Citation: Feng GUO. Synthesis, Crystal Structure and Catalytic Properties of a Novel Ni(II) MOF with a Rare [3+3+3] Nine Fold Interpenetrated Network[J]. Chinese Journal of Structural Chemistry, ;2020, 39(8): 1489-1495. doi: 10.14102/j.cnki.0254–5861.2011–2620 shu

Synthesis, Crystal Structure and Catalytic Properties of a Novel Ni(II) MOF with a Rare [3+3+3] Nine Fold Interpenetrated Network

  • Corresponding author: Feng GUO, guofeng1510@yeah.net
  • Received Date: 25 September 2019
    Accepted Date: 11 December 2019

Figures(3)

  • Metal-organic frameworks are a sort of rapid development crystal solids, which have greatly attracted a large amount of attention in recent decades. The construction of 3D [Ni(bcp)(bpp)]n (namely complex 1) displays a rare [3+3+3] nine-fold interpenetrated diamond topology, which can be successfully synthesized by a mixed strategy of 1, 3-bis(4-carboxyphenoxy) propane (H2bcp) and 1, 4-bis(4-pyridylmethyl) piperazine (bpp). The interpenetrated network may be ascribed to these flexible bridging linkers to facilitate the penetration degree. In addition, the resultant sample was adequately characterized by elemental analysis, single-crystal X-ray diffraction, powder X-ray diffraction, and thermal gravimetric analysis. Furthermore, the as-synthesized sample can be used as catalysis for chemical fixation of CO2 and epoxide to carbonate.
  • 加载中
    1. [1]

      Li, M.; Li, D.; O'Keeffe, M.; Yaghi, O. M. Topological analysis of metal-organic frameworks with polytopic linkers and/or multiple building units and the minimal transitivity principle. Chem. Rev. 2014, 114, 1343–1370.  doi: 10.1021/cr400392k

    2. [2]

      Yin, W. D.; Li, G. L.; Xin, L. Y.; Li, X. L.; Ma, L. F.; Liu, G. Z. Solvothermal syntheses, crystal structures, and luminescent properties of three coordination polymers derived from semirigid 3-(carboxymethyl)benzonic acid and dipyridyl coligands. Chin. J. Struct. Chem. 2017, 36, 1502–1510.

    3. [3]

      Fu, H. R.; Zhao, Y.; Zhou, Z.; Yang, X. G.; Ma, L. F., Neutral ligand TIPA-based two 2D metal-organic frameworks: ultrahigh selectivity of C2H2/CH4 and efficient sensing and sorption of Cr(VI). Dalton Trans. 2018, 47, 3725–3732.  doi: 10.1039/C8DT00206A

    4. [4]

      He, H.; Zhang, D. Y.; Guo, F.; Sun, F. A versatile microporous zinc(II) metal-organic framework for selective gas adsorption, cooperative catalysis, and luminescent sensing. Inorg. Chem. 2018, 57, 7314–7320.  doi: 10.1021/acs.inorgchem.8b00938

    5. [5]

      Li, Q. L.; Wang, J. P.; Liu, W. C.; Zhuang, X. Y.; Liu, J. Q.; Fan, G. L.; Li, B. H.; Lin, W. N.; Man, J. H. A new (4, 8)-connected topological MOF as potential drug delivery. Inorg. Chem. Commun. 2015, 55, 8–10.  doi: 10.1016/j.inoche.2015.02.023

    6. [6]

      Rojas, S.; Carmona, F. J.; Maldonado, C. R.; Horcajada, P.; Hidalgo, P.; Serre, C.; Navarro, J. A. R.; Barea, E. Nanoscaled zinc pyrazolate metal-organic frameworks as drug-delivery systems. Inorg. Chem. 2016, 55, 2650–2663.  doi: 10.1021/acs.inorgchem.6b00045

    7. [7]

      Zhang, Y.; Wang, Q.; Chen, G.; Shi, P. DNA-functionalized metal-organic framework: cell imaging, targeting drug delivery and photodynamic therapy. Inorg. Chem. 2019, 58, 6593–6596.  doi: 10.1021/acs.inorgchem.9b00734

    8. [8]

      He, H.; Zhu, Q. Q.; Li, C. P.; Du, M. Design of a highly-stable pillar-layer zinc(II) porous framework for rapid, reversible, and multi-responsive luminescent sensor in water. Cryst. Growth Des. 2019, 19, 694–703.  doi: 10.1021/acs.cgd.8b01271

    9. [9]

      Zhou, Z.; Han, M. L.; Fu, H. R.; Ma, L. F.; Luo, F.; Li, D. S. Engineering design toward exploring the functional group substitution in 1D channels of Zn-organic frameworks upon nitro explosives and antibiotics detection. Dalton Trans. 2018, 47, 5359–5365.  doi: 10.1039/C8DT00594J

    10. [10]

      Dalapati, R.; Biswas, S. Aqueous phase sensing of Fe3+ and ascorbic acid by a metal-organic framework and its implication in the construction of multiple logic gates. Chem. Asian J. 2019, 14, 2822–2830.

    11. [11]

      He, H.; Song, Y.; Sun, F.; Bian, Z.; Gao, L.; Zhu, G. A porous metal-organic framework formed by a V-shaped ligand and Zn(II) ion with highly selective sensing for nitroaromatic explosives. J. Mater. Chem. A 2015, 3, 16598–16603.  doi: 10.1039/C5TA03537F

    12. [12]

      Dalapati, R.; Biswas, S. Aqueous phase sensing of Fe3+ and ascorbic acid by a metal-organic framework and its implication in the construction of multiple logic gates. Chem. Asian J. 2019, 14, 2822–2830

    13. [13]

      Wei, J. H.; Yi, J. W.; Han, M. L.; Li, B.; Liu, S.; Wu, Y. P.; Ma, L. F.; Li, D. S. A water-stable terbium(III)-organic framework as a chemosensor for inorganic ions, nitro-containing compounds and antibiotics in aqueous solutions. Chem. Asian J. 2019, DOI: 10.1002/asia.201900706.

    14. [14]

      Gao, X.; Chang, S.; Liu, H.; Liu, Z. A promising white-light-emitting material constructed from encapsulating Eu3+/Tb3+ hybrid ions into a robust microporous metal-organic framework. Eur. J. Inorg. Chem. 2016, 17, 2837–2842.

    15. [15]

      He, H.; Sun, F.; Borjigin, T.; Zhao, N.; Zhu, G. Tunable colors and white-light emission based on a microporous luminescent Zn(II)-MOF. Dalton Trans. 2014, 43, 3716–3721.  doi: 10.1039/C3DT53013B

    16. [16]

      Zhou, Z.; Li, P.; Han, Y.; Xing, X.; Du, S. A highly connected (5, 5, 18)-c trinodal MOF with a 3D diamondoid inorganic connectivity: tunable luminescence and white-light emission. RSC Adv. 2015, 5, 97831–97835.  doi: 10.1039/C5RA20142J

    17. [17]

      Zhao, Y.; Deng, D. S.; Ma, L. F.; Ji, B. M.; Wang, L. Y., A new copper-based metal-organic framework as a promising heterogeneous catalyst for chemo- and regio-selective enamination of β-ketoesters. Chem. Commun. 2013, 49, 10299–10301.  doi: 10.1039/c3cc45310c

    18. [18]

      Chand, S.; Pal, S. C.; Mondal, M.; Hota, S.; Pal, A.; Sahoo, R.; Das, M. C. Three-dimensional Co(II)-metal-organic frameworks with varying porosities and open metal sites toward multipurpose heterogeneous catalysis under mild conditions. Cryst. Growth Des. 2019, 19, 5343–5353.  doi: 10.1021/acs.cgd.9b00823

    19. [19]

      He, H.; Zhu, Q. Q.; Sun, F.; Zhu, G. Two 3D metal-organic frameworks based on CoII and ZnII clusters for Knoevenagel condensation reaction and highly selective luminescence sensing. Cryst. Growth Des. 2018, 18, 5573–5581.  doi: 10.1021/acs.cgd.8b00867

    20. [20]

      He, H.; Zhu, Q. Q.; Zhao, J. N.; Sun, H.; Chen, J.; Li, C. P.; Du, M. Rational construction of an exceptionally stable MOF catalyst with metal-adeninate vertices toward CO2 cycloaddition under mild and cocatalyst-free conditions. Chem. Eur. J. 2019, 25, 11474–11480.  doi: 10.1002/chem.201901471

    21. [21]

      Wang, Y.; Zhang, N.; Zhang, E.; Han, Y.; Qi, Z.; Ansorge-Schumacher, M. B.; Ge, Y.; Wu, C. Heterogeneous metal-organic-framework-based biohybrid catalysts for cascade reactions in organic solvent. Chem. Eur. J. 2019, 25, 1716–1721.  doi: 10.1002/chem.201805680

    22. [22]

      Li, X.; Cao, X.; Xiong, J.; Ge, J. Enzyme-metal hybrid catalysts for chemoenzymatic reactions. Small 2019, DOI: 10.1002/smll.201902751.

    23. [23]

      Zhu, G.; Zhang, M.; Bu, Y.; Lu, L.; Lou, X.; Zhu, L. Enzyme-embedded metal-organic framework colloidosomes via an emulsion-based approach. Chem. Asian J. 2018, 13, 2891–2896.  doi: 10.1002/asia.201800976

    24. [24]

      He, H.; Han, H.; Shi, H.; Tian, Y.; Sun, F.; Song, Y.; Li, Q.; Zhu, G. Construction of thermophilic lipase-embedded metal-organic frameworks via biomimetic mineralization: A biocatalyst for ester hydrolysis and kinetic resolution. ACS Appl. Mater. Inter. 2016, 8, 24517–24524.  doi: 10.1021/acsami.6b05538

    25. [25]

      Jiang, T.; Lin, C. C.; Liu, X. J.; He, S.; Shi, H. L.; Mai, Y. X. Synthesis, crystal structure and iodine capture of a Yttrium(III) coordination polymer with 5-aminonicotinic acid. Chin. J. Struct. Chem. 2017, 36, 1601–1608.

    26. [26]

      Visconti, M.; Maggini, S.; Ciani, G.; Mercandelli, P.; Secco, B. D.; Prodi, L.; Sgarzi, M.; Zaccheroni, N.; Carlucci, L. New lanthanide metalloligands and their use for the assembly of Ln-Ag bimetallic coordination frameworks: stepwise modular synthesis, structural characterization, and optical properties. Cryst. Growth Des. 2019, 19, 5376–5389.  doi: 10.1021/acs.cgd.9b00894

    27. [27]

      Tang, L.; Shi, D. Q.; Wang, Y. L.; Yin, S. Y.; Wang, J. J. Hou, X. Y. Structures and properties of two pillared-layer Mn(II) MOFs with 5-ethyl-pyridine-2, 3-dicarboxylate. Chin. J. Struct. Chem. 2019, 38, 1600–1608.

    28. [28]

      Sun, Y.; Ma, R.; Wang, F.; Guo, X.; Sun, S.; Guo, H.; Alexandrov, E. V. Two novel self-catenated metal-organic frameworks with large accessible channels obtained by a mixed-ligand strategy: adsorption of dichromate and Ln3+ postsynthetic modification. Cryst. Growth Des. 2019, 19, 5267–5274.  doi: 10.1021/acs.cgd.9b00657

    29. [29]

      Qin, J. H.; Jia, Y.; Li, H.; Zhao, B.; Wu, D.; Zang, S. Q.; Hou, H.; Fan, Y. Conversion from a heterochiral 2+2 coaxially nested double-helical column to a cationic spiral staircase stimulated by an ionic liquid anion. Inorg. Chem. 2014, 53, 685–687.  doi: 10.1021/ic402598p

    30. [30]

      Fu, H. R.; Wang, N.; Qin, J. H.; Han, M. L.; Ma, L. F.; Wang, F. Spatial confinement of a cationic MOF: a SC-SC approach for high capacity Cr(VI)-oxyanion capture in aqueous solution. Chem. Commun. 2018, 54, 11645–11648.  doi: 10.1039/C8CC05990J

    31. [31]

      Chao, M. Y.; Chen, J.; Hao, Z. M.; Tang, X. Y.; Ding, L.; Zhang, W. H.; Young, D. J.; Lang, J. P. A single-crystal to single-crystal conversion scheme for a two-dimensional metal-organic framework bearing linear Cd3 secondary building units. Cryst. Growth Des. 2019, 19, 724–729.  doi: 10.1021/acs.cgd.8b01311

    32. [32]

      Poztocki, K.; Jędrzejowski, D.; Hodorowicz, M.; Senkovska, I.; Kaskel, S.; Matoga, D. Effect of linker substituent on layers arrangement, stability, and sorption of Zn-isophthalate/acylhydrazone frameworks. Cryst. Growth Des. 2018, 18, 488–497.  doi: 10.1021/acs.cgd.7b01468

    33. [33]

      Halder, A.; Bhattacharya, B.; Haque, F.; Ghoshal, D. Structural diversity in six mixed ligand Zn(II) metal-organic frameworks constructed by rigid and flexible dicarboxylates and different N, N' donor ligands. Cryst. Growth Des. 2017, 17, 6613–6624.  doi: 10.1021/acs.cgd.7b01270

    34. [34]

      Meng, X. M.; Cui, L S.; Wang, X. P.; Zhang, X. Y.; Zhang, X.; Bi, S. Y. Syntheses, structural diversity, magnetic properties and dye absorption of various Co(II) MOFs based on a semi-flexible 4-(3, 5-dicarboxylatobenzyloxy)benzoic acid. CrystEngComm. 2017, 19, 2017, 6630–6643.

    35. [35]

      Liu, J. Q.; Wu, J.; Wang, Y. Y.; Lin, J. T.; Sakiyama, H. Different interpenetrated coordination polymers based on flexible dicarboxylate ligands: topological diversity and magnetism. CrystEngComm. 2014, 16, 3103–3112.  doi: 10.1039/C3CE42338G

    36. [36]

      Xu, C.; Bi, C.; Zhu, Z.; Luo, R.; Zhang, X.; Zhang, D.; Fan, C.; Cui, L.; Fan, Y. Metal-organic frameworks with 5, 5΄-(1, 4-xylylenediamino) diisophthalic acid and various nitrogen-containing ligands for selectively sensing Fe(III)/Cr(VI) and nitroaromatic compounds. CrystEngComm. 2019, 21, 2333–2344.  doi: 10.1039/C9CE00005D

    37. [37]

      Sheldrick, G. M. SHELXS 97, Program for the Solution of Crystal Structure. University of Göttingen, Germany 1997.

    38. [38]

      Sheldrick, G. M. SHELXL 97, Program for the Refinement of Crystal Structure. University of Göttingen, Germany 1997.

    39. [39]

      Li, J.; Li, W. J.; Xu, S. C.; Li, B.; Tang, Y.; Lin, Z. F. Porous metal-organic framework with Lewis acid-base bifunctional sites for high efficient CO2 adsorption and catalytic conversion to cyclic carbonates. Inorg. Chem. Commun. 2019, 102, 256–261.  doi: 10.1016/j.inoche.2019.02.036

    40. [40]

      Cui, W. G.; Zhang, G. Y.; Hu, T. L.; Bu, X. H. Metal-organic framework-based heterogeneous catalysts for the conversion of C1 chemistry: CO, CO2 and CH4. Coord. Chem. Rev. 2019, 387, 79–120.  doi: 10.1016/j.ccr.2019.02.001

    41. [41]

      He, H.; Sun, Q.; Gao, W.; Perman, J. A.; Sun, F.; Zhu, G.; Aguila, B.; Forrest, K.; Space, B.; Ma, S. A stable metal-organic framework featuring a local buffer environment for carbon dioxide fixation. Angew. Chem., Int. Ed. 2018, 57, 4657–4662.  doi: 10.1002/anie.201801122

    42. [42]

      Li, Y. Z.; Wang, H. H.; Yang, H. Y.; Hou, L.; Wang, Y. Y.; Zhu, Z. An uncommon carboxyl-decorated metal–organic framework with selective gas adsorption and catalytic conversion of CO2. Chem. Eur. J. 2018, 24, 865–871.  doi: 10.1002/chem.201704027

    43. [43]

      Agarwal, R. A.; Gupta, A. K.; De, D. Flexible Zn-MOF exhibiting selective CO2 adsorption and efficient Lewis acidic catalytic activity. Cryst. Growth Des. 2019, 19, 2010–2018.  doi: 10.1021/acs.cgd.8b01462

    44. [44]

      Rachuri, Y.; Kurisingal, J. F.; Chitumalla, R. K.; Vuppala, S.; Gu, Y.; Jang, J.; Choe, Y.; Suresh, E.; Park, D. W. Adenine-based Zn(II)/Cd(II) metal-organic frameworks as efficient heterogeneous catalysts for facile CO2 fixation into cyclic carbonates: a DFT-supported study of the reaction mechanism. Inorg. Chem. 2019, 58, 11389–11403.  doi: 10.1021/acs.inorgchem.9b00814

    45. [45]

      Sun, X.; Gu, J.; Yuan, Y.; Yu, C.; Li, J.; Shan, H.; Li, G.; Liu, Y. A stable mesoporous Zr-based metal organic framework for highly efficient CO2 conversion. Inorg. Chem. 2019, 58, 7480–7487.  doi: 10.1021/acs.inorgchem.9b00701

    46. [46]

      Wei, L. Q.; Ye, B. H. Efficient conversion of CO2 via grafting urea group into a [Cu2(COO)4]-based metal-organic framework with hierarchical porosity. Inorg. Chem. 2019, 58, 4385–4393.  doi: 10.1021/acs.inorgchem.8b03525

    47. [47]

      He, H.; Perman, J. A.; Zhu, G.; Ma, S. Metal-organic frameworks for CO2 chemical transformations. Small 2016, 12, 6309–6324.  doi: 10.1002/smll.201602711

    48. [48]

      He, H.; Zhu, Q. Q.; Guo, M. T.; Zhou, Q. S.; Chen, J.; Li, C. P.; Du, M. Doubly interpenetrated Zn4O-based metal-organic framework for CO2 chemical transformation and antibiotic sensing. Cryst. Growth Des. 2019, 19, 5228–5236.  doi: 10.1021/acs.cgd.9b00621

    49. [49]

      Ansari, S. N.; Kumar, P.; Gupta, A. K.; Mathur, P.; Mobin, S. M. Catalytic CO2 fixation over a robust lactam-functionalized Cu(II) metal organic framework. Inorg. Chem. 2019, 58, 9723–9732.  doi: 10.1021/acs.inorgchem.9b00684

    50. [50]

      Parmar, B.; Patel, P.; Pillai, R. S.; Tak, R. K.; Kureshy, R. I.; Khan, N. H.; Suresh, E. Cycloaddition of CO2 with an epoxide-bearing oxindole scaffold by a metal-organic framework-based heterogeneous catalyst under ambient conditions. Inorg. Chem. 2019, 58, 10084–10096.  doi: 10.1021/acs.inorgchem.9b01234

  • 加载中
    1. [1]

      Zixuan ZhuXianjin ShiYongfang RaoYu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954

    2. [2]

      Tianbo JiaLili WangZhouhao ZhuBaikang ZhuYingtang ZhouGuoxing ZhuMingshan ZhuHengcong Tao . Modulating the degree of O vacancy defects to achieve selective control of electrochemical CO2 reduction products. Chinese Chemical Letters, 2024, 35(5): 108692-. doi: 10.1016/j.cclet.2023.108692

    3. [3]

      Li LiFanpeng ChenBohang ZhaoYifu Yu . Understanding of the structural evolution of catalysts and identification of active species during CO2 conversion. Chinese Chemical Letters, 2024, 35(4): 109240-. doi: 10.1016/j.cclet.2023.109240

    4. [4]

      Yuhao Guo Na Li Tingjiang Yan . Tandem catalysis for photoreduction of CO2 into multi-carbon fuels on atomically thin dual-metal phosphochalcogenides. Chinese Journal of Structural Chemistry, 2024, 43(7): 100320-100320. doi: 10.1016/j.cjsc.2024.100320

    5. [5]

      Hong Dong Feng-Ming Zhang . Covalent organic frameworks for artificial photosynthetic diluted CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100307-100307. doi: 10.1016/j.cjsc.2024.100307

    6. [6]

      Liang Ma Zhou Li Zhiqiang Jiang Xiaofeng Wu Shixin Chang Sónia A. C. Carabineiro Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2023.100416

    7. [7]

      Maomao Liu Guizeng Liang Ningce Zhang Tao Li Lipeng Diao Ping Lu Xiaoliang Zhao Daohao Li Dongjiang Yang . Electron-rich Ni2+ in Ni3S2 boosting electrocatalytic CO2 reduction to formate and syngas. Chinese Journal of Structural Chemistry, 2024, 43(8): 100359-100359. doi: 10.1016/j.cjsc.2024.100359

    8. [8]

      Ziyi Zhu Yang Cao Jun Zhang . CO2-switched porous metal-organic framework magnets. Chinese Journal of Structural Chemistry, 2024, 43(2): 100241-100241. doi: 10.1016/j.cjsc.2024.100241

    9. [9]

      Ruowen Liang Chao Zhang Guiyang Yan . Enhancing CO2 cycloaddition through ligand functionalization: A case study of UiO-66 metal-organic frameworks. Chinese Journal of Structural Chemistry, 2024, 43(2): 100211-100211. doi: 10.1016/j.cjsc.2023.100211

    10. [10]

      Weichen WANGChunhua GONGJunyong ZHANGYanfeng BIHao XUJingli XIE . Construction of two metal-organic frameworks by rigid bis(triazole) and carboxylate mixed-ligands and their catalytic properties for CO2 cycloaddition reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1377-1386. doi: 10.11862/CJIC.20230415

    11. [11]

      Yi LuoLin Dong . Multicomponent remote C(sp2)-H bond addition by Ru catalysis: An efficient access to the alkylarylation of 2H-imidazoles. Chinese Chemical Letters, 2024, 35(10): 109648-. doi: 10.1016/j.cclet.2024.109648

    12. [12]

      Conghui WangLei XuZhenhua JiaTeck-Peng Loh . Recent applications of macrocycles in supramolecular catalysis. Chinese Chemical Letters, 2024, 35(4): 109075-. doi: 10.1016/j.cclet.2023.109075

    13. [13]

      Wei Chen Pieter Cnudde . A minireview to ketene chemistry in zeolite catalysis. Chinese Journal of Structural Chemistry, 2024, 43(11): 100412-100412. doi: 10.1016/j.cjsc.2024.100412

    14. [14]

      Dong-Ling Kuang Song Chen Shaoru Chen Yong-Jie Liao Ning Li Lai-Hon Chung Jun He . 2D Zirconium-based metal-organic framework/bismuth(III) oxide nanorods composite for electrocatalytic CO2-to-formate reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100301-100301. doi: 10.1016/j.cjsc.2024.100301

    15. [15]

      Muhammad Humayun Mohamed Bououdina Abbas Khan Sajjad Ali Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193

    16. [16]

      Ping Wang Tianbao Zhang Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328

    17. [17]

      Yu MaoYilin LiuXiaochen WangShengyang NiYi PanYi Wang . Acylfluorination of enynes via phosphine and silver catalysis. Chinese Chemical Letters, 2024, 35(8): 109443-. doi: 10.1016/j.cclet.2023.109443

    18. [18]

      Luyan ShiKe ZhuYuting YangQinrui LiangQimin PengShuqing ZhouTayirjan Taylor IsimjanXiulin Yang . Phytic acid-derivative Co2B-CoPOx coralloidal structure with delicate boron vacancy for enhanced hydrogen generation from sodium borohydride. Chinese Chemical Letters, 2024, 35(4): 109222-. doi: 10.1016/j.cclet.2023.109222

    19. [19]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    20. [20]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

Metrics
  • PDF Downloads(2)
  • Abstract views(228)
  • HTML views(7)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return