Citation: Ping JU, Xi-Cheng LIU, En-Sheng ZHANG. A Novel 3D Zn-based Luminescence Metal-organic Framework: Synthesis, Structure and Fluorescence Enhanced Sensing of Ammonia Vapor in Air[J]. Chinese Journal of Structural Chemistry, ;2020, 39(8): 1458-1464. doi: 10.14102/j.cnki.0254–5861.2011–2627 shu

A Novel 3D Zn-based Luminescence Metal-organic Framework: Synthesis, Structure and Fluorescence Enhanced Sensing of Ammonia Vapor in Air

  • Corresponding author: En-Sheng ZHANG, sdzes2006@163.com
  • Received Date: 29 September 2019
    Accepted Date: 10 February 2020

    Fund Project: Natural Science Foundation and Innovative Talents Promotion Plan of Shaanxi Province 2019KJXX-075Natural Science Foundation and Innovative Talents Promotion Plan of Shaanxi Province 2018JQ2079Natural Science Foundation and Innovative Talents Promotion Plan of Shaanxi Province 2018JQ2040

Figures(5)

  • A three-dimensional (3D) zinc metal-organic framework (MOF), Zn4(µ4-O)(bcd)3 (complex 1) has been synthesized by using 1-[bis(4-carboxylphenyl)methyl]-1, 3-diazole (H2bcd) and Zn(NO3)2·6H2O under hydrothermal conditions. The structure has been determined by single-crystal X-ray diffraction analyses and further characterized by elemental analyses, IR spectra, powder X-ray diffraction (PXRD) and thermogravimetric analyses (TGA). Single-crystal X-ray diffraction analyses reveal that complex 1 crystallizes in trigonal system, space group R\begin{document}$ \stackrel{-}{3} $\end{document} with a = 23.0521(6), b = 23.0521(6), c = 15.3326(6) Å, γ = 120º, V = 7056.2(4) Å3, Z = 6, C54H36N6O13Zn4, Mr = 1242.37, Dc = 1.754 g/cm3, F(000) = 3756, the final R = 0.0411 and wR = 0.1007 for 2743 observed reflections (I > 2σ(I)). Complex 1 consists of a 3D network constructed by four nuclear clusters Zn4(µ4-O)(COO)6N3 and the bcd2- ligand. Interestingly, 1 exhibits strong luminescent emission in solid state at room temperature and could be used as a qualitative fluorescence enhancing sensor for ammonia vapor in air.
  • 加载中
    1. [1]

      Furukawa, H.; Ko, N.; Go, Y. B. L.; Aratani, N.; Choi, S. B.; Choi, E.; Yazaydin, A. Ö.; Snurr, R. Q.; O'Keeffe, M.; Kim, J.; Yaghi, O. M. Ultrahigh porosity in metal-organic frameworks. Science 2010, 329, 424–428.  doi: 10.1126/science.1192160

    2. [2]

      Chae, H. K.; Siberio-Perez, D. Y.; Kim, J.; Go, Y.; Eddaoudi, M.; Matzger, A. J.; O'Keeffe, M.; Yaghi, O. M. A route to high surface area, porosity and inclusion of large molecules in crystals. Nature 2004, 427, 523–527.  doi: 10.1038/nature02311

    3. [3]

      Gómez-Gualdrón, D. A.; Colón, Y. J.; Zhang, X.; Wang, T. C.; Chen, Y. S.; Hupp, J. T.; Yildirim, T.; Farha, O. K.; Zhan J.; Snurr, R. Q. Evaluating topologically diverse metal-organic frameworks for cryo-adsorbed hydrogen storage. Energ. Environ. Sci. 2016, 9, 3279–3289.  doi: 10.1039/C6EE02104B

    4. [4]

      Neofotistou, E.; Malliakas, C. D.; Trikalitis, P. N. Remarkable structural diversity and single-crystal-to-single-crystal transformations in sulfone functionalized lanthanide MOFs. CrystEngComm. 2010, 12, 1034–1037.  doi: 10.1039/B918269C

    5. [5]

      Farha, O. K.; Yazaydın, A. Ö.; Eryazici, I.; Malliakas, C. D.; Hauser, B. G.; Kanatzidis, M. G.; Nguyen, S. T.; Snurr, R. Q.; Hupp, J. T. De novo synthesis of a metal-organic framework material featuring ultrahigh surface area and gas storage capacities. Nat. Chem. 2010, 2, 944–948.  doi: 10.1038/nchem.834

    6. [6]

      Chen, B. L.; Xiang, S. C.; Qian, G. D. Metal-organic frameworks with functional pores for recognition of small molecules. Acc. Chem. Res. 2010, 43, 1115–1124.  doi: 10.1021/ar100023y

    7. [7]

      Lee, J.; Farha, O. K.; Roberts, J.; Scheidt, K. A.; Nguyen, S. T.; Hupp, J. T. Metal-organic framework materials as catalysts. Chem. Soc. Rev. 2009, 38, 1450–1459.  doi: 10.1039/b807080f

    8. [8]

      Gole, B.; Sanyal, U.; Banerjee, R.; Mukherjee, P. S. High loading of Pd nanoparticles by interior functionalization of MOFs for heterogeneous catalysis. Inorg. Chem. 2016, 55, 2345–2354.  doi: 10.1021/acs.inorgchem.5b02739

    9. [9]

      Reinsch, H.; van der Veen, M. A.; Gil, B.; Marszalek, B.; Verbiest, T.; De Vos, D.; Stock, N. Structures, sorption characteristics, and nonlinear optical properties of a new series of highly stable aluminum MOFs. Chem. Mater. 2013, 25, 17–26.  doi: 10.1021/cm3025445

    10. [10]

      Hu, Z. C.; Deibert, B. J.; Li, J. Luminescent metal-organic frameworks for chemical sensing and explosive detection. Chem. Soc. Rev. 2014, 43, 5815–5840.  doi: 10.1039/C4CS00010B

    11. [11]

      Zhang, E. S.; Ju, P.; Zhang, Z.; Yang, H.; Tang, L.; Hou, X. Y.; You, J. M.; Wang, J. J. A novel multi-purpose Zn-MOF fluorescent sensor for 2, 4-dinitrophenylhydrazine, picric acid, La3+ and Ca2+: synthesis, structure, selectivity, sensitivity and recyclability. Spectrochim. Acta A 2019, 222, 117207.  doi: 10.1016/j.saa.2019.117207

    12. [12]

      Joarder, B.; Desai, A. V.; Samanta, P.; Mukherjee, S.; Ghosh, S. K. Selective and sensitive aqueous-phase detection of 2, 4, 6-trinitrophenol (TNP) by an amine-functionalized metal-organic framework. Chem. Eur. J. 2014, 20, 1–6.  doi: 10.1002/chem.201390210

    13. [13]

      Ye, J. W.; Wang, X. X.; Bogale, R. F.; Zhao, L. M.; Cheng, H.; Gong, W. T.; Zhao, J. Z.; Ning, G. L. A fluorescent zinc-pamoate coordination polymer for highly selective sensing of 2, 4, 6-trinitrophenol and Cu2+ ion. Sensor. Actuat. B-Chem. 2015, 210, 566–573.  doi: 10.1016/j.snb.2014.12.132

    14. [14]

      El-Sewify, I. M.; Shenashen, M. A.; Shahat, A.; Yamaguchi, H.; Selim, M. M.; Khalil, M. M.; El-Safty, S. A. Dual colorimetric and fluorometric monitoring of Bi3+ ions in water using supermicroporous Zr-MOFs chemosensors, J. Lumin. 2018, 198, 438–448.  doi: 10.1016/j.jlumin.2018.02.028

    15. [15]

      Xiao, Z. Z.; Han, L. J.; Wang, Z. J.; Zheng, H. G. Three Zn(II)-based MOFs for luminescence sensing of Fe3+ and Cr2O72− ions. Dalton Trans. 2018, 47, 3298–3302.  doi: 10.1039/C7DT04659F

    16. [16]

      Pi, Y. H.; Li, X. Y.; Xia, Q. B.; Wu, J. L.; Li, Y. W.; Xiao, J.; Li, Z. Adsorptive and photocatalytic removal of persistent organic pollutants (POPs) in water by metal-organic frameworks (MOFs). Chem. Eng. J. 2018, 337, 351–371.  doi: 10.1016/j.cej.2017.12.092

    17. [17]

      Jiang, D.; Xu, P.; Wang, H.; Zeng, G.; Huang, D.; Chen, M.; Lai, C.; Zhang, C.; Wan, J.; Xue, W. J. Strategies to improve metal organic frameworks photocatalyst's performance for degradation of organic pollutants. Coordin. Chem. Rev. 2018, 376, 449–466.  doi: 10.1016/j.ccr.2018.08.005

    18. [18]

      Dias, E. M.; Petit, C. Towards the use of metal-organic frameworks for water reuse: a review of the recent advances in the field of organic pollutants removal and degradation and the next steps in the field. J. Mater. Chem. A 2015, 3, 22484–22506.  doi: 10.1039/C5TA05440K

    19. [19]

      Albertson, O. E. Ammonia nitrogen and the anaerobic environment. Journal Water Pollution Control Federation 1961, 33, 978–995.

    20. [20]

      Takagai, Y.; Nojiri, Y.; Takase, T.; Hinze, W. L.; Butsugan, M.; Igarashi, S. ''Turn-on'' fluorescent polymeric microparticle sensors for the determination of ammonia and amines in the vapor state. Analyst. 2010, 135, 1417–1425.  doi: 10.1039/b922842j

    21. [21]

      Pandey, S.; Nanda, K. K. Au nanocomposite based chemiresistive ammonia sensor for health monitoring. ACS Sens. 2016, 1, 55–62.  doi: 10.1021/acssensors.5b00013

    22. [22]

      (a) Yu, M.; Xuan, F.; Liu, G. X. Two novel luminescent Cd(II)/Zn(II) coordination polymers based on 4, 4΄-(1H-1, 2, 4-triazol-1-yl)methylene-bis(benzonic acid) for sensing organic molecules and Fe3+ ion. Chin. J. Inorg. Chem. 2019, 35, 133–140. (b) Huang, Y. R.; Gao, L. L.; Zhang, J.; Wang, X. Q.; Fan, L. M.; Hu, T. P. Inorg. Chem. Commun. 2018, 91, 35–38. (c) Zhao, L.; Meng, L. S.; Liu, X.; Guo, G. L.; Xiao, C. C.; Liu, H. B. Syntheses, characterization and properties of three coordination polymers with interpenetrating structures comprising 4, 4´-(1H-1, 2, 4-triazol-1-yl)methylene-bis(benzonic acid). RSC Adv. 2019, 9, 40203–40212. (d) Hu, T. P.; Li, M. M.; Huang, Y. R.; Gao, L. L.; Wang, X. Q.; Gao, J. F.; Niu, X. Y. Fluorescent and magnetic properties of three complexes based on 4, 4´-(1H-1, 2, 4-triazol-1-yl)methylene-bis(benzonic acid). Polyhedron 2018, 151, 306–312.

    23. [23]

      Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341.  doi: 10.1107/S0021889808042726

    24. [24]

      Sheldrick, G. M. A short history of SHELX. Acta Cryst. 2008, A64, 112–122.

    25. [25]

      Sheldrick, G. M. SADABS, Program for Empirical Absorption Correction of Area Detector Data. University of Göttingen: Göttingen 1996.

    26. [26]

      Li, H.; Eddaoudi, M.; O'Keefe, M.; Yaghi, O. M. Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 1999, 402, 276–279.  doi: 10.1038/46248

    27. [27]

      Howarth, A. J.; Liu, Y.; Li, P.; Li, Z.; Wang, T. C.; Hupp, J. T.; Farha, O. K. Chemical, thermal and mechanical stabilities of metal-organic frameworks. Nat. Rev. Mater. 2016, 1, 15018.  doi: 10.1038/natrevmats.2015.18

    28. [28]

      Gai, Y. L.; Jiang, F. L.; Chen, L.; Bu, Y.; Su, K. Z.; Al-Thabaiti, S. A.; Hong, M. C. Photophysical studies of europium coordination polymers based on a tetracarboxylate ligand. Inorg. Chem. 2013, 52, 7658–7665.  doi: 10.1021/ic400777c

    29. [29]

      Li, K.; Blatov, V. A.; Fan, T.; Zheng, T. R.; Zhang, Y. Q.; Li, B. L.; Wu, B. A series of Cd(II) coordination polymers based on flexible bis(triazole) and multicarboxylate ligands: topological diversity, entanglement and properties. Cryst. Eng. Comm. 2017, 19, 5797–5808.  doi: 10.1039/C7CE01176H

  • 加载中
    1. [1]

      Chao LIUJiang WUZhaolei JIN . Synthesis, crystal structures, and antibacterial activities of two zinc(Ⅱ) complexes bearing 5-phenyl-1H-pyrazole group. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1986-1994. doi: 10.11862/CJIC.20240153

    2. [2]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    3. [3]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    4. [4]

      Xiumei LIYanju HUANGBo LIUYaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109

    5. [5]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    6. [6]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    7. [7]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    8. [8]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    9. [9]

      Shuyan ZHAO . Field-induced Co single-ion magnet with pentagonal bipyramidal configuration. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1583-1591. doi: 10.11862/CJIC.20240231

    10. [10]

      Gaofeng WANGShuwen SUNYanfei ZHAOLixin MENGBohui WEI . Structural diversity and luminescence properties of three zinc coordination polymers based on bis(4-(1H-imidazol-1-yl)phenyl)methanone. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 849-856. doi: 10.11862/CJIC.20230479

    11. [11]

      Weizhong LINGXiangyun CHENWenjing LIUYingkai HUANGYu LI . Syntheses, crystal structures, and catalytic properties of three zinc(Ⅱ), cobalt(Ⅱ) and nickel(Ⅱ) coordination polymers constructed from 5-(4-carboxyphenoxy)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1803-1810. doi: 10.11862/CJIC.20240068

    12. [12]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    13. [13]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    14. [14]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    15. [15]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    16. [16]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    17. [17]

      Wenhao ChenMuxuan WuHan ChenLue MoYirong Zhu . Cu2Se@C thin film with three-dimensional braided structure as a cathode material for enhanced Cu2+ storage. Chinese Chemical Letters, 2024, 35(5): 108698-. doi: 10.1016/j.cclet.2023.108698

    18. [18]

      Shaonan Liu Shuixing Dai Minghua Huang . The impact of ester groups on 1,8-naphthalimide electron transport material in organic solar cells. Chinese Journal of Structural Chemistry, 2024, 43(6): 100277-100277. doi: 10.1016/j.cjsc.2023.100277

    19. [19]

      Zhenghua ZHAOQin ZHANGYufeng LIUZifa SHIJinzhong GU . Syntheses, crystal structures, catalytic and anti-wear properties of nickel(Ⅱ) and zinc(Ⅱ) coordination polymers based on 5-(2-carboxyphenyl)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 621-628. doi: 10.11862/CJIC.20230342

    20. [20]

      Yan ChengHua-Peng RuanYan PengLonghe LiZhenqiang XieLang LiuShiyong ZhangHengyun YeZhao-Bo Hu . Magnetic, dielectric and luminescence synergetic switchable effects in molecular material [Et3NCH2Cl]2[MnBr4]. Chinese Chemical Letters, 2024, 35(4): 108554-. doi: 10.1016/j.cclet.2023.108554

Metrics
  • PDF Downloads(1)
  • Abstract views(230)
  • HTML views(8)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return