Citation: Xu-Min CAI, A-Liang LI, Yu-Ting LIN, Wen-Yan WANG, Shi-Fa WANG, Wen GU. Synthesis, Crystal Structure and Antibacterial Activity of New N-(1H-benzo[d]imidazol-2-yl)benzenesulfonamide Derivatives of Dehydroabietic Acid[J]. Chinese Journal of Structural Chemistry, ;2020, 39(8): 1539-1545. doi: 10.14102/j.cnki.0254–5861.2011–2640 shu

Synthesis, Crystal Structure and Antibacterial Activity of New N-(1H-benzo[d]imidazol-2-yl)benzenesulfonamide Derivatives of Dehydroabietic Acid

  • Corresponding author: Xu-Min CAI, njguwen@163.com Wen GU, xumin.cai@njfu.edu.cn
  • Received Date: 15 October 2019
    Accepted Date: 8 February 2020

    Fund Project: the National Natural Science Foundation of China 31770616the National Natural Science Foundation of China 21601087the Natural Science Foundation for Colleges and Universities in Jiangsu Province 17KJA220002Top-notch Academic Programs Project of Jiangsu Higher Education Institutions PPZY2015C221

Figures(2)

  • The title compounds (7a~7g) were synthesized from dehydroabietic acid and characterized by spectroscopic methods including HR-MS, 1H- and 13C-NMR. The crystal structure of compound 7g determined by single-crystal X-ray diffractio is of monoclinic system, space group P21 with a = 12.282(3), b = 9.940(2), c = 22.656(5) Å, β = 103.06(3)°, Z = 2, V = 2694.4(10) Å3, Mr = 1182.95, Dc = 1.458 Mg/m3, S = 1.000, μ = 1.649 mm-1, F(000) = 1216, the final R = 0.0791 and wR = 0.1853 for 4098 observed reflections (I > 2σ(I)). The preliminary antibacterial assay showed that compound 7g exhibits significant inhibitory against Bacillus subtilis, Staphylococcus aureus and Methicillin-resistant S. aureus (MRSA) with MIC values of 1.9~7.8 μg/mL.
  • 加载中
    1. [1]

      Kurasaki, H.; Tsuda, K.; Shinoyama, M.; Takaya, N.; Yamaguchi, Y.; Kishii, R.; Iwase, K.; Ando, N.; Nomura, M.; Kohno, Y. LpxC inhibitors: design, synthesis, and biological evaluation of oxazolidinones as gram-negative antibacterial agents. ACS Med. Chem. Lett. 2016, 7, 623−628.  doi: 10.1021/acsmedchemlett.6b00057

    2. [2]

      Devasahayam, G.; Scheld, W. M.; Hoffman, P. S. Newer antibacterial drugs for a new century. Expert Opin. Investig. Drugs 2010, 19, 215−234.  doi: 10.1517/13543780903505092

    3. [3]

      Chalothorn, T.; Rukachaisirikul, V.; Phongpaichit, S.; Pannara, S.; Tansakul, C. Synthesis and antibacterial activity of emodin and its derivatives against methicillin-resistant Staphylococcus Aureus. Tetra. Lett. 2019, 60, 151004, 1−5.

    4. [4]

      Li, X.; Ma, S. Advances in the discovery of novel antimicrobials targeting the assembly of bacterial cell division protein FtsZ. Eur. J. Med. Chem. 2015, 95, 1−15.  doi: 10.1016/j.ejmech.2015.03.026

    5. [5]

      Aviles, E.; Prudhomme, J.; Le Roch, K. G.; Franzblau, S. G.; Chandrasena, K.; Mayer, A. M. S.; Rodriguez, A. D. Synthesis and preliminary biological evaluation of a small library of hybrid compounds based on Ugi isocyanide multicomponent reactions with a marine natural product scaffold. Bioorg. Med. Chem. Lett. 2015, 25, 5339−5343.  doi: 10.1016/j.bmcl.2015.09.033

    6. [6]

      Leandro, L. F.; Cardoso, M. J.; Silva, S. D.; Souza, M. G.; Veneziani, R. C.; Ambrosio, S. R.; Martins, C. H. Antibacterial activity of Pinus elliottii and its major compound, dehydroabietic acid, against multidrug-​resistant strains. J. Med. Microbiol. 2014, 63, 1649−1653.  doi: 10.1099/jmm.0.081711-0

    7. [7]

      Chen, N. Y.; Duan, W. G.; Lin, G. S.; Liu, L. Z.; Zhang, R.; Li, D. P. Synthesis and antifungal activity of dehydroabietic acid-​based 1, ​3, ​4-​thiadiazole-​thiazolidinone compounds. Mol. Divers. 2016, 20, 897−905.  doi: 10.1007/s11030-016-9691-x

    8. [8]

      Hou, W.; Luo, Z.; Zhang, G. J.; Cao, D. H.; Li, D.; Ruan, H. Q.; Ruan, B. F. H.; Su, L.; Xu, H. T. Click chemistry-​based synthesis and anticancer activity evaluation of novel C-​14 1, ​2, ​3-​triazole dehydroabietic acid hybrids. Eur. J. Med. Chem. 2017, 138, 1042−1052.  doi: 10.1016/j.ejmech.2017.07.049

    9. [9]

      Vahermo, M.; Krogerus, S.; Nasereddin, A.; Kaiser, M.; Brun, R.; Jaffe, C. L.; Yli-Kauhaluoma, J.; Moreira, V. M. Antiprotozoal activity of dehydroabietic acid derivatives against Leishmania donovani and Trypanosoma cruzi. Med. Chem. Comm. 2016, 7, 457−463.

    10. [10]

      Roa-Linares, V. C.; Brand, Y. M.; Agudelo-Gomez, L. S.; Tangarife-Castano, V.; Betancur-Galvis, L. A.; Gallego-Gomez, J. C.; Gonzalez, M. A. Anti-​herpetic and anti-​dengue activity of abietane ferruginol analogues synthesized from (+)​-​dehydroabietylamine. Eur. J. Med. Chem. 2016, 108, 79−88.  doi: 10.1016/j.ejmech.2015.11.009

    11. [11]

      Kang, M. S.; Hirai, S.; Goto, T.; Kuroyanagi, K.; Lee, J. Y.; Uemura, T.; Ezaki, Y.; Takahashi, N.; Kawada, T. Dehydroabietic acid, a phytochemical, acts as ligand for PPARs in macrophages and adipocytes to regulate inflammation. Biochem. Biophys. Res. Commun. 2008, 369, 333−338.  doi: 10.1016/j.bbrc.2008.02.002

    12. [12]

      Kim, J.; Kang, Y. G.; Lee, J. Y.; Choi, D. H.; Cho, Y. U.; Shin, J. M.; Park, J. S.; Lee, J. H.; Kim, W. G.; Seo, D. B.; Lee, T. R.; Miyamoto, Y.; No, K. T. The natural phytochemical dehydroabietic acid is an anti-​aging reagent that mediates the direct activation of SIRT1. Mol. Cell Endocrinol. 2015, 412, 216−225.  doi: 10.1016/j.mce.2015.05.006

    13. [13]

      Zapata, B.; Rojas, M.; Betancur-Galvis, L.; Mesa-Arango, A. C.; Perez-Guaita, D.; Gonzalez, M. A. Cytotoxic, immunomodulatory, antimycotic, and antiviral activities of semisynthetic 14-​hydroxyabietane derivatives and triptoquinone C-​4 epimers. Med. Chem. Comm. 2013, 4, 1239−1246.  doi: 10.1039/c3md00151b

    14. [14]

      Zhang, W. M.; Yao, Y.; Yang, T.; Wang, X. Y.; Zhu, Z. Y.; Xu, W. T.; Lin, H. X.; Gao, Z. B.; Zhou, H.; Yang, C. G.; Cui, Y. M. The synthesis and antistaphylococcal activity of N-sulfonaminoethyloxime derivatives of dehydroabietic acid. Bioorg. Med. Chem. Lett. 2018, 28, 1943−1948.  doi: 10.1016/j.bmcl.2018.03.062

    15. [15]

      Berger, M.; Roller, A.; Maulide, N. Synthesis and antimicrobial evaluation of novel analogues of dehydroabietic acid prepared by C−H-activation. Eur. J. Med. Chem. 2017, 126, 937−943.  doi: 10.1016/j.ejmech.2016.12.012

    16. [16]

      Liu, M. L.; Pan, X. Y.; Yang, T.; Zhang, W. M.; Wang, T. Q.; Wang, H. Y.; Lin, H. X.; Yang, C. G.; Cui, Y. M. The synthesis and antistaphylococcal activity of dehydroabietic acid derivatives: modifications at C-12. Bioorg. Med. Chem. Lett. 2016, 26, 5492−5496.  doi: 10.1016/j.bmcl.2016.10.018

    17. [17]

      Shrivastava, N.; Naim, M. J.; Alam, M. J.; Nawaz, F.; Ahmed, S.; Alam, O. Benzimidazole scaffold as anticancer agent: synthetic approaches and structure-activity relationship. Arch. Pharm. Chem. Life Sci. 2017, 350, e1700040−80.

    18. [18]

      Liu, H. B.; Gao, W. W.; Tangadanchu, V. K. R.; Zhou, C. H.; Geng, R. X. Novel aminopyrimidinyl benzimidazoles as potentially antimicrobial agents: design, synthesis and biological evaluation. Eur. J. Med. Chem. 2018, 143, 66−84.  doi: 10.1016/j.ejmech.2017.11.027

    19. [19]

      Ranjan, N.; Story, S.; Fulcrand, G.; Leng, F. F.; Ahmad, M.; King, A.; Sur, S.; Wang, W. D.; Tse-Dinh, Y. C.; Arya, D. P. Selective inhibition of Escherichia coli RNA and DNA topoisomerase I by Hoechst 33258 derived mono- and bisbenzimidazoles. J. Med. Chem. 2017, 60, 4904−4922.  doi: 10.1021/acs.jmedchem.7b00191

    20. [20]

      Gitto, R.; De Luca, L.; Mancuso, F.; Del Prete, S.; Vullo, D.; Supuran, C. T.; Capasso, C. Seeking new approach for therapeutic treatment of cholera disease via inhibition of bacterial carbonic anhydrases: experimental and theoretical studies for sixteen benzenesulfonamide derivatives. J. Enzym. Inhib. Med. Ch. 2019, 34, 1186−1192.  doi: 10.1080/14756366.2019.1618292

    21. [21]

      Bua, S.; Osman, S. M.; Del Prete, S.; Capasso, C.; Al Othman, Z.; Nocentini, A.; Supuran, C. T. Click-​tailed benzenesulfonamides as potent bacterial carbonic anhydrase inhibitors for targeting Mycobacterium tuberculosis and Vibrio cholerae. Bioorg. Chem. 2019, 86, 183−186.  doi: 10.1016/j.bioorg.2019.01.065

    22. [22]

      Chen, H.; Geng, Y.; Wang, S. F.; Gu, W. Syntheses, crystal structures and antibacterial activities of two new methyl 12-alkylamino-13, 14-dinitrodeisopropyl-dehydroabietates. Chin. J. Struct. Chem. 2019, 38, 257−262.

    23. [23]

      Gu, W.; Miao, T. T.; Wang, S. F.; Hao, Y.; Zhang, K. P.; Jin, X. Y. Synthesis, crystal structure and antitumor activity of a new 3H-phenanthro-[2, 1-d]imidazole derivative of dehydroabietic acid. Chin. J. Struct. Chem. 2015, 34, 1440−1445.

    24. [24]

      Gu, W.; Wang, S. F. Synthesis and antimicrobial activities of novel 1H-dibenzo[a, c]carbazoles from dehydroabietic acid. Eur. J. Med. Chem. 2010, 45, 4692−4696.  doi: 10.1016/j.ejmech.2010.07.038

    25. [25]

      Ye, J.; Xuan, W. J.; Hu, A. X. Synthesis, crystal structure and fungicidal activity of (Z)-3, 3-dimethyl-1-(1H-1, 2, 4-triazol-1-yl)butan-2-one O-2-chlorobenzyl oxime nitrate. Chin. J. Struct. Chem. 2011, 30, 1265−1268.

    26. [26]

      Meng, L.; Shi, D. Q. Synthesis, crystal structure and biological activities of O-[(Z)-2-methylbenzyl] 1-phenyl-2-(1H-1, 2, 4-triazol-1-yl)ethanone oxime. Chin. J. Struct. Chem. 2009, 28, 307−310.

  • 加载中
    1. [1]

      Chao LIUJiang WUZhaolei JIN . Synthesis, crystal structures, and antibacterial activities of two zinc(Ⅱ) complexes bearing 5-phenyl-1H-pyrazole group. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1986-1994. doi: 10.11862/CJIC.20240153

    2. [2]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    3. [3]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    4. [4]

      Xiumei LIYanju HUANGBo LIUYaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109

    5. [5]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    6. [6]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    7. [7]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    8. [8]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    9. [9]

      Shuyan ZHAO . Field-induced Co single-ion magnet with pentagonal bipyramidal configuration. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1583-1591. doi: 10.11862/CJIC.20240231

    10. [10]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    11. [11]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    12. [12]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    13. [13]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    14. [14]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    15. [15]

      Yunfa DongShijie ZhongYuhui HeZhezhi LiuShengyu ZhouQun LiYashuai PangHaodong XieYuanpeng JiYuanpeng LiuJiecai HanWeidong He . Modification strategies for non-aqueous, highly proton-conductive benzimidazole-based high-temperature proton exchange membranes. Chinese Chemical Letters, 2024, 35(4): 109261-. doi: 10.1016/j.cclet.2023.109261

    16. [16]

      Zhenghua ZHAOQin ZHANGYufeng LIUZifa SHIJinzhong GU . Syntheses, crystal structures, catalytic and anti-wear properties of nickel(Ⅱ) and zinc(Ⅱ) coordination polymers based on 5-(2-carboxyphenyl)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 621-628. doi: 10.11862/CJIC.20230342

    17. [17]

      Weizhong LINGXiangyun CHENWenjing LIUYingkai HUANGYu LI . Syntheses, crystal structures, and catalytic properties of three zinc(Ⅱ), cobalt(Ⅱ) and nickel(Ⅱ) coordination polymers constructed from 5-(4-carboxyphenoxy)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1803-1810. doi: 10.11862/CJIC.20240068

    18. [18]

      Yiyue DingQiuxiang ZhangLei ZhangQilu YaoGang FengZhang-Hui Lu . Exceptional activity of amino-modified rGO-immobilized PdAu nanoclusters for visible light-promoted dehydrogenation of formic acid. Chinese Chemical Letters, 2024, 35(7): 109593-. doi: 10.1016/j.cclet.2024.109593

    19. [19]

      Luyan ShiKe ZhuYuting YangQinrui LiangQimin PengShuqing ZhouTayirjan Taylor IsimjanXiulin Yang . Phytic acid-derivative Co2B-CoPOx coralloidal structure with delicate boron vacancy for enhanced hydrogen generation from sodium borohydride. Chinese Chemical Letters, 2024, 35(4): 109222-. doi: 10.1016/j.cclet.2023.109222

    20. [20]

      Jinjie LuQikai LiuYuting ZhangYi ZhouYanbo Zhou . Antibacterial performance of cationic quaternary phosphonium-modified chitosan polymer in water. Chinese Chemical Letters, 2024, 35(9): 109406-. doi: 10.1016/j.cclet.2023.109406

Metrics
  • PDF Downloads(1)
  • Abstract views(163)
  • HTML views(3)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return