulfonamide: prospective ligands for metal coordination. Acta Cryst. 2013, 69, 1397–1401.

  • 加载中
    1. [1]

      Chao LIUJiang WUZhaolei JIN . Synthesis, crystal structures, and antibacterial activities of two zinc(Ⅱ) complexes bearing 5-phenyl-1H-pyrazole group. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1986-1994. doi: 10.11862/CJIC.20240153

    2. [2]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    3. [3]

      Xiumei LIYanju HUANGBo LIUYaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109

    4. [4]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    5. [5]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    6. [6]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    7. [7]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    8. [8]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    9. [9]

      Shuyan ZHAO . Field-induced Co single-ion magnet with pentagonal bipyramidal configuration. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1583-1591. doi: 10.11862/CJIC.20240231

    10. [10]

      Guangyao WangZhitong XuYe QiYueguang FangGuiling NingJunwei Ye . Electrospun nanofibrous membranes with antimicrobial activity for air filtration. Chinese Chemical Letters, 2024, 35(10): 109503-. doi: 10.1016/j.cclet.2024.109503

    11. [11]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    12. [12]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    13. [13]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    14. [14]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    15. [15]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    16. [16]

      Luyan ShiKe ZhuYuting YangQinrui LiangQimin PengShuqing ZhouTayirjan Taylor IsimjanXiulin Yang . Phytic acid-derivative Co2B-CoPOx coralloidal structure with delicate boron vacancy for enhanced hydrogen generation from sodium borohydride. Chinese Chemical Letters, 2024, 35(4): 109222-. doi: 10.1016/j.cclet.2023.109222

    17. [17]

      Zixu XiePengfei ZhangZiyao ZhangChen ChenXing Wang . The choice of antimicrobial polymers: Hydrophilic or hydrophobic?. Chinese Chemical Letters, 2024, 35(9): 109768-. doi: 10.1016/j.cclet.2024.109768

    18. [18]

      An LuYuhao GuoYi YanLin ZhaiXiangyu WangWeiran CaoZijie LiZhixia ZhaoYujie ShiYuanjun ZhuXiaoyan LiuHuining HeZhiyu WangJian-Cheng Wang . Nanomedicine integrating the lipidic derivative of 5-fluorouracil, miriplatin and PD-L1 siRNA for enhancing tumor therapy. Chinese Chemical Letters, 2024, 35(6): 108928-. doi: 10.1016/j.cclet.2023.108928

    19. [19]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    20. [20]

      Jiakun Bai Junhui Jia Aisen Li . An elastic organic crystal with piezochromic luminescent behavior. Chinese Journal of Structural Chemistry, 2024, 43(6): 100323-100323. doi: 10.1016/j.cjsc.2024.100323

Metrics
  • PDF Downloads(1)
  • Abstract views(178)
  • HTML views(7)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return