Citation: Hong-Yun LAN, Shang-Chao HUO, Dao-Zhan HUANG, Yu-zhou LU. Synthesis, Crystal Structure and Antimicrobial Activity of (E)-2-(2-(4, 8, 8-Trimethyldecahydro-1, 4-methanoazulen-9-ylidene)ethyl)benzo[d]isothiazol-3(2H)-one[J]. Chinese Journal of Structural Chemistry, ;2020, 39(8): 1546-1552. doi: 10.14102/j.cnki.0254–5861.2011–2688 shu

Synthesis, Crystal Structure and Antimicrobial Activity of (E)-2-(2-(4, 8, 8-Trimethyldecahydro-1, 4-methanoazulen-9-ylidene)ethyl)benzo[d]isothiazol-3(2H)-one

  • Corresponding author: Dao-Zhan HUANG, huangdaozhan@gxun.edu.cn; hdz547008601@163.com
  • Received Date: 2 August 2019
    Accepted Date: 13 March 2020

    Fund Project: the Natural Science Foundation of Guangxi Zhuang Autonomous Region 2017GXNSFAA198027Special Fund for Innovation-driven Devlopment of Guangxi GUIKE AA17204087-21National Training Program of Innovation and Entrepreneurship for Undergraduates 201510608042

Figures(3)

  • The title compound (E)-2-(2-(4, 8, 8-trimethyldecahydro-1, 4-methanoazulen-9-ylidene)ethyl)benzo[d]isothiazol-3(2H)-one (Ic) was synthesized from longifolene and 1, 2-benzoisothiazolinone (short as BIT) through Prins, halogenation and nitro-alkylation reaction and structurally identified by means of HRMS, IR, 1H-NMR, 13C-NMR and single-crystal X-ray diffraction. The crystal of compound Ic is of bi-molecular structure and belongs to orthorhombic system, P212121 space group with a = 7.5715(7), b = 16.8824(9), c = 31.1926(14) Å, V = 3987.2(5) Å3, Mr = 367.53, Dc = 1.225 mg/m3, Z = 8, μ = 0.174 mm–1 and F(000) = 1584. A total of 17045 reflections were collected, of which 7306 were unique (Rint = 0.0566). The structure was refined to R = 0.0967 and wR = 0.1998 for 7306 observed reflections with I > 2σ(I). 1D chain along the a-axis is formed by two types of π-π interactions between benzene rings from adjacent molecules. Especially, compound Ic shows improved solubility in nonpolar organic solvents and higher antimicrobial activity than longifolene and BIT against bacteria and fungi. The minimum inhibition concentration (MIC) of Ic against two Gram-positive bacteria (S. aureus and B. subtili), two Gram-negative bacteria (E. coli and K. pneumoniae) and three fungi (C. albicans, C. tropicalis and A. niger) are 0.242, 0.242, 15.6, 15.6, 1.95, 1.95 and 1.95 µg/mL, respectively.
  • 加载中
    1. [1]

      Siegemund, A.; Taubert, K.; Schulze, B. 1, 2-Benzisothiazol-3(2H)-ones and heterocyclic annelated isothiazol-3(2H)-ones. Part 2. Synthesis, reactions, and biological activity. Sulfur Reports. 2002, 23, 279–319.

    2. [2]

      Wang, X. X.; Zhang, T. Y.; Dao, G. H.; Hu, H. Y. Interaction between 1, 2-benzisothiazol-3(2H)-one and microalgae: growth inhibition and detoxification mechanism. Aquat. Toxicol. 2018, 205, 66–75.  doi: 10.1016/j.aquatox.2018.10.002

    3. [3]

      Wang, X. X.; Zhang, Q. Q.; Wu, Y. H.; Dao, G. H.; Zhang, T. Y.; Tao, Y.; Hu, H. Y. The light-dependent lethal effects of 1, 2-benzisothiazol-3(2H)-one and its biodegradation by freshwater microalgae. Sci. Total Environ. 2019, 672, 563–571.  doi: 10.1016/j.scitotenv.2019.03.468

    4. [4]

      Lugg, M. J. Photodegradation of the biocide 1, 2-benziothiazolin-3-one used in a paper-based. Int. Biodeter. Biodegr. 2001, 48, 252–254.  doi: 10.1016/S0964-8305(01)00091-9

    5. [5]

      Zhang, K. Q.; Wang, J. H.; Wang, M.; Bu, R. Synthesis of N-alkyl-1, 2-benzisothiazdin-3-one. Chem. World 2019, 60, 291–294.

    6. [6]

      Noda, T.; Yamano, T.; Shimizu, M. Toxicity studies of N-n-butyl-1, 2-benzisothiazolin-3-one 1. Contact allergenicity of N-n-butyl-1, 2-benzisothiazolin-3-one in Guinea pigs. Seikatsu Eisei. 2001, 45, 137–142.

    7. [7]

      Dou, D.; Alex, D.; Du, B.; Tiew, K. C.; Aravapalli, S.; Mandadapu, S. R.; Calderone, R.; Groutas, W. C. Antifungal activity of a series of 1, 2-benzisothiazol-3(2H)-one derivatives. Bioorg. Med. Chem. 2011, 19, 5782–5787.  doi: 10.1016/j.bmc.2011.08.029

    8. [8]

      Wang, Z. C.; Deng, X. Z.; Wu, X. L.; J ian, L. S.; Zheng, Q. H. The synthesis of new odorous substances by isomerixation, oxidation & Prins reaction of longifolene. Chem. Res. Appl. 1996, 8, 364–368.

    9. [9]

      Luo, S. Y. A pesticide solvent. CN Patent, 104082283 A 2014-10-08.

    10. [10]

      Tsuruta, K.; Yoshida, Y.; Kusumoto, N.; Sekine, N.; Ashitani, T.; Takahashi, K. Inhibition activity of essential oils obtained from Japanese trees against Skeletonema costatum. J. Wood Sci. 2011, 57, 520–525.  doi: 10.1007/s10086-011-1209-7

    11. [11]

      Labib, R. M.; Youssef, F. S.; Ashour, M. L.; Búfalo, J.; Ross, S. A. Chemical composition and bioactivity of the essential oil of Pinus roxburghii bark. Planta Med. 2016, 81, S1–S381.

    12. [12]

      Bourgou, S.; Pichette, A.; Marzouk, B.; Legaul, J. Bioactivities of black cumin essential oil and its main terpenes from Tunisia. S. Af. J. Bot. 2010, 76, 210–216.  doi: 10.1016/j.sajb.2009.10.009

    13. [13]

      Himejima, M.; Hobson, K. R.; Otsuka, T.; Wood, D. L.; Kubo, I. Antimicrobial terpenes from oleoresin of ponderosa pine treepinus ponderosa: a defense mechanism against microbial invasion. J. Chem. Ecol. 1992, 18, 1809–1818.  doi: 10.1007/BF02751105

    14. [14]

      Lan, H. Y.; Li, Q. Y.; Huang, D. Z.; Li, L.; Li, Z. Y.; Zou, Y. Synthesis and antimicrobial activity of ω-chloromethyl longifolene. Fine Chem. 2018, 35, 125–1260.

    15. [15]

      Huang, D. Z.; Lan, H. Y.; Zhao, Z. Y. Preparation of highly pure longifolene and β-caryophyllene epoxide from heavy turpentine via catalytic oxidation. Fine Chem. 2016, 33, 674–692.

    16. [16]

      Nayak, U. R.; Santhanakrishnan, T. S.; Dev, S. Studies in sesquiterpenes—XX: acetoxymethylation of longifolene. Tetrahedron 1963, 19, 2281–2292.  doi: 10.1016/0040-4020(63)85044-9

    17. [17]

      Yadav, V. K.; Babu, K. G. Acetyl chloride-ethanol brings about a remarkably efficient conversion of allyl acetates into allyl chlorides. Tetrahedron 2003, 59, 9111–9116.  doi: 10.1016/j.tet.2003.09.063

    18. [18]

      Liu, W. D.; Wang, J. N.; Wu, J. M. Study on determining MIC of itraconazole and fluconazole against dermatophyte by microdilution test. J. Clin. Dermatol. 1997, 26, 228–230.

    19. [19]

      Xu, Z. G.; Gu, G. B.; Liu, H. Y. Crystal structure of dibenzothiophene sulfoxide and theoretical calculations on its π-π stacking interaction. Chem. 2007, 70, 782–786.

    20. [20]

      Mishra, B. K.; Sathyamurthy, N. π-π Interaction in pyridine. J. Phys. Chem. A 2005, 109, 6–8.

    21. [21]

      Janiak, C. A critical account on π-π stacking in metal complexes with aromatic nitrogen-containing ligands . J. Chem. Soc. Dalton Trans. 2000, 0, 3885–3896.

    22. [22]

      Sinnokrot, M. O.; Valeev, E. F.; Sherrill, C. D. Estimates of the ab initio limit for π-π interactions:  the benzene dimer. J. Am. Chem. Soc. 2002, 124, 10887–10893.  doi: 10.1021/ja025896h

    23. [23]

      Jacobs, D. L.; Chan, B. C.; O'Connor, A. R. N-[2-(Pyridin-2-yl)ethyl]-derivatives of methane-, benzene- and toluenesulfonamide: prospective ligands for metal coordination. Acta Cryst. 2013, 69, 1397–1401.

  • 加载中
    1. [1]

      Yao HUANGYingshu WUZhichun BAOYue HUANGShangfeng TANGRuixue LIUYancheng LIUHong LIANG . Copper complexes of anthrahydrazone bearing pyridyl side chain: Synthesis, crystal structure, anticancer activity, and DNA binding. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 213-224. doi: 10.11862/CJIC.20240359

    2. [2]

      Jia JIZhaoyang GUOWenni LEIJiawei ZHENGHaorong QINJiahong YANYinling HOUXiaoyan XINWenmin WANG . Two dinuclear Gd(Ⅲ)-based complexes constructed by a multidentate diacylhydrazone ligand: Crystal structure, magnetocaloric effect, and biological activity. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 761-772. doi: 10.11862/CJIC.20240344

    3. [3]

      Chao LIUJiang WUZhaolei JIN . Synthesis, crystal structures, and antibacterial activities of two zinc(Ⅱ) complexes bearing 5-phenyl-1H-pyrazole group. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1986-1994. doi: 10.11862/CJIC.20240153

    4. [4]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    5. [5]

      Lulu DONGJie LIUHua YANGYupei FUHongli LIUXiaoli CHENHuali CUILin LIUJijiang WANG . Synthesis, crystal structure, and fluorescence properties of Cd-based complex with pcu topology. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 809-820. doi: 10.11862/CJIC.20240171

    6. [6]

      Xiumei LIYanju HUANGBo LIUYaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109

    7. [7]

      Xiumei LILinlin LIBo LIUYaru PAN . Syntheses, crystal structures, and characterizations of two cadmium(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 613-623. doi: 10.11862/CJIC.20240273

    8. [8]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    9. [9]

      Xiaoling WANGHongwu ZHANGDaofu LIU . Synthesis, structure, and magnetic property of a cobalt(Ⅱ) complex based on pyridyl-substituted imino nitroxide radical. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 407-412. doi: 10.11862/CJIC.20240214

    10. [10]

      Yan XUSuzhi LIYan LILushun FENGWentao SUNXinxing LI . Structure variation of cadmium naphthalene-diphosphonates with the changing rigidity of N-donor auxiliary ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 395-406. doi: 10.11862/CJIC.20240226

    11. [11]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    12. [12]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    13. [13]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    14. [14]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    15. [15]

      Shuyan ZHAO . Field-induced Co single-ion magnet with pentagonal bipyramidal configuration. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1583-1591. doi: 10.11862/CJIC.20240231

    16. [16]

      Yinling HOUJia JIHong YUXiaoyun BIANXiaofen GUANJing QIUShuyi RENMing FANG . A rhombic Dy4-based complex showing remarkable single-molecule magnet behavior. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 605-612. doi: 10.11862/CJIC.20240251

    17. [17]

      Guangyao WangZhitong XuYe QiYueguang FangGuiling NingJunwei Ye . Electrospun nanofibrous membranes with antimicrobial activity for air filtration. Chinese Chemical Letters, 2024, 35(10): 109503-. doi: 10.1016/j.cclet.2024.109503

    18. [18]

      Zhaodong WANGIn situ synthesis, crystal structure, and magnetic characterization of a trinuclear copper complex based on a multi-substituted imidazo[1,5-a]pyrazine scaffold. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 597-604. doi: 10.11862/CJIC.20240268

    19. [19]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    20. [20]

      Jiao ChenZihan ZhangGuojin SunYudi ChengAihua WuZefan WangWenwen JiangFulin ChenXiuying XieJianli Li . Benzo[4,5]imidazo[1,2-a]pyrimidine-based structure-inherent targeting fluorescent sensor for imaging lysosomal viscosity and diagnosis of lysosomal storage disorders. Chinese Chemical Letters, 2024, 35(11): 110050-. doi: 10.1016/j.cclet.2024.110050

Metrics
  • PDF Downloads(1)
  • Abstract views(290)
  • HTML views(7)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return