Synthesis, Crystal Structure and Catalytic Properties of a Novel Ni(II) MOF with a Rare [3+3+3] Nine Fold Interpenetrated Network
- Corresponding author: Feng GUO, guofeng1510@yeah.net
Citation: Feng GUO. Synthesis, Crystal Structure and Catalytic Properties of a Novel Ni(II) MOF with a Rare [3+3+3] Nine Fold Interpenetrated Network[J]. Chinese Journal of Structural Chemistry, ;2020, 39(8): 1489-1495. doi: 10.14102/j.cnki.0254–5861.2011–2620
Li, M.; Li, D.; O'Keeffe, M.; Yaghi, O. M. Topological analysis of metal-organic frameworks with polytopic linkers and/or multiple building units and the minimal transitivity principle. Chem. Rev. 2014, 114, 1343–1370.
doi: 10.1021/cr400392k
Yin, W. D.; Li, G. L.; Xin, L. Y.; Li, X. L.; Ma, L. F.; Liu, G. Z. Solvothermal syntheses, crystal structures, and luminescent properties of three coordination polymers derived from semirigid 3-(carboxymethyl)benzonic acid and dipyridyl coligands. Chin. J. Struct. Chem. 2017, 36, 1502–1510.
Fu, H. R.; Zhao, Y.; Zhou, Z.; Yang, X. G.; Ma, L. F., Neutral ligand TIPA-based two 2D metal-organic frameworks: ultrahigh selectivity of C2H2/CH4 and efficient sensing and sorption of Cr(VI). Dalton Trans. 2018, 47, 3725–3732.
doi: 10.1039/C8DT00206A
He, H.; Zhang, D. Y.; Guo, F.; Sun, F. A versatile microporous zinc(II) metal-organic framework for selective gas adsorption, cooperative catalysis, and luminescent sensing. Inorg. Chem. 2018, 57, 7314–7320.
doi: 10.1021/acs.inorgchem.8b00938
Li, Q. L.; Wang, J. P.; Liu, W. C.; Zhuang, X. Y.; Liu, J. Q.; Fan, G. L.; Li, B. H.; Lin, W. N.; Man, J. H. A new (4, 8)-connected topological MOF as potential drug delivery. Inorg. Chem. Commun. 2015, 55, 8–10.
doi: 10.1016/j.inoche.2015.02.023
Rojas, S.; Carmona, F. J.; Maldonado, C. R.; Horcajada, P.; Hidalgo, P.; Serre, C.; Navarro, J. A. R.; Barea, E. Nanoscaled zinc pyrazolate metal-organic frameworks as drug-delivery systems. Inorg. Chem. 2016, 55, 2650–2663.
doi: 10.1021/acs.inorgchem.6b00045
Zhang, Y.; Wang, Q.; Chen, G.; Shi, P. DNA-functionalized metal-organic framework: cell imaging, targeting drug delivery and photodynamic therapy. Inorg. Chem. 2019, 58, 6593–6596.
doi: 10.1021/acs.inorgchem.9b00734
He, H.; Zhu, Q. Q.; Li, C. P.; Du, M. Design of a highly-stable pillar-layer zinc(II) porous framework for rapid, reversible, and multi-responsive luminescent sensor in water. Cryst. Growth Des. 2019, 19, 694–703.
doi: 10.1021/acs.cgd.8b01271
Zhou, Z.; Han, M. L.; Fu, H. R.; Ma, L. F.; Luo, F.; Li, D. S. Engineering design toward exploring the functional group substitution in 1D channels of Zn-organic frameworks upon nitro explosives and antibiotics detection. Dalton Trans. 2018, 47, 5359–5365.
doi: 10.1039/C8DT00594J
Dalapati, R.; Biswas, S. Aqueous phase sensing of Fe3+ and ascorbic acid by a metal-organic framework and its implication in the construction of multiple logic gates. Chem. Asian J. 2019, 14, 2822–2830.
He, H.; Song, Y.; Sun, F.; Bian, Z.; Gao, L.; Zhu, G. A porous metal-organic framework formed by a V-shaped ligand and Zn(II) ion with highly selective sensing for nitroaromatic explosives. J. Mater. Chem. A 2015, 3, 16598–16603.
doi: 10.1039/C5TA03537F
Dalapati, R.; Biswas, S. Aqueous phase sensing of Fe3+ and ascorbic acid by a metal-organic framework and its implication in the construction of multiple logic gates. Chem. Asian J. 2019, 14, 2822–2830
Wei, J. H.; Yi, J. W.; Han, M. L.; Li, B.; Liu, S.; Wu, Y. P.; Ma, L. F.; Li, D. S. A water-stable terbium(III)-organic framework as a chemosensor for inorganic ions, nitro-containing compounds and antibiotics in aqueous solutions. Chem. Asian J. 2019, DOI: 10.1002/asia.201900706.
Gao, X.; Chang, S.; Liu, H.; Liu, Z. A promising white-light-emitting material constructed from encapsulating Eu3+/Tb3+ hybrid ions into a robust microporous metal-organic framework. Eur. J. Inorg. Chem. 2016, 17, 2837–2842.
He, H.; Sun, F.; Borjigin, T.; Zhao, N.; Zhu, G. Tunable colors and white-light emission based on a microporous luminescent Zn(II)-MOF. Dalton Trans. 2014, 43, 3716–3721.
doi: 10.1039/C3DT53013B
Zhou, Z.; Li, P.; Han, Y.; Xing, X.; Du, S. A highly connected (5, 5, 18)-c trinodal MOF with a 3D diamondoid inorganic connectivity: tunable luminescence and white-light emission. RSC Adv. 2015, 5, 97831–97835.
doi: 10.1039/C5RA20142J
Zhao, Y.; Deng, D. S.; Ma, L. F.; Ji, B. M.; Wang, L. Y., A new copper-based metal-organic framework as a promising heterogeneous catalyst for chemo- and regio-selective enamination of β-ketoesters. Chem. Commun. 2013, 49, 10299–10301.
doi: 10.1039/c3cc45310c
Chand, S.; Pal, S. C.; Mondal, M.; Hota, S.; Pal, A.; Sahoo, R.; Das, M. C. Three-dimensional Co(II)-metal-organic frameworks with varying porosities and open metal sites toward multipurpose heterogeneous catalysis under mild conditions. Cryst. Growth Des. 2019, 19, 5343–5353.
doi: 10.1021/acs.cgd.9b00823
He, H.; Zhu, Q. Q.; Sun, F.; Zhu, G. Two 3D metal-organic frameworks based on CoII and ZnII clusters for Knoevenagel condensation reaction and highly selective luminescence sensing. Cryst. Growth Des. 2018, 18, 5573–5581.
doi: 10.1021/acs.cgd.8b00867
He, H.; Zhu, Q. Q.; Zhao, J. N.; Sun, H.; Chen, J.; Li, C. P.; Du, M. Rational construction of an exceptionally stable MOF catalyst with metal-adeninate vertices toward CO2 cycloaddition under mild and cocatalyst-free conditions. Chem. Eur. J. 2019, 25, 11474–11480.
doi: 10.1002/chem.201901471
Wang, Y.; Zhang, N.; Zhang, E.; Han, Y.; Qi, Z.; Ansorge-Schumacher, M. B.; Ge, Y.; Wu, C. Heterogeneous metal-organic-framework-based biohybrid catalysts for cascade reactions in organic solvent. Chem. Eur. J. 2019, 25, 1716–1721.
doi: 10.1002/chem.201805680
Li, X.; Cao, X.; Xiong, J.; Ge, J. Enzyme-metal hybrid catalysts for chemoenzymatic reactions. Small 2019, DOI: 10.1002/smll.201902751.
Zhu, G.; Zhang, M.; Bu, Y.; Lu, L.; Lou, X.; Zhu, L. Enzyme-embedded metal-organic framework colloidosomes via an emulsion-based approach. Chem. Asian J. 2018, 13, 2891–2896.
doi: 10.1002/asia.201800976
He, H.; Han, H.; Shi, H.; Tian, Y.; Sun, F.; Song, Y.; Li, Q.; Zhu, G. Construction of thermophilic lipase-embedded metal-organic frameworks via biomimetic mineralization: A biocatalyst for ester hydrolysis and kinetic resolution. ACS Appl. Mater. Inter. 2016, 8, 24517–24524.
doi: 10.1021/acsami.6b05538
Jiang, T.; Lin, C. C.; Liu, X. J.; He, S.; Shi, H. L.; Mai, Y. X. Synthesis, crystal structure and iodine capture of a Yttrium(III) coordination polymer with 5-aminonicotinic acid. Chin. J. Struct. Chem. 2017, 36, 1601–1608.
Visconti, M.; Maggini, S.; Ciani, G.; Mercandelli, P.; Secco, B. D.; Prodi, L.; Sgarzi, M.; Zaccheroni, N.; Carlucci, L. New lanthanide metalloligands and their use for the assembly of Ln-Ag bimetallic coordination frameworks: stepwise modular synthesis, structural characterization, and optical properties. Cryst. Growth Des. 2019, 19, 5376–5389.
doi: 10.1021/acs.cgd.9b00894
Tang, L.; Shi, D. Q.; Wang, Y. L.; Yin, S. Y.; Wang, J. J. Hou, X. Y. Structures and properties of two pillared-layer Mn(II) MOFs with 5-ethyl-pyridine-2, 3-dicarboxylate. Chin. J. Struct. Chem. 2019, 38, 1600–1608.
Sun, Y.; Ma, R.; Wang, F.; Guo, X.; Sun, S.; Guo, H.; Alexandrov, E. V. Two novel self-catenated metal-organic frameworks with large accessible channels obtained by a mixed-ligand strategy: adsorption of dichromate and Ln3+ postsynthetic modification. Cryst. Growth Des. 2019, 19, 5267–5274.
doi: 10.1021/acs.cgd.9b00657
Qin, J. H.; Jia, Y.; Li, H.; Zhao, B.; Wu, D.; Zang, S. Q.; Hou, H.; Fan, Y. Conversion from a heterochiral 2+2 coaxially nested double-helical column to a cationic spiral staircase stimulated by an ionic liquid anion. Inorg. Chem. 2014, 53, 685–687.
doi: 10.1021/ic402598p
Fu, H. R.; Wang, N.; Qin, J. H.; Han, M. L.; Ma, L. F.; Wang, F. Spatial confinement of a cationic MOF: a SC-SC approach for high capacity Cr(VI)-oxyanion capture in aqueous solution. Chem. Commun. 2018, 54, 11645–11648.
doi: 10.1039/C8CC05990J
Chao, M. Y.; Chen, J.; Hao, Z. M.; Tang, X. Y.; Ding, L.; Zhang, W. H.; Young, D. J.; Lang, J. P. A single-crystal to single-crystal conversion scheme for a two-dimensional metal-organic framework bearing linear Cd3 secondary building units. Cryst. Growth Des. 2019, 19, 724–729.
doi: 10.1021/acs.cgd.8b01311
Poztocki, K.; Jędrzejowski, D.; Hodorowicz, M.; Senkovska, I.; Kaskel, S.; Matoga, D. Effect of linker substituent on layers arrangement, stability, and sorption of Zn-isophthalate/acylhydrazone frameworks. Cryst. Growth Des. 2018, 18, 488–497.
doi: 10.1021/acs.cgd.7b01468
Halder, A.; Bhattacharya, B.; Haque, F.; Ghoshal, D. Structural diversity in six mixed ligand Zn(II) metal-organic frameworks constructed by rigid and flexible dicarboxylates and different N, N' donor ligands. Cryst. Growth Des. 2017, 17, 6613–6624.
doi: 10.1021/acs.cgd.7b01270
Meng, X. M.; Cui, L S.; Wang, X. P.; Zhang, X. Y.; Zhang, X.; Bi, S. Y. Syntheses, structural diversity, magnetic properties and dye absorption of various Co(II) MOFs based on a semi-flexible 4-(3, 5-dicarboxylatobenzyloxy)benzoic acid. CrystEngComm. 2017, 19, 2017, 6630–6643.
Liu, J. Q.; Wu, J.; Wang, Y. Y.; Lin, J. T.; Sakiyama, H. Different interpenetrated coordination polymers based on flexible dicarboxylate ligands: topological diversity and magnetism. CrystEngComm. 2014, 16, 3103–3112.
doi: 10.1039/C3CE42338G
Xu, C.; Bi, C.; Zhu, Z.; Luo, R.; Zhang, X.; Zhang, D.; Fan, C.; Cui, L.; Fan, Y. Metal-organic frameworks with 5, 5΄-(1, 4-xylylenediamino) diisophthalic acid and various nitrogen-containing ligands for selectively sensing Fe(III)/Cr(VI) and nitroaromatic compounds. CrystEngComm. 2019, 21, 2333–2344.
doi: 10.1039/C9CE00005D
Sheldrick, G. M. SHELXS 97, Program for the Solution of Crystal Structure. University of Göttingen, Germany 1997.
Sheldrick, G. M. SHELXL 97, Program for the Refinement of Crystal Structure. University of Göttingen, Germany 1997.
Li, J.; Li, W. J.; Xu, S. C.; Li, B.; Tang, Y.; Lin, Z. F. Porous metal-organic framework with Lewis acid-base bifunctional sites for high efficient CO2 adsorption and catalytic conversion to cyclic carbonates. Inorg. Chem. Commun. 2019, 102, 256–261.
doi: 10.1016/j.inoche.2019.02.036
Cui, W. G.; Zhang, G. Y.; Hu, T. L.; Bu, X. H. Metal-organic framework-based heterogeneous catalysts for the conversion of C1 chemistry: CO, CO2 and CH4. Coord. Chem. Rev. 2019, 387, 79–120.
doi: 10.1016/j.ccr.2019.02.001
He, H.; Sun, Q.; Gao, W.; Perman, J. A.; Sun, F.; Zhu, G.; Aguila, B.; Forrest, K.; Space, B.; Ma, S. A stable metal-organic framework featuring a local buffer environment for carbon dioxide fixation. Angew. Chem., Int. Ed. 2018, 57, 4657–4662.
doi: 10.1002/anie.201801122
Li, Y. Z.; Wang, H. H.; Yang, H. Y.; Hou, L.; Wang, Y. Y.; Zhu, Z. An uncommon carboxyl-decorated metal–organic framework with selective gas adsorption and catalytic conversion of CO2. Chem. Eur. J. 2018, 24, 865–871.
doi: 10.1002/chem.201704027
Agarwal, R. A.; Gupta, A. K.; De, D. Flexible Zn-MOF exhibiting selective CO2 adsorption and efficient Lewis acidic catalytic activity. Cryst. Growth Des. 2019, 19, 2010–2018.
doi: 10.1021/acs.cgd.8b01462
Rachuri, Y.; Kurisingal, J. F.; Chitumalla, R. K.; Vuppala, S.; Gu, Y.; Jang, J.; Choe, Y.; Suresh, E.; Park, D. W. Adenine-based Zn(II)/Cd(II) metal-organic frameworks as efficient heterogeneous catalysts for facile CO2 fixation into cyclic carbonates: a DFT-supported study of the reaction mechanism. Inorg. Chem. 2019, 58, 11389–11403.
doi: 10.1021/acs.inorgchem.9b00814
Sun, X.; Gu, J.; Yuan, Y.; Yu, C.; Li, J.; Shan, H.; Li, G.; Liu, Y. A stable mesoporous Zr-based metal organic framework for highly efficient CO2 conversion. Inorg. Chem. 2019, 58, 7480–7487.
doi: 10.1021/acs.inorgchem.9b00701
Wei, L. Q.; Ye, B. H. Efficient conversion of CO2 via grafting urea group into a [Cu2(COO)4]-based metal-organic framework with hierarchical porosity. Inorg. Chem. 2019, 58, 4385–4393.
doi: 10.1021/acs.inorgchem.8b03525
He, H.; Perman, J. A.; Zhu, G.; Ma, S. Metal-organic frameworks for CO2 chemical transformations. Small 2016, 12, 6309–6324.
doi: 10.1002/smll.201602711
He, H.; Zhu, Q. Q.; Guo, M. T.; Zhou, Q. S.; Chen, J.; Li, C. P.; Du, M. Doubly interpenetrated Zn4O-based metal-organic framework for CO2 chemical transformation and antibiotic sensing. Cryst. Growth Des. 2019, 19, 5228–5236.
doi: 10.1021/acs.cgd.9b00621
Ansari, S. N.; Kumar, P.; Gupta, A. K.; Mathur, P.; Mobin, S. M. Catalytic CO2 fixation over a robust lactam-functionalized Cu(II) metal organic framework. Inorg. Chem. 2019, 58, 9723–9732.
doi: 10.1021/acs.inorgchem.9b00684
Parmar, B.; Patel, P.; Pillai, R. S.; Tak, R. K.; Kureshy, R. I.; Khan, N. H.; Suresh, E. Cycloaddition of CO2 with an epoxide-bearing oxindole scaffold by a metal-organic framework-based heterogeneous catalyst under ambient conditions. Inorg. Chem. 2019, 58, 10084–10096.
doi: 10.1021/acs.inorgchem.9b01234
Zixuan Zhu , Xianjin Shi , Yongfang Rao , Yu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954
Tianbo Jia , Lili Wang , Zhouhao Zhu , Baikang Zhu , Yingtang Zhou , Guoxing Zhu , Mingshan Zhu , Hengcong Tao . Modulating the degree of O vacancy defects to achieve selective control of electrochemical CO2 reduction products. Chinese Chemical Letters, 2024, 35(5): 108692-. doi: 10.1016/j.cclet.2023.108692
Li Li , Fanpeng Chen , Bohang Zhao , Yifu Yu . Understanding of the structural evolution of catalysts and identification of active species during CO2 conversion. Chinese Chemical Letters, 2024, 35(4): 109240-. doi: 10.1016/j.cclet.2023.109240
Yuhao Guo , Na Li , Tingjiang Yan . Tandem catalysis for photoreduction of CO2 into multi-carbon fuels on atomically thin dual-metal phosphochalcogenides. Chinese Journal of Structural Chemistry, 2024, 43(7): 100320-100320. doi: 10.1016/j.cjsc.2024.100320
Hong Dong , Feng-Ming Zhang . Covalent organic frameworks for artificial photosynthetic diluted CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100307-100307. doi: 10.1016/j.cjsc.2024.100307
Liang Ma , Zhou Li , Zhiqiang Jiang , Xiaofeng Wu , Shixin Chang , Sónia A. C. Carabineiro , Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2023.100416
Maomao Liu , Guizeng Liang , Ningce Zhang , Tao Li , Lipeng Diao , Ping Lu , Xiaoliang Zhao , Daohao Li , Dongjiang Yang . Electron-rich Ni2+ in Ni3S2 boosting electrocatalytic CO2 reduction to formate and syngas. Chinese Journal of Structural Chemistry, 2024, 43(8): 100359-100359. doi: 10.1016/j.cjsc.2024.100359
Ziyi Zhu , Yang Cao , Jun Zhang . CO2-switched porous metal-organic framework magnets. Chinese Journal of Structural Chemistry, 2024, 43(2): 100241-100241. doi: 10.1016/j.cjsc.2024.100241
Ruowen Liang , Chao Zhang , Guiyang Yan . Enhancing CO2 cycloaddition through ligand functionalization: A case study of UiO-66 metal-organic frameworks. Chinese Journal of Structural Chemistry, 2024, 43(2): 100211-100211. doi: 10.1016/j.cjsc.2023.100211
Weichen WANG , Chunhua GONG , Junyong ZHANG , Yanfeng BI , Hao XU , Jingli XIE . Construction of two metal-organic frameworks by rigid bis(triazole) and carboxylate mixed-ligands and their catalytic properties for CO2 cycloaddition reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1377-1386. doi: 10.11862/CJIC.20230415
Yi Luo , Lin Dong . Multicomponent remote C(sp2)-H bond addition by Ru catalysis: An efficient access to the alkylarylation of 2H-imidazoles. Chinese Chemical Letters, 2024, 35(10): 109648-. doi: 10.1016/j.cclet.2024.109648
Conghui Wang , Lei Xu , Zhenhua Jia , Teck-Peng Loh . Recent applications of macrocycles in supramolecular catalysis. Chinese Chemical Letters, 2024, 35(4): 109075-. doi: 10.1016/j.cclet.2023.109075
Wei Chen , Pieter Cnudde . A minireview to ketene chemistry in zeolite catalysis. Chinese Journal of Structural Chemistry, 2024, 43(11): 100412-100412. doi: 10.1016/j.cjsc.2024.100412
Dong-Ling Kuang , Song Chen , Shaoru Chen , Yong-Jie Liao , Ning Li , Lai-Hon Chung , Jun He . 2D Zirconium-based metal-organic framework/bismuth(III) oxide nanorods composite for electrocatalytic CO2-to-formate reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100301-100301. doi: 10.1016/j.cjsc.2024.100301
Muhammad Humayun , Mohamed Bououdina , Abbas Khan , Sajjad Ali , Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193
Ping Wang , Tianbao Zhang , Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328
Yu Mao , Yilin Liu , Xiaochen Wang , Shengyang Ni , Yi Pan , Yi Wang . Acylfluorination of enynes via phosphine and silver catalysis. Chinese Chemical Letters, 2024, 35(8): 109443-. doi: 10.1016/j.cclet.2023.109443
Luyan Shi , Ke Zhu , Yuting Yang , Qinrui Liang , Qimin Peng , Shuqing Zhou , Tayirjan Taylor Isimjan , Xiulin Yang . Phytic acid-derivative Co2B-CoPOx coralloidal structure with delicate boron vacancy for enhanced hydrogen generation from sodium borohydride. Chinese Chemical Letters, 2024, 35(4): 109222-. doi: 10.1016/j.cclet.2023.109222
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
Meirong HAN , Xiaoyang WEI , Sisi FENG , Yuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150