Citation: Xin-Qi ZHANG. Synthesis and Characterization of Highly Efficient Photoluminescence Gd doping Hexagonal CePO4 One-dimensional Nanowires[J]. Chinese Journal of Structural Chemistry, ;2020, 39(8): 1515-1521. doi: 10.14102/j.cnki.0254–5861.2011–2624 shu

Synthesis and Characterization of Highly Efficient Photoluminescence Gd doping Hexagonal CePO4 One-dimensional Nanowires

  • Corresponding author: Xin-Qi ZHANG, xinqi79@126.com
  • Received Date: 27 September 2019
    Accepted Date: 27 December 2019

    Fund Project: the Natural Science Foundation of Fujian Province 2017J01688

Figures(5)

  • Rare earth phosphates have been used extensively in luminescent phosphors. Hexagonal Ce1-xGdxPO4 with crystal field manipulation was successfully synthesized using a hydrothermal method. The photoluminescence emission intensity of hexagonal CePO4 was obviously enhanced by the crystal structure manipulation with gadolinium ions codoping. Compared to pure CePO4, the intensity photoluminescence was enhanced about 15 folds with x = 0.05. The effect of gadolinium doping was systematically investigated by X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy and photoluminescence spectroscopy. Crystal field asymmetry can be effectively tuned by different amount of Gd3+ codoping, and the crystal field asymmetry is conductive to electron population of high energy level of Ce3+ ions. This material has potential applications in optics, electronics fields, and so on. Meanwhile, the method can be extended to another kind of high performance photoluminescence materials preparation.
  • 加载中
    1. [1]

      Schustereit, T.; Netzsch, P.; Höppe, H. A.; Hartenbach, I. Green light: on YCl[WO4] as host material for luminescence active Tb3+ cations. Z. Anorg. Allg. Chem. 2018, 644, 1749–1753.  doi: 10.1002/zaac.201800322

    2. [2]

      Zhong, H. Z.; Wang, Z. W.; Lu, W. G.; Liu, J.; Wang, Y. T. Luminescent materials for 3D display technology. Phosphors, Up Conversion Nano Particles, Quantum Dots and Their Applications 2016, 18, 503–523.

    3. [3]

      Doat, A.; Pellé, F.; Gardant, N.; Lebugle, A. Synthesis of luminescent bioapatite nanoparticles for utilization as a biological probe. J. Solid. State Chem. 2004, 177, 1179–1187.  doi: 10.1016/j.jssc.2003.10.023

    4. [4]

      Martinez, C. I.; Olmeda, D.; Dieguez, H. R.; Tammela, T.; Alitalo, K.; Ortega, S. In vivo imaging of lymphatic vessels in development, wound healing, inflammation, and tumor metastasis. Proce. Nat. Acad. Sci. 2012, 109, 6223–6228.  doi: 10.1073/pnas.1115542109

    5. [5]

      Zhu, Q.; Xu, Z. X.; Wang, Z. H.; Wang, X. J.; Li, X. D.; Sun, X. D.; Li, J. G. Multi-color emission in monodispersed spheres of tetragonal yttrium phosphate: microwave-assisted fast synthesis, formation mechanism, temperature-dependent luminescence, and application in anti-fake labeling. Cryst. Eng. Comm. 2018, 20, 3187–3201.  doi: 10.1039/C8CE00365C

    6. [6]

      Ramnabu, U.; Amalnerkar, D. P.; Kale, B. B.; Buddhudu, S. Optical properties of LnPO4: Tb3+ (Ln = Y, La and Gd) powder phosphors. Mater. Chem. Phys. 2001, 70, 1–6.  doi: 10.1016/S0254-0584(00)00292-3

    7. [7]

      Grzyb, T.; Gruszeczka, A.; Lis, S. Up-conversion luminescence of Yb3+ and Er3+ doped YPO4, LaPO4 and GdPO4 nanocrystals. J. Lumin. 2016, 175, 21–27.  doi: 10.1016/j.jlumin.2016.02.021

    8. [8]

      Tymiński, A.; Grzyb, T. Are rare earth phosphates suitable as hosts for upconversion luminescence? Studies on nanocrystalline REPO4 (RE = Y, La, Gd, Lu) doped with Yb3+ and Eu3+, Tb3+, Ho3+, Er3+ or Tm3+ ions. J. Lumin. 2017, 181, 411–420.  doi: 10.1016/j.jlumin.2016.09.028

    9. [9]

      Li, F.; Wang, M.; Mi, C. C.; Yi, K. Y.; Xu, S. K. Polyol-mediated synthesis and luminescence properties of CePO4: Tb3+ nanospindles. J. Alloy Compd. 2009, 486, L37–L39.  doi: 10.1016/j.jallcom.2009.07.096

    10. [10]

      Lv, C. J.; Di, W. H.; Liu, Z. H.; Zheng, K. Z.; Qin, W. P. Luminescent CePO4: Tb colloids for H2O2 and glucose sensing. Analyst. 2014, 139, 4547–4555.  doi: 10.1039/C4AN00952E

    11. [11]

      Vinothkumar, G.; Lalitha, A. I.; Suresh Babu, K. Cerium phosphate-cerium oxide heterogeneous composite nanozymes with enhanced peroxidase-like biomimetic activity for glucose and hydrogen peroxide sensing. Inorg. Chem. 2018, 58, 349–358.

    12. [12]

      Wang, Y.; Wang, S. W.; Ou, K. I.; Zhang, Y. W.; Bai, L. Y.; Yi, L. X. Influence of annealing temperature on photoluminescence of CePO4 thin films on silicon substrates prepared by electron beam evaporation. Optik. 2019, 178, 944–949.  doi: 10.1016/j.ijleo.2018.10.033

    13. [13]

      Bao, J. R.; Yu, R. B.; Zhang, J. Y.; Yang, X. D.; Wang, D.; Deng, J. X.; Chen, J.; Xing, X. R. Low-temperature hydrothermal synthesis and structure control of nano-sized CePO4. Cryst. Eng. Comm. 2009, 11, 1630.  doi: 10.1039/b901313j

    14. [14]

      Yang, R.; Qin, J.; Li, M.; Liu, Y. H.; Li, F. Redox hydrothermal synthesis of cerium phosphate microspheres with different architectures. Cryst. Eng. Comm. 2011, 13, 7284.  doi: 10.1039/c1ce05368j

    15. [15]

      Chen, H. H.; Ni, Y. H.; Ma, X. Phase-controllable synthesis, shape evolution and optical performances of CePO4 nanocrystals via a simple oil-bath route. Rsc. Adv. 2014, 4, 36553.  doi: 10.1039/C4RA07052F

    16. [16]

      Kitsuda, M.; Fujihara, S. Quantitative luminescence switching in CePO4: Tb by redox reactions. J. Phys. Chem. C 2011, 115, 8808–8815.

    17. [17]

      Bu, W. B.; Hua, Z. L.; Zhang, L. X.; Chen, H. R.; Huang, W. M.; Shi, J. L. Surfactant-assisted synthesis of lanthanide phosphates single-crystalline nanowires/nanorods. J. Mater. Res. 2004, 19, 2807–2811.  doi: 10.1557/JMR.2004.0388

    18. [18]

      Ma, M. G.; Zhu, J. F.; Cao, S. W.; Chen, F.; Sun, R. C. Hydrothermal synthesis of relatively uniform CePO4@LaPO4 one-dimensional nanostructures with highly improved luminescence. J. Alloys. Compd. 2010, 492, 559–563.  doi: 10.1016/j.jallcom.2009.11.179

    19. [19]

      Ansari, A. A. Effect of surface coating on structural and photophysical properties of CePO4: Tb, nanorods. Mater. Sci. Eng: B 2017, 222, 43–48.  doi: 10.1016/j.mseb.2017.04.011

    20. [20]

      Vinothkumar, G.; Arun, I. L.; Arunkumar, P.; Ahmed, W.; Ryu, S. B.; Cha, S. W.; Babu, K. S. Structure dependent luminescence, peroxidase mimetic and hydrogen peroxide sensing of samarium doped cerium phosphate nanorods. J. Mater. Chem. B 2018, 6, 6559–6571.  doi: 10.1039/C8TB01643G

    21. [21]

      Boyer, J. C.; Johnson, N. J. J.; Van Veggel, F. C. J. M. Upconverting lanthanide-doped NaYF4-PMMA polymer composites prepared by in situ polymerization. Chem. Mater. 2009, 21, 2010–2012.  doi: 10.1021/cm900756h

    22. [22]

      Chen, G. Y.; Liu, H. C.; Liang, H. J.; Somesfalean, G.; Zhang, Z. G. Upconversion emission enhancement in Yb3+/Er3+-codoped Y2O3 nanocrystals by tridoping with Li+ ions. J. Phys. Chem. C 2008, 112, 12030–12036.  doi: 10.1021/jp804064g

    23. [23]

      Sommerdijk, J. L. Influence of host lattice on the infrared-excited visible luminescence in Yb3+, Er3+-doped fluorides. J. Lumin. 1973, 3, 61–67.

    24. [24]

      Huang, Q. M.; Yu, J. C.; Ma, E.; Lin, K. M. Synthesis and characterization of highly efficient near-infrared upconversion Sc3+/Er3+/Yb3+ tridoped NaYF4. J. Phys. Chem. 2010, 114, 4719–4724.  doi: 10.1021/jp908242y

    25. [25]

      Fadhalaoui, A.; Dhaouadi, H.; Marouani, H.; Kouki, A.; Madani, A.; Rzaigui, M. Cr-substitution effect on structural, optical and electrical properties of CrxCe1−xPO4 (x = 0.00, 0.08, 0.10 and 0.20) nanorods. Mater. Res. Bull. 2016, 73, 153–163.  doi: 10.1016/j.materresbull.2015.08.018

    26. [26]

      Fan, Y. Y.; Hu, Z. C.; Yang, J.; Zhang, C.; Zhu, L. Ultrasonic-assisted synthesis of core-shell structure CePO4: Tb/GdPO4 and GdPO4/CePO4: Tb nanophosphors and their photoluminescence properties. Appl. Surf. Sci. 2013, 266, 22–26.  doi: 10.1016/j.apsusc.2012.11.050

    27. [27]

      Kumar, V.; Kumari, S.; Kumar, P.; Kar, M.; Kumar, L. Structural analysis by rietveld method and its correlation with optical propertis of nanocrystalline zinc oxide. Adv. Mater. Lett. 2015, 6, 139–147.  doi: 10.5185/amlett.2015.5632

    28. [28]

      Meng, Q. D.; Li, J. G.; Zhu, Q.; Li, X. D.; Sun, X. D. The effects of Mg2+/Si4+ substitution on crystal structure, local coordination and photoluminescence of (Gd, Lu)3Al5O12: Ce garnet phosphor. J. Alloys. Compd. 2019, 797, 477–485.  doi: 10.1016/j.jallcom.2019.05.086

    29. [29]

      Shao, C.; Zhang, L.; Zhou, T. Y.; Gao, P.; Kang, J.; Sun, B. H.; Hou, C.; Li, Y. X.; Yao, Q.; Wu, J. D.; Chen, H. Tunable blue/yellow emission in high-power white LED devices packaged with Ce: (Y, Gd)AG transparent ceramics. Ceramics. Inter. 2019, 45, 14420–14425.  doi: 10.1016/j.ceramint.2019.04.162

  • 加载中
    1. [1]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    2. [2]

      Hongdao LIShengjian ZHANGHongmei DONG . Magnetic relaxation and luminescent behavior in nitronyl nitroxide-based annuluses of rare-earth ions. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 972-978. doi: 10.11862/CJIC.20230411

    3. [3]

      Yanrui Liu Paramaguru Ganesan Peng Gao . Harnessing d-f transition rare earth complexes for single layer white organic light emitting diodes. Chinese Journal of Structural Chemistry, 2024, 43(9): 100369-100369. doi: 10.1016/j.cjsc.2024.100369

    4. [4]

      Shengfei DongZiyu LiuXiaoyi Yang . Hydrothermal liquefaction of biomass for jet fuel precursors: A review. Chinese Chemical Letters, 2024, 35(8): 109142-. doi: 10.1016/j.cclet.2023.109142

    5. [5]

      Min ChenBoyu PengXuyun GuoYe ZhuHanying Li . Polyethylene interfacial dielectric layer for organic semiconductor single crystal based field-effect transistors. Chinese Chemical Letters, 2024, 35(4): 109051-. doi: 10.1016/j.cclet.2023.109051

    6. [6]

      Haodong WangXiaoxu LaiChi ChenPei ShiHouzhao WanHao WangXingguang ChenDan Sun . Novel 2D bifunctional layered rare-earth hydroxides@GO catalyst as a functional interlayer for improved liquid-solid conversion of polysulfides in lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(5): 108473-. doi: 10.1016/j.cclet.2023.108473

    7. [7]

      Hang Meng Bicheng Zhu Ruolun Sun Zixuan Liu Shaowen Cao Kan Zhang Jiaguo Yu Jingsan Xu . Dynamic photoluminescence switching of carbon nitride thin films for anticounterfeiting and encryption. Chinese Journal of Structural Chemistry, 2024, 43(10): 100410-100410. doi: 10.1016/j.cjsc.2024.100410

    8. [8]

      Yiqiao ChenAo LiuBiwen YangZhenzhen LiBinggang YeZhouyi GuoZhiming LiuHaolin Chen . Photoluminescence and photothermal conversion in boric acid derived carbon dots for targeted microbial theranostics. Chinese Chemical Letters, 2024, 35(9): 109295-. doi: 10.1016/j.cclet.2023.109295

    9. [9]

      Xiao-Tong Sun Hao-Fei Ni Yi Zhang Da-Wei Fu . Hybrid perovskite shows temperature-dependent photoluminescence and dielectric response triggered by halogen substitution. Chinese Journal of Structural Chemistry, 2024, 43(6): 100212-100212. doi: 10.1016/j.cjsc.2024.100212

    10. [10]

      Tiantian Gong Yanan Chen Shuo Wang Miao Wang Junwei Zhao . Rigid-flexible-ligand-ornamented lanthanide-incorporated selenotungstates and photoluminescence properties. Chinese Journal of Structural Chemistry, 2024, 43(9): 100370-100370. doi: 10.1016/j.cjsc.2024.100370

    11. [11]

      Huan Hu Ying Zhang Shi-Shuang Huang Zhi-Gang Li Yungui Liu Rui Feng Wei Li . Temperature- and pressure-responsive photoluminescence in a 1D hybrid lead halide. Chinese Journal of Structural Chemistry, 2024, 43(10): 100395-100395. doi: 10.1016/j.cjsc.2024.100395

    12. [12]

      Xuan Zhu Lin Zhou Xiao-Yun Huang Yan-Ling Luo Xin Deng Xin Yan Yan-Juan Wang Yan Qin Yuan-Yuan Tang . (Benzimidazolium)2GeI4: A layered two-dimensional perovskite with dielectric switching and broadband near-infrared photoluminescence. Chinese Journal of Structural Chemistry, 2024, 43(6): 100272-100272. doi: 10.1016/j.cjsc.2024.100272

    13. [13]

      Jiakun Bai Junhui Jia Aisen Li . An elastic organic crystal with piezochromic luminescent behavior. Chinese Journal of Structural Chemistry, 2024, 43(6): 100323-100323. doi: 10.1016/j.cjsc.2024.100323

    14. [14]

      Xinyu YuFei WuXianglang SunLinna ZhuBaoyu XiaZhong'an Li . Low-cost dopant-free fluoranthene-based branched hole transporting materials for efficient and stable n-i-p perovskite solar cells. Chinese Chemical Letters, 2024, 35(10): 109821-. doi: 10.1016/j.cclet.2024.109821

    15. [15]

      Wengao ZengYuchen DongXiaoyuan YeZiying ZhangTuo ZhangXiangjiu GuanLiejin Guo . Crystalline carbon nitride with in-plane built-in electric field accelerates carrier separation for excellent photocatalytic hydrogen evolution. Chinese Chemical Letters, 2024, 35(4): 109252-. doi: 10.1016/j.cclet.2023.109252

    16. [16]

      Shuyan ZHAO . Field-induced Co single-ion magnet with pentagonal bipyramidal configuration. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1583-1591. doi: 10.11862/CJIC.20240231

    17. [17]

      Peng MengQian-Cheng LuoAidan BrockXiaodong WangMahboobeh ShahbaziAaron MicallefJohn McMurtrieDongchen QiYan-Zhen ZhengJingsan Xu . Molar ratio induced crystal transformation from coordination complex to coordination polymers. Chinese Chemical Letters, 2024, 35(4): 108542-. doi: 10.1016/j.cclet.2023.108542

    18. [18]

      Jun LuJinrui YanYaohao GuoJunjie QiuShuangliang ZhaoBo Bao . Controlling solid form and crystal habit of triphenylmethanol by antisolvent crystallization in a microfluidic device. Chinese Chemical Letters, 2024, 35(4): 108876-. doi: 10.1016/j.cclet.2023.108876

    19. [19]

      Ce LiangQiuhui SunAdel Al-SalihyMengxin ChenPing Xu . Recent advances in crystal phase induced surface-enhanced Raman scattering. Chinese Chemical Letters, 2024, 35(9): 109306-. doi: 10.1016/j.cclet.2023.109306

    20. [20]

      Xiumei LIYanju HUANGBo LIUYaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109

Metrics
  • PDF Downloads(4)
  • Abstract views(171)
  • HTML views(6)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return