Citation: Da-Dong LIANG, Yu-Ling YANG, Qing-Hua ZHOU, Jun-Bo LIU, Shan-Shan TANG. Incorporation of Isopolyoxometalate into the Crystal and Membrane of ZIF-8[J]. Chinese Journal of Structural Chemistry, ;2020, 39(8): 1395-1404. doi: 10.14102/j.cnki.0254–5861.2011–2622 shu

Incorporation of Isopolyoxometalate into the Crystal and Membrane of ZIF-8

  • Corresponding author: Jun-Bo LIU, liujb@mail.ccut.edu.cn Shan-Shan TANG, tangshanshan81@163.com
  • Received Date: 25 September 2019
    Accepted Date: 27 November 2019

    Fund Project: the Science and Technology Research Projects for Education Department of Jilin Province 2016170

Figures(8)

  • With the aim of designing and preparing the materials based on polyoxometalates (POMs) and themetal-organic frameworks (MOFs) toward desired applications, a facile approach was developed to incorporate theclusters of Mo7O246- (Mo7), a representative isopolyoxometalate, into the vacant cages of ZIF-8. Through theso-called strategy of building MOF bottles around the POM ships, the powdered crystals and crystalline membraneof Mo7@ZIF-8 were synthesized, respectively. The products were characterized by IR, PXRD, N2 adsorption, andSEM. The Mo7@ZIF-8 crystals could effectively adsorb malachite green (MG) from water, and the maximumadsorption capacity reached 1963 mg·g-1. The Mo7@ZIF-8 crystals could also be used for selectively adsorbing MGfrom the mixed dye solution containing MG and methyl orange (MO). Moreover, the Mo7@ZIF-8 membraneexhibited the proton conductivity of 9.5 × 10-2 S·cm-1 at 75 ℃ under 98% relative humidity.
  • 加载中
    1. [1]

      Furukawa, H.; Cordova, K. E.; O'Keeffe, M.; Yaghi, O. M. The chemistry and applications of metal-organic framework. Science 2013, 341, 974–986.

    2. [2]

      Howarth, A. J.; Liu, Y. Y.; Li, P.; Li, Z. Y.; Wang, T. C.; Hupp, J. T.; Farha, O. K. Chemical, thermal and mechanical stabilities of metal-organic frameworks. Nat. Rev. Mater. 2016, 1, 15018–15033.  doi: 10.1038/natrevmats.2015.18

    3. [3]

      Zhu, J. J.; Li, P. Z.; Guo, W. H.; Zhao, Y. L.; Zou, R. Q. Titanium-based metal-organic frameworks for photocatalytic applications. Coord. Chem. Rev. 2018, 359, 80–101.  doi: 10.1016/j.ccr.2017.12.013

    4. [4]

      Li, J.; Wang, X. X.; Zhao, G. X.; Chen, C. L.; Chai, Z. F.; Alsaedi, A.; Hayatf, T.; Wang, X. K. Metal-organic framework-based materials: superior adsorbents for the capture of toxic and radioactive metal ions. Chem. Soc. Rev. 2018, 47, 2322–2356.  doi: 10.1039/C7CS00543A

    5. [5]

      Mendiratta, S.; Usman, M.; Lu, K. L. Expanding the dimensions of metal-organic framework research towards dielectrics. Coord. Chem. Rev. 2018, 360, 77–91.  doi: 10.1016/j.ccr.2018.01.005

    6. [6]

      Vikrant, K.; Tsang, D. C. W.; Raza, N.; Giri, B. S.; Kukkar, D.; Kim, K. H. Potential utility of metal-organic framework-based platform for sensing pesticides. ACS Appl. Mater. Inter. 2018, 10, 8797–8817.  doi: 10.1021/acsami.8b00664

    7. [7]

      Kim, K. J.; Lu, P.; Culp, J. T.; Ohodnicki, P. R. Metal-organic framework thin film coated optical fiber sensors: a novel waveguide-based chemical sensing platform. ACS Senors 2018, 3, 386–394.

    8. [8]

      Gao, Y. Q.; Qi, Y. C.; Zhao, K.; Wen, Q.; Shen, J. W.; Qiu, L. Y.; Mou, W. Z. An optical sensing platform for the dual channel detection of picric acid: the combination of rhodamine and metal-organic frameworks. Sensor. Actuat. B-Chem. 2018, 257, 553–560.  doi: 10.1016/j.snb.2017.11.007

    9. [9]

      Kaur, H.; Venkateswarulu, M.; Kumar, S.; Krishnan, V.; Koner, R. R. A metal-organic framework based multifunctional catalytic platform for organic transformation and environmental remediation. Dalton T. 2018, 47, 1488–1497.  doi: 10.1039/C7DT04057A

    10. [10]

      Falcaro, P.; Ricco, R.; Yazdi, A.; Imaz, I.; Furukawa, S.; Maspoch, D.; Ameloot, R.; Evans, J. D.; Doonan, C. J. Application of metal and metal oxide nanoparticles@MOFs. Coord. Chem. Rev. 2016, 307, 237–254.  doi: 10.1016/j.ccr.2015.08.002

    11. [11]

      Huang, X. C.; Lin, Y. Y.; Zhang, J. P.; Chen, X. M. Ligand-directed strategy for zeolite-type metal-organic frameworks: zinc(II) imidazolates with unusual zeolitic topologies. Angew. Chem. Int. Ed. 2006, 45, 1557–1559.  doi: 10.1002/anie.200503778

    12. [12]

      Park, K. S.; Ni, Z.; Côté, A. P.; Choi, J. Y.; Huang, R.; Uribe-Romo, F. J.; Chae, H. K.; O´Keeffe, M.; Yaghi, O. M. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. PNAS 2006, 103, 10186–10191.  doi: 10.1073/pnas.0602439103

    13. [13]

      Cao, X. M.; Han, Z. B. Hollow core-shell ZnO@ZIF-8 on carbon cloth for flexible supercapacitors with ultrahigh areal capacitance. Chem. Commun. 2019, 55, 1746–1749.  doi: 10.1039/C8CC09847F

    14. [14]

      Guo, Y.; Jiang, Z. Q.; Ying, W.; Chen, L. P.; Liu, Y. Z.; Wang, X. B.; Jiang, Z. J.; Chen, B. L.; Peng, X. S. A DNA-threaded ZIF-8 membrane with high proton conductivity and low methanol permeability. Adv. Mater. 2018, 30, 1705155–8.  doi: 10.1002/adma.201705155

    15. [15]

      Liédana, N.; Galve, A.; Rubio, C.; Téllez, C.; Coronas, J. CAF@ZIF-8: one-step encapsulation of caffeine in MOF. ACS Appl. Mater. Interf. 2012, 4, 5016–5021.  doi: 10.1021/am301365h

    16. [16]

      Jiang, H. L.; Liu, B.; Akita, T.; Haruta, M.; Sakurai, H.; Xu, Q. Au@ZIF-8: CO oxidation over gold nanoparticles deposited to metal-organic framework. J. Am. Chem. Soc. 2009, 131, 11302–11303.  doi: 10.1021/ja9047653

    17. [17]

      Gao, Y. L.; Wu, J. X.; Zhang, W.; Tan, Y. Y.; Zhao, J. C.; Tang, B. The electrochemical performance of SnO2 quantum dots@zeolitic imidazolate frameworks-8 (ZIF-8) composite material for supercapacitors. Mater. Lett. 2014, 128, 208–211.  doi: 10.1016/j.matlet.2014.04.175

    18. [18]

      Long, D. L.; Tsunashima, R.; Cronin, L. Polyoxometalates: building blocks for functional nanoscale systems. Angew. Chem. Int. Ed. 2010, 49, 1736–1758.  doi: 10.1002/anie.200902483

    19. [19]

      Pope, M. T.; Müller, A. Polyoxometalate chemistry: an old field with new dimensions in several disciplines. Angew. Chem. Int. Ed. 1991, 30, 34–48.  doi: 10.1002/anie.199100341

    20. [20]

      Pope, M. T. Heteropoly and Isopoly Oxometalates. Springer Press, Germany 1983, p42–47.

    21. [21]

      Román, P.; Gutiérrez-Zorrilla, J. M. Synthesis, structure and bonding of 2-aminopyridinium heptamolybate trihydrate. Trans. Met. Chem. 1986, 11, 143–150.  doi: 10.1007/BF00637016

    22. [22]

      Wang, S. S.; Yang, G. Y. Recent advances in polyoxometalate-catalyzed reactions. Chem. Rev. 2015, 115, 4893–4962.  doi: 10.1021/cr500390v

    23. [23]

      Ma, Y. Y.; Lang, Z. L.; Yan, L. K.; Wang, Y. H.; Tan, H. Q.; Feng, K.; Xia, Y. J.; Zhong, J.; Liu, Y.; Kang, Z. H.; Li, Y. G. Highly efficient hydrogen evolution triggered by a multi-interfacial Ni/WC hybrid electrocatalyst. Energy Environ. Sci. 2018, 11, 2114–2123.  doi: 10.1039/C8EE01129J

    24. [24]

      Ma, Y. Y.; Wu, C. X.; Feng, X. X.; Tan, H. Q.; Yan, L. K.; Liu, Y.; Kang, Z. H.; Wang, E. B.; Li, Y. G. Energy Environ. Sci. 2017, 10, 788–798.  doi: 10.1039/C6EE03768B

    25. [25]

      Jun, W.; Song, X. L.; Yan, G.; Xu, K.; Wang, J.; Yin, D. H.; Li, L.; Qu, X. F.; Li, Y. G.; Li, J. Layer-by-layer assembly of polyoxometalate-pyrene-decorated fluorescent microspheres for the suspension immunoassay of Listeria monocytogenes. J. Mater. Chem. B 2016, 4, 4287–4294.  doi: 10.1039/C6TB00986G

    26. [26]

      Zhao, X. Y.; Zhang, Y.; Zhao, Y. N.; Tan, H. Q.; Zhao, Z.; Shi, H. F.; Wang, E. B.; Li, Y. G. AgxH3-xPMo12O40/Ag nanorods/g-C3N4 1D/2D Z-scheme heterojunction for highly efficient visible-light photocatalysis. Dalton Trans. 2019, 48, 6484–6491.  doi: 10.1039/C9DT00744J

    27. [27]

      Yan, G.; Wu, C. X.; Tan, H. Q.; Feng, X. J.; Yan, L. K.; Zang, H. Y.; Li, Y. G. N-Carbon coated P-W2C composite as efficient electrocatalyst for hydrogen evolution reactions over the whole pH range. J. Mater. Chem. A 2017, 5, 765–772.  doi: 10.1039/C6TA09052D

    28. [28]

      Peng, H. Y.; Yang, X. X.; Ma, Y. Y.; Liu, J. N.; Wang, Y. H.; Tan, H. Q.; Li, Y. G. Polyoxometalate-based metal-organic framework loaded with an ultra-low amount of Pt as an efficient electrocatalyst for hydrogen production. CrystEngComm. 2018, 20, 5387–5394.  doi: 10.1039/C8CE01151F

    29. [29]

      Li, R.; Ren, X. Q.; Zhao, J. S.; Feng, X.; Jiang, X.; Fan, X. X.; Lin, Z. G.; Li, X. G.; Hu, C. W.; Wang, B. Polyoxometallates trapped in a zeolitic imidazolate framework leading to high uptake and selectivity of bioactive molecules. J. Mater. Chem. A 2014, 2, 2168–2173.  doi: 10.1039/C3TA14267A

    30. [30]

      Zhu, T. T.; Zhang, Z. M.; Chen, W. L.; Liu, Z. J.; Wang, E. B. Encapsulation of tungstophosphoric acid into harmless MIL-101(Fe) for effectively removing cationic dye from aqueous solution. RSC Adv. 2016, 6, 81622–81630.  doi: 10.1039/C6RA16716K

    31. [31]

      Yan, A. X.; Yao, S.; Li, Y. G.; Zhang, Z. M.; Lu, Y.; Chen, W. L.; Wang, E. B. Incorporating polyoxometalates into a porous MOF greatly improves its selective adsorption of cationic dyes. Chem. Eur. J. 2014, 20, 6927–6933.  doi: 10.1002/chem.201400175

    32. [32]

      Li, J.; Cao, X. L.; Wang, Y. Y.; Zhang, S. R.; Du, D. Y.; Qin, J. S.; Li, S. L.; Su, Z. M.; Lan, Y. Q. The enhancement on proton conductivity of stable polyoxometalate-based coordination polymers by the synergistic effect of multiproton units. Chem. Eur. J. 2016, 22, 9299–9304.  doi: 10.1002/chem.201601250

    33. [33]

      Ye, Y. X.; Guo, W. G.; Wang, L. H.; Li, Z. Y.; Song, Z. J.; Chen, J.; Zhang, Z. J.; Xiang, S. C.; Chen, B. L. Straightforward loading of imidazole molecules into metal-organic framework for high proton conduction. J. Am. Chem. Soc. 2017, 139, 15604–15607.  doi: 10.1021/jacs.7b09163

    34. [34]

      Mukhopadhyay, S.; Debgupta, J.; Singh, C.; Kar, A.; Das, S. K. The otherwise inactive keggin polyoxometalate becomes active towards elecrocatalytic water oxidation in neutral pH: POM@ZIF-8, an efficient and robust electrocatalyst. Angew. Chem. Int. Ed. 2018, 57, 1918–1923.  doi: 10.1002/anie.201711920

    35. [35]

      Wang, P. Y.; Zou, X. Q.; Tan, H. Q.; Wu, S.; Jiang, L. C.; Zhu, G. S. Ultrathin ZIF-8 film containing polyoxometalate as an enhancer for selective formaldehyde sensing. J. Mater. Chem. C 2018, 6, 5412–5419.  doi: 10.1039/C8TC00987B

    36. [36]

      Shah, M.; Kwon, H. T.; Tran, V.; Sachdeva, S.; Jeong, H. K. One step in situ synthesis of supported zeolitic imidazolate framework ZIF-8 membranes: role of sodium formate. Micropor. Mesopor. Mat. 2013, 165, 63–69.  doi: 10.1016/j.micromeso.2012.07.046

    37. [37]

      Férey, G.; Mellot-Draznieks, C.; Serre, C.; Millange, F.; Dutour, J.; Surblé, S.; Margiolaki, I. A chromium terephthalate-based solid with unusually large pore. Science 2005, 309, 2040–2042.  doi: 10.1126/science.1116275

    38. [38]

      Zhang, Y. M.; Degirmenci, V.; Li, C.; Hensen, E. J. M. Phosphotungstic acid encapsulated in metal-organic framework as catalysts for carbohydrate dehydration to 5-hydroxymethylfurfural. ChemSusChem. 2011, 4, 59–64.  doi: 10.1002/cssc.201000284

    39. [39]

      Juan-Alcañiz, J.; Ramos-Fernandez, E. V.; Lafont, U.; Gascon, J.; Kapteijn, F. Building MOF bottles around phosphotungstic acid ships: one-pot synthesis of bi-functional polyoxometalate-MIL-101 catalysts. J. Catal. 2010, 269, 229–241.  doi: 10.1016/j.jcat.2009.11.011

    40. [40]

      Pavani, K; Ramanan, A. Influence of 2-aminopyridine on the formation of molybdates under hydrothermal conditions. Eur. J. Inorg. Chem. 2005, 3080–3087.

    41. [41]

      Liang, D. D.; Liang, C.; Meng, L. K.; Lou, Y.; Li, C. G.; Shi, Z. Polyoxometalate@MIL-101/MoS2: a composite material based on the MIL-101 platform with enhanced performances. New J. Chem. 2019, 43, 3432–3438.  doi: 10.1039/C8NJ05179H

    42. [42]

      Chowdhury, S.; Mishra, R.; Saha, P.; Kushwaha, P. Adsorption thermodynamics, kinetics and isosteric heat of adsorption of malachite green onto chemically modified rice husk. Desalination 2011, 265, 159–168.  doi: 10.1016/j.desal.2010.07.047

    43. [43]

      Abdi, J.; Vossoughi, M.; Mahmoodi, N. M.; Alemzadeh, I. Synthesis of metal-organic framework hybrid nanocomposites based on GO and CNT with high adsorption capacity for dye removal. Chem. Eng. J. 2017, 326, 1145–1158.  doi: 10.1016/j.cej.2017.06.054

    44. [44]

      Jeong, N. C.; Samanta, B.; Lee, C. Y.; Farha, O. K.; Hupp, J. T. Coordination-chemistry control of proton conductivity in the iconic metal-organic framework material HKUST-1. J. Am. Chem. Soc. 2012, 134, 51–54.  doi: 10.1021/ja2110152

    45. [45]

      Ye, Y. X.; Guo, W. G.; Wang, L. H.; Li, Z. Y.; Song, Z. J.; Chen, J.; Zhang, Z. J.; Xiang, S. C.; Chen, B. L. Straightforward loading of imidazole molecules into metal-organic framework for high proton conduction. J. Am. Chem. Soc. 2017, 139, 15604–15607.  doi: 10.1021/jacs.7b09163

    46. [46]

      You, Y. W.; Xue, C.; Tian, Z. F.; Liu, S. X.; Ren, X. M. Three orders of magnitude enhancement of proton conductivity of porous coordination polymers by incorporating ion-pairs into a framework. Dalton Trans. 2016, 45, 7893–7899.  doi: 10.1039/C6DT00290K

    47. [47]

      Ye, Y. X.; Zhang, L. Q.; Peng, Q. F.; Wang, G. E.; Shen, Y. C.; Li, Z. Y.; Wang, L. H.; Ma, X. L.; Chen, Q. H.; Zhang, Z. J.; Xiang, S. C. High anhydrous proton conductivity of imidazole-loaded mesoporous polyimides over a wide range from subzero to moderate temperature. J. Am. Chem. Soc. 2015, 137, 913–918.  doi: 10.1021/ja511389q

    48. [48]

      Ji, H.; Hwang, S.; Kim, K.; Kim, C.; Jeong, N. C. Direct in situ conversion of metals into metal-organic frameworks: a strategy for the rapid growth of MOF films on metal substrates. ACS Appl. Mater. Inter. 2016, 8, 32414–32420.  doi: 10.1021/acsami.6b12755

    49. [49]

      Barbosa, P.; Rosero-Navarro, N. C.; Shi, F. N.; Figueiredo, F. M. L. Protonic conductivity of nanocrystalline zeolitic imidazolate framework 8. Electrochimica Acta 2015, 153, 19–27.  doi: 10.1016/j.electacta.2014.11.093

  • 加载中
    1. [1]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    2. [2]

      Huirong LIUHao XUDunru ZHUJunyong ZHANGChunhua GONGJingli XIE . Syntheses, structures, photochromic and photocatalytic properties of two viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1368-1376. doi: 10.11862/CJIC.20240066

    3. [3]

      Jie ZHANGXin LIUZhixin LIYuting PEIYuqi YANGHuimin LIZhiqiang LIU . Assembling a luminescence silencing system based on post-synthetic modification strategy: A highly sensitive and selective turn-on metal-organic framework probe for ascorbic acid detection. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 823-833. doi: 10.11862/CJIC.20230310

    4. [4]

      Weichen WANGChunhua GONGJunyong ZHANGYanfeng BIHao XUJingli XIE . Construction of two metal-organic frameworks by rigid bis(triazole) and carboxylate mixed-ligands and their catalytic properties for CO2 cycloaddition reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1377-1386. doi: 10.11862/CJIC.20230415

    5. [5]

      Zhengzheng LIUPengyun ZHANGChengri WANGShengli HUANGGuoyu YANG . Synthesis, structure, and electrochemical properties of a sandwich-type {Co6}-cluster-added germanotungstate. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1173-1179. doi: 10.11862/CJIC.20240039

    6. [6]

      Yuxin WangZhengxuan SongYutao LiuYang ChenJinping LiLibo LiJia Yao . Methyl functionalization of trimesic acid in copper-based metal-organic framework for ammonia colorimetric sensing at high relative humidity. Chinese Chemical Letters, 2024, 35(6): 108779-. doi: 10.1016/j.cclet.2023.108779

    7. [7]

      Ruowen Liang Chao Zhang Guiyang Yan . Enhancing CO2 cycloaddition through ligand functionalization: A case study of UiO-66 metal-organic frameworks. Chinese Journal of Structural Chemistry, 2024, 43(2): 100211-100211. doi: 10.1016/j.cjsc.2023.100211

    8. [8]

      Ke-Ai Zhou Lian Huang Xing-Ping Fu Li-Ling Zhang Yu-Ling Wang Qing-Yan Liu . Fluorinated metal-organic framework for methane purification from a ternary CH4/C2H6/C3H8 mixture. Chinese Journal of Structural Chemistry, 2023, 42(11): 100172-100172. doi: 10.1016/j.cjsc.2023.100172

    9. [9]

      Xin ZhangJunyu ChenXiang PeiLinxin YangLiang WangLuona ChenGuangmei YangXibo PeiQianbing WanJian Wang . Drug-loading ZIF-8 for modification of microporous bone scaffold to promote vascularized bone regeneration. Chinese Chemical Letters, 2024, 35(6): 108889-. doi: 10.1016/j.cclet.2023.108889

    10. [10]

      Xuexia LinYihui ZhouJiafu HongXiaofeng WeiBin LiuChong-Chen Wang . Facile preparation of ZIF-8/ZIF-67-derived biomass carbon composites for highly efficient electromagnetic wave absorption. Chinese Chemical Letters, 2024, 35(9): 109835-. doi: 10.1016/j.cclet.2024.109835

    11. [11]

      Ziyi Zhu Yang Cao Jun Zhang . CO2-switched porous metal-organic framework magnets. Chinese Journal of Structural Chemistry, 2024, 43(2): 100241-100241. doi: 10.1016/j.cjsc.2024.100241

    12. [12]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    13. [13]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    14. [14]

      Tengjia Ni Xianbiao Hou Huanlei Wang Lei Chu Shuixing Dai Minghua Huang . Controllable defect engineering based on cobalt metal-organic framework for boosting oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100210-100210. doi: 10.1016/j.cjsc.2023.100210

    15. [15]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    16. [16]

      Xiangshuai LiJian ZhaoLi LuoZhuohao JiaoYing ShiShengli HouBin Zhao . Visual and portable detection of metronidazole realized by metal-organic framework flexible sensor and smartphone scanning. Chinese Chemical Letters, 2024, 35(10): 109407-. doi: 10.1016/j.cclet.2023.109407

    17. [17]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    18. [18]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    19. [19]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    20. [20]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

Metrics
  • PDF Downloads(2)
  • Abstract views(208)
  • HTML views(13)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return