Citation: Dong-Mei LI, Juan GUO. A Co(II) Coordination Polymer: Crystal Structure and Treatment Effect on Anxiety and Insomnia by Reducing Sympathetic Excitability[J]. Chinese Journal of Structural Chemistry, ;2020, 39(8): 1509-1514. doi: 10.14102/j.cnki.0254–5861.2011–2632 shu

A Co(II) Coordination Polymer: Crystal Structure and Treatment Effect on Anxiety and Insomnia by Reducing Sympathetic Excitability

  • Corresponding author: Juan GUO, juan_guo12@sina.com
  • Received Date: 9 October 2019
    Accepted Date: 4 December 2019

Figures(4)

  • A new coordination polymer, [Co2(L)2(H2O)2]n·H2O (1, H2L = 5-(1H-1, 2, 4-triazol-1-yl)-1, 3-benzenedicarboxylic acid), was constructed by hydrothermal condition reaction of Co(NO3)2·6H2O and H2L at the pH value of 5.6. The as-prepared complex 1 was characterized by elemental analysis, IR and single-crystal X-ray diffraction. Furthermore, a green hand grinding technique has been implemented to reduce the particle size of complex 1 to generate nanoscale 1 (denoted as nano 1 hereafter) with spherical morphology. Furthermore, the treatment of the compound on anxiety and insomnia was evaluated. Firstly, the ELISA was used to detect the content of serotonin, gamma-aminobutyric acid in the brain. Besides, the Rat sleep phase detection was determined by pentobarbital synergistic sleep experiment.
  • 加载中
    1. [1]

      Boentert, M. Sleep disturbances in patients with amyotrophic lateral sclerosis: current perspectives. Nat. Sci. Sleep 2019, 11, 97–111.  doi: 10.2147/NSS.S183504

    2. [2]

      Gao, J.; Wang, Q.; Huang, Y.; Tang, K.; Yang, X.; Cao, Z. In silico study of anti-insomnia mechanism for suanzaoren prescription. Front. Pharmacol. 2019, 10, 925–925.  doi: 10.3389/fphar.2019.00925

    3. [3]

      Oh, C. M.; Kim, H. Y.; Na, H. K.; Cho, K. H.; Chu, M. K. The effect of anxiety and depression on sleep quality of individuals with high risk for insomnia: a population-based study. Front. Neurol. 2019, 10, 849–849.  doi: 10.3389/fneur.2019.00849

    4. [4]

      Zhong, B. L.; Xu, Y. M.; Xie, W. X.; Lu, J. Frequent nightmares in Chinese patients undergoing methadone maintenance therapy: prevalence, correlates, and their association with functional impairment. Neuropsych. Dis. Treat. 2019, 15, 2063–2072.  doi: 10.2147/NDT.S202813

    5. [5]

      Biradha, K.; Ramanan, A.; Vittal, J. J. Coordination polymers versus metal-organic frameworks. Cryst. Growth Des. 2009, 9, 2969–2970.  doi: 10.1021/cg801381p

    6. [6]

      Batten, S. R.; Champness, N. R.; Chen, X. M.; Garcia-Martinez, J.; Kitagawa, S.; Öhrström, L.; O'Keeffe, M.; Suh, M. P.; Reedijk, J. Coordination polymers, metal-organic frameworks and the need for terminology guidelines. CrystEngComm. 2012, 14, 3001–3004.  doi: 10.1039/c2ce06488j

    7. [7]

      Heine, J.; Müller-Buschbaum, K. Engineering metal-based luminescence in coordination polymers and metal-organic frameworks. Chem. Soc. Rev. 2013, 42, 9232–9242.  doi: 10.1039/c3cs60232j

    8. [8]

      Wang, G. Y.; Yang, L. L.; Li, Y.; Song, H.; Ruan, W. J.; Chang, Z.; Bu, X. H. A luminescent 2D coordination polymer for selective sensing of nitrobenzene. Dalton T. 2013, 42, 12865–12868.  doi: 10.1039/c3dt51450a

    9. [9]

      Yamada, T.; Otsubo, K.; Makiura, R.; Kitagawa, H. Designer coordination polymers: dimensional crossover architectures and proton conduction. Chem. Soc. Rev. 2013, 42, 6655–6669.  doi: 10.1039/c3cs60028a

    10. [10]

      Su, P.; Jiang, L.; Zhao, J.; Yan, J.; Li, C.; Yang, Q. Mesoporous graphitic carbon nanodisks fabricated via catalytic carbonization of coordination polymers. Chem. Commun. 2012, 48, 8769–8771.  doi: 10.1039/c2cc34234k

    11. [11]

      Liu, T. F.; Lü, J.; Cao, R. Coordination polymers based on flexible ditopic carboxylate or nitrogen-donor ligands. CrystEngComm. 2010, 12, 660–670.  doi: 10.1039/B914145F

    12. [12]

      Oh, M.; Stern, C. L.; Mirkin, C. A. Coordination polymers from silver(I) and bifunctional pyridyl ligands. Inorg. Chem. 2005, 44, 2647–2653.  doi: 10.1021/ic0482990

    13. [13]

      Xue, X.; Wang, X. S.; Wang, L. Z.; Xiong, R. G.; Abrahams, B. F.; You, X. Z.; Xue, Z. L.; Che, C. M. Hydrothermal preparation of novel Cd(II) coordination polymers employing 5-(4-pyridyl)tetrazolate as a bridging ligand. Inorg. Chem. 2002, 41, 6544–6546.  doi: 10.1021/ic0257118

    14. [14]

      Wu, M. F.; Zheng, F. K.; Wu, A. Q.; Li, Y.; Wang, M. S.; Zhou, W. W.; Chen, F.; Guo, G. C.; Huang, J. S. Hydrothermal syntheses, crystal structures and luminescent properties of zinc(II) coordination polymers constructed by bifunctional tetrazolate-5-carboxylate ligands. CrystEngComm. 2010, 12, 260–269.  doi: 10.1039/B909754F

    15. [15]

      Wu, M. F.; Zheng, F. K.; Xu, G.; Wu, A. Q.; Li, Y.; Chen, H. F.; Guo, S. P.; Chen, F.; Liu, Z. F.; Guo, G. C.; Huang, J. S. Hydrothermal syntheses, structures and luminescent properties of group IIB metal coordination polymers based on bifunctional 1H-tetrazolate-5-acetic acid ligand. Inorg. Chem. Commun. 2010, 13, 250–253.  doi: 10.1016/j.inoche.2009.11.023

    16. [16]

      Bondar, O. A.; Lukashuk, L. V.; Lysenko, A. B.; Krautscheid, H.; Rusanov, E. B.; Chernega, A. N.; Domasevitch, K. V. New microporous copper(II) coordination polymers based upon bifunctional 1, 2, 4-triazole/tetrazolate bridges. CrystEngComm. 2008, 10, 1216–1226.  doi: 10.1039/b806671j

  • 加载中
    1. [1]

      Hengying XiangNanping DengLu GaoWen YuBowen ChengWeimin Kang . 3D core-shell nanofibers framework and functional ceramic nanoparticles synergistically reinforced composite polymer electrolytes for high-performance all-solid-state lithium metal battery. Chinese Chemical Letters, 2024, 35(8): 109182-. doi: 10.1016/j.cclet.2023.109182

    2. [2]

      Guorong LiYijing WuChao ZhongYixin YangZian Lin . Predesigned covalent organic framework with sulfur coordination: Anchoring Au nanoparticles for sensitive colorimetric detection of Hg(Ⅱ). Chinese Chemical Letters, 2024, 35(5): 108904-. doi: 10.1016/j.cclet.2023.108904

    3. [3]

      Xinyi Hu Riguang Zhang Zhao Jiang . Depositing the PtNi nanoparticles on niobium oxide to enhance the activity and CO-tolerance for alkaline methanol electrooxidation. Chinese Journal of Structural Chemistry, 2023, 42(11): 100157-100157. doi: 10.1016/j.cjsc.2023.100157

    4. [4]

      Yuexi Guo Zhaoyang Li Jingwei Dai . Charlie and the 3D Printing Chocolate Factory. University Chemistry, 2024, 39(9): 235-242. doi: 10.3866/PKU.DXHX202309067

    5. [5]

      Jisheng LiuJunli ChenXifeng ZhangYin WuXin QiJie WangXiang Gao . Red blood cell membrane-coated FLT3 inhibitor nanoparticles to enhance FLT3-ITD acute myeloid leukemia treatment. Chinese Chemical Letters, 2024, 35(9): 109779-. doi: 10.1016/j.cclet.2024.109779

    6. [6]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    7. [7]

      Xi Xu Chaokai Zhu Leiqing Cao Zhuozhao Wu Cao Guan . Experiential Education and 3D-Printed Alloys: Innovative Exploration and Student Development. University Chemistry, 2024, 39(2): 347-357. doi: 10.3866/PKU.DXHX202308039

    8. [8]

      Qiang Zhou Pingping Zhu Wei Shao Wanqun Hu Xuan Lei Haiyang Yang . Innovative Experimental Teaching Design for 3D Printing High-Strength Hydrogel Experiments. University Chemistry, 2024, 39(6): 264-270. doi: 10.3866/PKU.DXHX202310064

    9. [9]

      Gengchen GuoTianyu ZhaoRuichang SunMingzhe SongHongyu LiuSen WangJingwen LiJingbin Zeng . Au-Fe3O4 dumbbell-like nanoparticles based lateral flow immunoassay for colorimetric and photothermal dual-mode detection of SARS-CoV-2 spike protein. Chinese Chemical Letters, 2024, 35(6): 109198-. doi: 10.1016/j.cclet.2023.109198

    10. [10]

      Xiao-Hong YiChong-Chen Wang . Metal-organic frameworks on 3D interconnected macroporous sponge foams for large-scale water decontamination: A mini review. Chinese Chemical Letters, 2024, 35(5): 109094-. doi: 10.1016/j.cclet.2023.109094

    11. [11]

      Yi ZhuJingyan ZhangYuchao ZhangYing ChenGuanghui AnRen Liu . Designing unimolecular photoinitiator by installing NHPI esters along the TX backbone for acrylate photopolymerization and their applications in coatings and 3D printing. Chinese Chemical Letters, 2024, 35(7): 109573-. doi: 10.1016/j.cclet.2024.109573

    12. [12]

      Jie WuXiaoqing YuGuoxing LiSu Chen . Engineering particles towards 3D supraballs-based passive cooling via grafting CDs onto colloidal photonic crystals. Chinese Chemical Letters, 2024, 35(4): 109234-. doi: 10.1016/j.cclet.2023.109234

    13. [13]

      Jiajia Li Xiangyu Zhang Zhihan Yuan Zhengyang Qian Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073

    14. [14]

      Lin Song Dourong Wang Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107

    15. [15]

      Dong-Ling Kuang Song Chen Shaoru Chen Yong-Jie Liao Ning Li Lai-Hon Chung Jun He . 2D Zirconium-based metal-organic framework/bismuth(III) oxide nanorods composite for electrocatalytic CO2-to-formate reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100301-100301. doi: 10.1016/j.cjsc.2024.100301

    16. [16]

      Yue LiMinghao FanConghui WangYanxun LiXiang YuJun DingLei YanLele QiuYongcai ZhangLonglu Wang . 3D layer-by-layer amorphous MoSx assembled from [Mo3S13]2- clusters for efficient removal of tetracycline: Synergy of adsorption and photo-assisted PMS activation. Chinese Chemical Letters, 2024, 35(9): 109764-. doi: 10.1016/j.cclet.2024.109764

    17. [17]

      Bharathi Natarajan Palanisamy Kannan Longhua Guo . Metallic nanoparticles for visual sensing: Design, mechanism, and application. Chinese Journal of Structural Chemistry, 2024, 43(9): 100349-100349. doi: 10.1016/j.cjsc.2024.100349

    18. [18]

      Zhi LiWenpei LiShaoping JiangChuan HuYuanyu HuangMaxim ShevtsovHuile GaoShaobo Ruan . Legumain-triggered aggregable gold nanoparticles for enhanced intratumoral retention. Chinese Chemical Letters, 2024, 35(7): 109150-. doi: 10.1016/j.cclet.2023.109150

    19. [19]

      Feng CuiFangman ChenXiaochun XieChenyang GuoKai XiaoZiping WuYinglu ChenJunna LuFeixia RuanChuanxu ChengChao YangDan Shao . Scalable production of mesoporous titanium nanoparticles through sequential flash nanocomplexation. Chinese Chemical Letters, 2024, 35(4): 108681-. doi: 10.1016/j.cclet.2023.108681

    20. [20]

      Bohan ChenLiming GongJing FengMingji JinLiqing ChenZhonggao GaoWei Huang . Research advances of nanoparticles for CAR-T therapy in solid tumors. Chinese Chemical Letters, 2024, 35(9): 109432-. doi: 10.1016/j.cclet.2023.109432

Metrics
  • PDF Downloads(1)
  • Abstract views(195)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return