Citation: Yu-Han LI, Yu YANG, Hui-Chao GUAN, Min ZHANG, Lin-Lin XU, Shu-Mei YUE. Syntheses, Crystal Structures and DNA-binding Properties of Cd(Ⅱ), Co(Ⅱ), Cu(Ⅱ) and Zn(Ⅱ) Complexes Containing Imidazolium Derivatives[J]. Chinese Journal of Structural Chemistry, ;2020, 39(2): 356-367. doi: 10.14102/j.cnki.0254–5861.2011–2633 shu

Syntheses, Crystal Structures and DNA-binding Properties of Cd(Ⅱ), Co(Ⅱ), Cu(Ⅱ) and Zn(Ⅱ) Complexes Containing Imidazolium Derivatives

  • Corresponding author: Shu-Mei YUE, 1620520613@qq.com
  • Received Date: 9 October 2019
    Accepted Date: 27 November 2019

Figures(13)

  • Cd(Ⅱ), Co(Ⅱ), Cu(Ⅱ) and Zn(Ⅱ) complexes (1~4) based on 2-(2-pyridyl)benzi-midazole (pbm) and 4, 4΄-oxybisbenzoic acid (H2odc) were synthesized. The formulas of these complexes are [Cd(pbm)(odc)2] (1), [Co(pbm)(odc)2] (2), [Cu(pbm)(odc)2] (3) and [Zn(pbm)(odc)2] (4) confirmed by single-crystal X-ray diffraction analysis, which shows that complexes 1, 2 and 4 belong to monoclinic system with space group P21/n, while complex 3 belongs to monoclinic system with space group P21/c. The binding properties of complexes 1~4 with CT-DNA are evaluated by ultraviolet spectrum, fluorescence spectra and viscosity measurements. The results indicate that complexes 1~4 have strong interaction with CT-DNA binding. These complexes exhibit an electrostatic or groove mode in respect of binding with DNA, which can effectively destroy DNA. And this binding mode may be applied to the interaction between the complexes and cancer cell DNA. Therefore, we hope to provide a theoretical and scientific basis for the research of anti-cancer drugs.
  • 加载中
    1. [1]

      Zhao, F. H.; Jia, X. M.; He, Y. C.; Huang, L. W.; Yan, X. Q. Syntheses and magnetic properties of three transition metal complexes based on 4΄-p-tolyl-2, 2΄: 6΄, 2΄΄-terpyridine and SCN. Polyhedron 2019, 173, 114–124.

    2. [2]

      Liu, Y. T.; Yang, L. S.; Yin, D. W.; Dang, Y.; Yang, L. Solvent-free synthesis, characterization, biological activity of Schiff bases and their metal(Ⅱ) complexes derived from ferrocenyl chalcone. J. Organomet. Chem. 2019, 899, 120903.  doi: 10.1016/j.jorganchem.2019.120903

    3. [3]

      Marichev, K. O.; Patil, S. A.; Bugarin, A. Recent advances in the synthesis, structural diversity, and applications of mesoionic 1, 2, 3-triazol-5-ylidene metal complexes. Tetrahedron 2018, 74, 2523–2546.  doi: 10.1016/j.tet.2018.04.013

    4. [4]

      Feng, Y. Q.; Bi, D. Q.; Hu, Y. L.; Zhong, Z. G. Ionothermal synthesis, crystal structure and antibacterial activities of a new 3d-4f hetero-metallic compound containing two kinds of ligands. Chin. J. Struct. Chem. 2015, 34, 1598–1605.

    5. [5]

      Mallela, R.; Konakanchi, R.; Guda, R.; Munirathinam, N.; Gandamalla, D.; Yellu, N. R. Zn(Ⅱ), Cd(Ⅱ) and Hg(Ⅱ) metal complexes of 2-aminonicotinaldehyde: synthesis, crystal structure, biological evaluation and molecular docking study. Inorg. Chim. Acta 2018, 469, 66–75.  doi: 10.1016/j.ica.2017.08.042

    6. [6]

      Roozbahani, P.; Salehi, M.; Malekshah, R. E.; Kubicki, M. Synthesis, crystal structure, electrochemical behavior and docking molecular of poly-nuclear metal complexes of Schiff base ligand derived from 2-amino benzyl alcohol. Inorg. Chim. Acta 2019, 496, 119022.  doi: 10.1016/j.ica.2019.119022

    7. [7]

      Qiao, Y.; Zhou, Y. F.; Guan, W. S.; Liu, L. H.; Liu, B.; Che, G. B. Syntheses, structures, and photocatalytic properties of two new one-dimensional chain transition metal complexes with mixed N, O-donor ligands. Inorg. Chim. Acta 2017, 466, 291–297.  doi: 10.1016/j.ica.2017.06.018

    8. [8]

      Chai, X. C.; Gao, X. N.; Li, H.; Zhang, H. H.; Han, Q. P. Two coordination novel polymers based on a flexible ligand N, N΄-diacetic acid imidazolium. Chin. J. Struct. Chem. 2017, 36, 463–470.

    9. [9]

      Fan, C. B.; Wang, Y. L.; Xu, W. Y.; Liu, Q. Y. Ionothermal synthesis and characterization of a three-dimensional anionic zinc-5-sulfoisophthalate framework charge-balanced with the 1-Ethyl-3-methylimidazolium. Chin. J. Struct. Chem. 2016, 35, 77–84.

    10. [10]

      Deng, G. G.; Zhou, B.; Wang, J.; Chen, Z.; Gong, L.; Gong, Y. X. Synthesis and antitumor activity of novel steroidal imidazolium salt derivatives. Eur. J. Med. Chem. 2019, 168, 232–252.  doi: 10.1016/j.ejmech.2019.02.025

    11. [11]

      Gan, Z. J.; Tian, Q. Q.; Shang, S. Q.; Luo, W.; Dai, Z. S.; Wang, H. J.; Li, D.; Wang, X. T.; Yuan, J. Y. Imidazolium chloride-catalyzed synthesis of benzimidazoles and 2-substituted benzimidazoles from o-phenylenediamines and DMF derivatives. Tetrahedron 2018, 74, 7450–7456.  doi: 10.1016/j.tet.2018.11.014

    12. [12]

      Juan, B.; Jingan, Z. Study and application of benzimidazolium substituted amines and their metal complexes. J. Guangdong Trace Element Science 2008, 15, 1–6.

    13. [13]

      Yuan, W. G.; Ting, W.; Zhang, H. L.; Zhao, B.; Xiong, F.; Jing, L. H.; Qin. D. B. Two amine-tethered imidazolium NHC Ni(Ⅱ) complexes: synthesis, structure and catalytic activity. Chin. J. Struct. Chem. 2014, 33, 325–332.

    14. [14]

      Alfaif, M. Y.; Elbehairi, S. E. I.; Hafez, H. S. Spectroscopic exploration of binding of new imidazolium-based palladium(Ⅱ) saldach complexes with CT-DNA as anticancer agents against HER2/neu overexpression. J. Mol. Struct. 2019, 1191, 118–128.  doi: 10.1016/j.molstruc.2019.04.119

    15. [15]

      Zhou, Q. H.; Yang, F. S. Spectroscopic study on the interaction mode of bis-(2-benzimidazolyl methylene) amine copper(Ⅱ) complex with DNA. J. Chem. 2005, 63, 71–74.

    16. [16]

      Zhou, Q. H.; Yang, F. S. Hydrolysis and cleavage of(Ⅱ) complex with bis(2-benzimidazolyl methylene) amine manganese complex. J. Chem. 2005, 21, 960–964.

    17. [17]

      Gamov, G. A.; Zavalishin, M. N.; Sharnin, V. A. Comment on the frequently used method of the metal complex-DNA binding constant determination from UV-Vis data. Spectrochimica Acta A 2019, 206, 160–164.  doi: 10.1016/j.saa.2018.08.009

    18. [18]

      Fathima, S. S. A.; Paulpandiyan, R.; Nagarajan, E. R. Expatiating biological excellence of aminoantipyrine derived novel metal complexes: combined DNA interaction, antimicrobial, free radical scavenging studies and molecular docking simulations. J. Mol. Catal. A-Chem. 2019, 1178, 179–191.

    19. [19]

      Hegde, D.; Naik, G. N.; Vadavi, R. S.; Kumar, V. S.; Barretto, D. A.; Gudasi, K. B. Transition metal complexes of N΄-(2-(hydroxyimino) propanoyl) isonicotinohydrazide: synthesis, characterization, DNA interaction and anticancer evaluation. Inorg. Chim. Acta 2017, 461, 301–315.  doi: 10.1016/j.ica.2017.02.034

    20. [20]

      Li, S.; Miao, T. F.; Fu, X. L.; Ma, F.; Gao, H.; Zhang, G. P. Theoretical study on the DNA interaction properties of copper(Ⅱ) complexes. Comput. Biol. Chem. 2019, 80, 244–248.  doi: 10.1016/j.compbiolchem.2019.03.021

    21. [21]

      Marzieh, A.; Masoud, T. M. In vitro DNA and BSA-binding, cell imaging and anticancer activity against human carcinoma cell lines of mixed ligand copper(Ⅱ) complexes. Spectrochimica Acta A 2015, 150, 390–402.  doi: 10.1016/j.saa.2015.05.076

    22. [22]

      Sharma, N. K.; Ameta, R. K.; Singh, M. Spectrophotometric and physicochemical studies of newly synthesized anticancer Pt(Ⅳ) complexes and their interactions with CT-DNA. J. Mol. Liq. 2016, 222, 752–761.  doi: 10.1016/j.molliq.2016.07.101

    23. [23]

      Kumar, A.; Kumar, A.; Gupta, R. K.; Paitandi, R. P.; Singh, K. B. Cationic Ru(Ⅱ), Rh(Ⅲ) and Ir(Ⅲ) complexes containing cyclic π-perimeter and 2-aminophenyl benzimidazole ligands: synthesis, molecular structure, DNA and protein binding, cytotoxicity and anticancer activity. J. Organomet. Chem. 2016, 801, 68–79.  doi: 10.1016/j.jorganchem.2015.10.008

    24. [24]

      Dehkhodaei, M.; Sahihi, M.; Rudbari, H. A.; Gharaghani, S.; Azadbakht, R.; Taheri, S.; Kajani, A. A. Studies of DNA- and HSA-binding properties of new nano-scale green synthesized Ni(Ⅱ) complex as anticancer agent using spectroscopic methods, viscosity measurement, molecular docking, MD simulation and QM/MM. J. Mol. Liq. 2017, 248, 24–35.  doi: 10.1016/j.molliq.2017.10.044

    25. [25]

      Hou, T. T.; Bian, J. Y.; Yue, X. R.; Yue, S. M.; Ma, J. F. Synthesis, crystal structure, photoluminescence and theoretical studies of a series of copper(Ⅰ) compounds based on imidazole derivatives. Inorg. Chim. Acta 2013, 394, 15–20.  doi: 10.1016/j.ica.2012.07.020

    26. [26]

      Hou, T. T.; Yue, S. M.; Yue, X. R.; Ma, J. F. Syntheses, crystal structures, and properties of nickel and cadmium complexes containing imidazole derivatives. J. Coord. Chem. 2012, 65: 22, 3895–3902.

    27. [27]

      Yue, X. R.; Chen, Y. N.; Yang, G. C.; Yue, S. M.; Su, Z. M. Synthesis, crystal structures and DNA-binding properties of Cd(Ⅱ), Cu(Ⅱ) and Ni(Ⅱ) complexes with 2-(2-pyridyl) benzothiazole. Synth. Met. 2015, 200, 1–6.  doi: 10.1016/j.synthmet.2014.12.022

    28. [28]

      Yue, S. M.; Qi, S.; Li, Y. H.; Yang, Y. Syntheses, crystal structures and DNA-binding properties of Zn(Ⅱ), Ni(Ⅱ) and Co(Ⅱ) compounds containing thiazole derivatives. J. Struct. Chem. 2018, 37, 1945–1959.

    29. [29]

      Sheldrick, G. M. Acta Crystallog A 2008, 64, 112.  doi: 10.1107/S0108767307043930

    30. [30]

      Sheldrick, G. M. Acta Cryst. 2015, C71, 3–8.

    31. [31]

      Schmidt, M. W.; Baldridge, K. K.; Boatz, J. A.; Elbert, S. T.; Gordon, M. S. General atomic and molecular electronic structure system. J. Comput. Chem. 1993, 14, 1347–1363.  doi: 10.1002/jcc.540141112

    32. [32]

      Guo, Q.; Zhang, Z. H.; Song, Y. T.; Liu, S.; Gao, W.; Qiao, H.; Guo, L. L. Investigation on interaction of DNA and several cationic surfactants with different head groups by spectroscopy, gel electrophoresis and viscosity technologies. Chemosphere 2017, 168, 599–605.  doi: 10.1016/j.chemosphere.2016.11.019

    33. [33]

      Bonacorso, H. G.; Calheiro, T. P.; Iglesias, B. A.; Silveira, C. H. D. Multinuclear NMR spectroscopy, photophysical, electrochemical and DNA-binding properties of fluorinated 1, 8-naphthyridine-based boron heterocycles. J. Fluorine Chem. 2018, 205, 8–14.  doi: 10.1016/j.jfluchem.2017.11.006

    34. [34]

      Silveira, C. H. D.; Garoforo, E. N.; Chaves, O. A.; Gonçalves, P. F. B.; Streit, L. Synthesis, spectroscopy, electrochemistry and DNA interactive studies of meso-tetra (1-naphthyl) porphyrin and its metal complexes. Inorg. Chim. Acta 2018, 482, 542–553.  doi: 10.1016/j.ica.2018.06.052

    35. [35]

      Ding, P. P.; Wang, Y.; Kou, H. Z.; Li, J. F.; Shi, B. X. Synthesis of heterobinuclear Cu(Ⅱ)-Ni(Ⅱ) complex: structure, CT-DNA interaction, hydrolytic function and antibacterial studies. J. Mol. Struct. 2019, 1196, 836–843.  doi: 10.1016/j.molstruc.2019.06.081

    36. [36]

      Daravath, S.; Vamsikrishna, N.; Ganji, N.; Venkateswarlu, K. Synthesis, characterization, DNA binding ability, nuclease efficacy and biological evaluation studies of Co(Ⅱ), Ni(Ⅱ) and Cu(Ⅱ) complexes with benzothiazole Schiff base. Chemical Data Collections 2018, 17–18, 159–168.

    37. [37]

      Goswami, S.; Ray, S.; Sarkar, M. Spectroscopic studies on the interaction of DNA with the copper complexes of NSAIDs lornoxicam and isoxicam. International Int. J. Biol. Macromol. 2016, 93, 47–56.  doi: 10.1016/j.ijbiomac.2016.08.025

    38. [38]

      Bandyopadhyay, N.; Pradhan, A. B.; Das, S.; Lu, L.; Zhu, M. Synthesis, structure, DFT calculations, electrochemistry, fluorescence, DNA binding and molecular docking aspects of a novel oxime based ligand and its palladium(Ⅱ) complex. J. Photoch. Photobio. B 2016, 160, 336–346.  doi: 10.1016/j.jphotobiol.2016.04.026

    39. [39]

      Alreja, P.; Kaur, N. DNA and copper(Ⅱ) governed fluorescence tuning of phenanthroline possessing Ru(Ⅱ) complex. Interplay of electrostatic interactions. Inorg. Chem. Commun. 2017, 77, 51–54.  doi: 10.1016/j.inoche.2017.01.033

    40. [40]

      Palanimuthu, D.; Samuelson, A. G. Dinuclear zinc bis(thiosemicarbazone) compounds: synthesis, in vitro anticancer activity, cellular uptake and DNA interaction study. Inorg. Chim. Acta 2013, 408, 152–161.  doi: 10.1016/j.ica.2013.09.014

    41. [41]

      Keypour, H. K.; Forouzandeh, F.; Salehzadeh, S.; Hajibabaei, F.; Feizi, S.; Karamian, R. DNA binding studies and antibacterial properties of a new Schiff base ligand containing homopiperazine and products of its reaction with Zn(Ⅱ), Cu(Ⅱ) and Co(Ⅱ) metal ions: X-ray crystal structure of Cu(Ⅱ) and Zn(Ⅱ) complexes. Polyhedron 2019, 170, 584–592.  doi: 10.1016/j.poly.2019.06.023

    42. [42]

      Saeidifar, M.; Mirzaei, H.; Nasab, N. A.; Torshizi, H. M. Mononuclear Pd(Ⅱ) complex as a new therapeutic agent: synthesis, characterization, biological activity, spectral and DNA binding approaches. J. Mol. Struct. 2017, 1148, 339–346.  doi: 10.1016/j.molstruc.2017.06.139

    43. [43]

      Shankaraiah, N.; Jadala, C.; Nekkanti, S.; Senwar, K. R.; Nagesh, N.; Shrivastava, S. Design and synthesis of C3-tethered 1, 2, 3-triazolo-β-carboline derivatives: anticancer activity, DNA-binding ability, viscosity and molecular modeling studies. Bioorg. Chem. 2016, 64, 42–50.  doi: 10.1016/j.bioorg.2015.11.005

  • 加载中
    1. [1]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    2. [2]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    3. [3]

      Xiumei LIYanju HUANGBo LIUYaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109

    4. [4]

      Chao LIUJiang WUZhaolei JIN . Synthesis, crystal structures, and antibacterial activities of two zinc(Ⅱ) complexes bearing 5-phenyl-1H-pyrazole group. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1986-1994. doi: 10.11862/CJIC.20240153

    5. [5]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    6. [6]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    7. [7]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    8. [8]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    9. [9]

      Shuyan ZHAO . Field-induced Co single-ion magnet with pentagonal bipyramidal configuration. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1583-1591. doi: 10.11862/CJIC.20240231

    10. [10]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    11. [11]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    12. [12]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    13. [13]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    14. [14]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    15. [15]

      Zhijia ZhangShihao SunYuefang ChenYanhao WeiMengmeng ZhangChunsheng LiYan SunShaofei ZhangYong Jiang . Epitaxial growth of Cu2-xSe on Cu (220) crystal plane as high property anode for sodium storage. Chinese Chemical Letters, 2024, 35(7): 108922-. doi: 10.1016/j.cclet.2023.108922

    16. [16]

      Shiqi PengYongfang RaoTan LiYufei ZhangJun-ji CaoShuncheng LeeYu Huang . Regulating the electronic structure of Ir single atoms by ZrO2 nanoparticles for enhanced catalytic oxidation of formaldehyde at room temperature. Chinese Chemical Letters, 2024, 35(7): 109219-. doi: 10.1016/j.cclet.2023.109219

    17. [17]

      Liang Ma Zhou Li Zhiqiang Jiang Xiaofeng Wu Shixin Chang Sónia A. C. Carabineiro Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2023.100416

    18. [18]

      Wenhao ChenMuxuan WuHan ChenLue MoYirong Zhu . Cu2Se@C thin film with three-dimensional braided structure as a cathode material for enhanced Cu2+ storage. Chinese Chemical Letters, 2024, 35(5): 108698-. doi: 10.1016/j.cclet.2023.108698

    19. [19]

      Zhenghua ZHAOQin ZHANGYufeng LIUZifa SHIJinzhong GU . Syntheses, crystal structures, catalytic and anti-wear properties of nickel(Ⅱ) and zinc(Ⅱ) coordination polymers based on 5-(2-carboxyphenyl)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 621-628. doi: 10.11862/CJIC.20230342

    20. [20]

      Luyan ShiKe ZhuYuting YangQinrui LiangQimin PengShuqing ZhouTayirjan Taylor IsimjanXiulin Yang . Phytic acid-derivative Co2B-CoPOx coralloidal structure with delicate boron vacancy for enhanced hydrogen generation from sodium borohydride. Chinese Chemical Letters, 2024, 35(4): 109222-. doi: 10.1016/j.cclet.2023.109222

Metrics
  • PDF Downloads(1)
  • Abstract views(163)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return