Citation: Jian-Bo TONG, Yi FENG, Tian-Hao WANG, Lu-Yang WU. Topomer CoMFA, HQSAR Studies and Molecular Docking of 2,5-Diketopiperazine Derivatives as Oxytocin Inhibitors[J]. Chinese Journal of Structural Chemistry, ;2020, 39(8): 1385-1394. doi: 10.14102/j.cnki.0254–5861.2011–2611 shu

Topomer CoMFA, HQSAR Studies and Molecular Docking of 2,5-Diketopiperazine Derivatives as Oxytocin Inhibitors

  • Corresponding author: Jian-Bo TONG, jianbotong@aliyun.com
  • Received Date: 20 September 2019
    Accepted Date: 16 January 2020

    Fund Project: the National Natural Science Funds of China 21475081the Natural Science Foundation of Shaanxi Province 2019JM-237

Figures(7)

  • Topomer comparative molecular field analysis (Topomer CoMFA) and holographic quantitative structure-activity relationship (HQSAR) for 130 2,5-diketopiperazine derivatives were used to build a three-dimensional quantitative structure-activity relationship (3D-QSAR) model. The results show that the models have high predictive ability. For Topomer CoMFA, the cross-validated q2 value is 0.710 and the non-cross-validated r2 value is 0.834. The most effective HQSAR model shows that the cross-validation q2 value is 0.700, the non-cross-validated r2 value is 0.815, and the best hologram length value is 353 using connections and bonds as fragment distinctions. 50 highly active 2,5-diketopiperazine derivatives were designed based on the three-dimensional equipotential map and HQSAR color code map. Finally, the molecular docking method was also used to study the interactions of these new molecules by docking the ligands into the diketopiperazine active site, which revealed the likely bioactive conformations. This study showed that there are extensive interactions between the new molecule and Arg156, Arg122 residues in the active site of diketopiperazine. These results provide useful insights for the design of potent of the new 2,5-diketopiperazine derivatives.
  • 加载中
    1. [1]

      Cruvinel, V. R.; Gravina, D. B.; Azevedo, T. D. Prevalence of dental caries and caries-related risk factors in premature and term children. Braz. Oral. Res. 2010, 24, 329–335.  doi: 10.1590/S1806-83242010000300012

    2. [2]

      Jójárt, B.; Martinek, T. A.; Márki, Á. The 3D structure of the binding pocket of the human oxytocin receptor for benzoxazine antagonists, determined by molecular docking, scoring functions and 3D-QSAR methods. J. Comput. Aid. Mol. Des. 2005, 19, 341–356.  doi: 10.1007/s10822-005-7137-0

    3. [3]

      Liddle, J.; Allen, M. J.; Borthwick, A. D. The discovery of GSK221149A: a potent and selective oxytocin antagonist. Bioorg. Med. Chem. Lett. 2008, 18, 90–94.  doi: 10.1016/j.bmcl.2007.11.008

    4. [4]

      Heravi, Y. E.; Sereshti, H.; Saboury, A. A. 3D QSAR studies, pharmacophore modeling, and virtual screening of diarylpyrazole-benzenesulfonamide derivatives as a template to obtain new inhibitors, using human carbonic anhydrase II as a model protein. J. Enzyme. Inhib. Med. Chem. 2017, 32, 688–700.  doi: 10.1080/14756366.2016.1241781

    5. [5]

      Cheng, Y.; Mei, Z.; Tung, C. H. Studies on two types of PTP1β inhibitors for the treatment of type 2 diabetes: hologram QSAR for OBA and BBB analogues. Bioorg. Med. Chem. Lett. 2010, 20, 3329–3337.  doi: 10.1016/j.bmcl.2010.04.033

    6. [6]

      Tong, J.; Shan, L.; Qin, S. QSAR studies of TIBO derivatives as HIV-1 reverse transcriptase inhibitors using HQSAR, CoMFA and CoMSIA. J. Mol. Struct. 2018, 1168, 56–64.  doi: 10.1016/j.molstruc.2018.05.005

    7. [7]

      Borthwick, A. D.; Davies, D. E.; Exall, A. M. 2,5-Diketopiperazines as potent, selective, and orally bioavailable oxytocin antagonists 2-synthesis, chirality, and pharmacokinetics. J. Med. Chem. 2005, 48, 6956–6969.  doi: 10.1021/jm050557v

    8. [8]

      Wyatt, P. G.; Allen, M. J.; Borthwick, A. D. 2,5-Diketopiperazines as potent and selective oxytocin antagonists 1: identification, stereochemistry and initial SAR. Bioorg. Med. Chem. Lett. 2005, 15, 2579–2582.  doi: 10.1016/j.bmcl.2005.03.045

    9. [9]

      Borthwick, A. D.; Davies, D. E.; Exall, A. M. 2,5-Diketopiperazines as potent, selective, and orally bioavailable oxytocin antagonists. 3. Synthesis, pharmacokinetics, and in vivo potency. J. Med. Chem. 2006, 49, 4159–4170.  doi: 10.1021/jm060073e

    10. [10]

      Borthwick, A. D.; Liddle, J. The design of orally bioavailable 2,5-diketopiperazine oxytocin antagonists: from concept to clinical candidate for premature labor. Med. Res. Rev. 2011, 31, 576–604.  doi: 10.1002/med.20193

    11. [11]

      Borthwick, A. D.; Liddle, J.; Davies, D. E. Pyridyl-2,5-diketopiperazines as potent, selective, and orally bioavailable oxytocin antagonists: synthesis, pharmacokinetics, and in vivo potency. J. Med. Chem. 2012, 55, 783–796.  doi: 10.1021/jm201287w

    12. [12]

      Yang, M.; Luo, J. H.; Zeng, Z. M. In silico profiling the interaction mechanism of 2,5-diketopiperazine derivatives as oxytocin antagonists. J. Mol. Graph. 2019, 89, 178–191.  doi: 10.1016/j.jmgm.2019.03.003

    13. [13]

      Clark, M.; Cramer, R. D.; Opdenbosch, N. V. Validation of the general purpose TRIPOS 5.2 force field. J. Comput. Chem. 2004, 10, 982–1012.

    14. [14]

      Caballero, J.; Saavedra, M.; Fernández, M. Quantitative structure-activity relationship of rubiscolin analogues as delta opioid peptides using comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA). J. Agric. Food. Chem. 2007, 55, 8101–8104.  doi: 10.1021/jf071031h

    15. [15]

      Jilek, R. J.; Cramer, R. D. Topomers: a validated protocol for their self-consistent generation. J. Chem. Inf. Comput. Sci. 2004, 35, 1221–1227.

    16. [16]

      Clark, M.; Cramer, R. D.; Opdenbosch, N. V. Validation of the general purpose tripos 5.2 force field. J. Comput. Chem. 2010, 10, 982–1012.

    17. [17]

      Bhargava, S.; Adhikari, N.; Amin, S. A. Hydroxyethylamine derivatives as HIV-1 protease inhibitors: a predictive QSAR modelling study based on Monte Carlo optimization. SAR. QSAR. Environ. Res. 2017, 28, 1–18.  doi: 10.1080/1062936X.2016.1264468

    18. [18]

      Winkler, D. A.; Burden, F. R. Holographic QSAR of benzodiazepines. QSAR. Comb. Sci. 2015, 17, 224–231.  doi: 10.1021/co5001579

    19. [19]

      Irwin, J. J.; Teague, S.; Mysinger, M. M. ZINC: a free tool to discover chemistry for biology. J. Chem. Inf. Model 2012, 52, 1757–1768.  doi: 10.1021/ci3001277

    20. [20]

      Chen, B.; Han, J.; Wang, Y. Separation, enrichment and determination of ciprofloxacin using thermoseparating polymer aqueous two-phase system combined with high performance liquid chromatography in milk, egg, and shrimp samples. Food. Chem. 2014, 148, 105–111.  doi: 10.1016/j.foodchem.2013.10.011

    21. [21]

      Jain, A. N. Surflex: fully automatic flexible molecular docking using a molecular similarity-based search engine. J. Med. Chem. 2003, 46, 499–511.  doi: 10.1021/jm020406h

  • 加载中
    1. [1]

      Wenhao ChenMuxuan WuHan ChenLue MoYirong Zhu . Cu2Se@C thin film with three-dimensional braided structure as a cathode material for enhanced Cu2+ storage. Chinese Chemical Letters, 2024, 35(5): 108698-. doi: 10.1016/j.cclet.2023.108698

    2. [2]

      Yuhang Li Yang Ling Yanhang Ma . Application of three-dimensional electron diffraction in structure determination of zeolites. Chinese Journal of Structural Chemistry, 2024, 43(4): 100237-100237. doi: 10.1016/j.cjsc.2024.100237

    3. [3]

      Yifan LIUZhan ZHANGRongmei ZHUZiming QIUHuan PANG . A three-dimensional flower-like Cu-based composite and its low-temperature calcination derivatives for efficient oxygen evolution reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 979-990. doi: 10.11862/CJIC.20240008

    4. [4]

      Hui GuMingyue GaoKuan ShenTianli ZhangJunhao ZhangXiangjun ZhengXingmei GuoYuanjun LiuFu CaoHongxing GuQinghong KongShenglin Xiong . F127 assisted fabrication of Ge/rGO/CNTs nanocomposites with three-dimensional network structure for efficient lithium storage. Chinese Chemical Letters, 2024, 35(9): 109273-. doi: 10.1016/j.cclet.2023.109273

    5. [5]

      Chao Ma Peng Guo Zhongmin Liu . DNL-16: A new zeolitic layered silicate unraveled by three-dimensional electron diffraction. Chinese Journal of Structural Chemistry, 2024, 43(4): 100235-100235. doi: 10.1016/j.cjsc.2024.100235

    6. [6]

      Shiyu HouMaolin SunLiming CaoChaoming LiangJiaxin YangXinggui ZhouJinxing YeRuihua Cheng . Computational fluid dynamics simulation and experimental study on mixing performance of a three-dimensional circular cyclone-type microreactor. Chinese Chemical Letters, 2024, 35(4): 108761-. doi: 10.1016/j.cclet.2023.108761

    7. [7]

      Jian SongShenghui WangQiuge LiuXiao WangShuo YuanHongmin LiuSaiyang ZhangN-Benzyl arylamide derivatives as novel and potent tubulin polymerization inhibitors against gastric cancers: Design, structure–activity relationships and biological evaluations. Chinese Chemical Letters, 2025, 36(2): 109678-. doi: 10.1016/j.cclet.2024.109678

    8. [8]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    9. [9]

      Tong LiLeping PanYan ZhangJihu SuKai LiKuiliang LiHu ChenQi SunZhiyong Wang . Electrochemical construction of 2,5-diaryloxazoles via N–H and C(sp3)-H functionalization. Chinese Chemical Letters, 2024, 35(4): 108897-. doi: 10.1016/j.cclet.2023.108897

    10. [10]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    11. [11]

      Linfang ZHANGWenzhu YINGui YIN . A 2-dicyanomethylene-3-cyano-4,5,5-trimethyl-2,5-dihydrofuran-based near-infrared fluorescence probe for the detection of hydrogen sulfide and imaging of living cells. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 540-548. doi: 10.11862/CJIC.20240405

    12. [12]

      Chunmao YuanYanrong ZengLei HuangYu MouJun JinPing YiYanmei LiXiaojiang Hao . Hymoins A–C, three unusual polycyclic polyprenylated acylphloroglucinols with lipid-lowering activity from Hypericum monogynum. Chinese Chemical Letters, 2025, 36(3): 109859-. doi: 10.1016/j.cclet.2024.109859

    13. [13]

      Bairu MengZongji ZhuoHan YuSining TaoZixuan ChenErik De ClercqChristophe PannecouqueDongwei KangPeng ZhanXinyong Liu . Design, synthesis, and biological evaluation of benzo[4,5]thieno[2,3-d]pyrimidine derivatives as novel HIV-1 NNRTIs. Chinese Chemical Letters, 2024, 35(6): 108827-. doi: 10.1016/j.cclet.2023.108827

    14. [14]

      Ping SunYuanqin HuangShunhong ChenXining MaZhaokai YangJian Wu . Indole derivatives as agrochemicals: An overview. Chinese Chemical Letters, 2024, 35(7): 109005-. doi: 10.1016/j.cclet.2023.109005

    15. [15]

      Yao HUANGYingshu WUZhichun BAOYue HUANGShangfeng TANGRuixue LIUYancheng LIUHong LIANG . Copper complexes of anthrahydrazone bearing pyridyl side chain: Synthesis, crystal structure, anticancer activity, and DNA binding. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 213-224. doi: 10.11862/CJIC.20240359

    16. [16]

      Jia JIZhaoyang GUOWenni LEIJiawei ZHENGHaorong QINJiahong YANYinling HOUXiaoyan XINWenmin WANG . Two dinuclear Gd(Ⅲ)-based complexes constructed by a multidentate diacylhydrazone ligand: Crystal structure, magnetocaloric effect, and biological activity. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 761-772. doi: 10.11862/CJIC.20240344

    17. [17]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    18. [18]

      Yulong ShiFenbei ChenMengyuan WuXin ZhangRunze MengKun WangYan WangYuheng MeiQionglu DuanYinghong LiRongmei GaoYuhuan LiHongbin DengJiandong JiangYanxiang WangDanqing Song . Chemical construction and anti-HCoV-OC43 evaluation of novel 10,12-disubstituted aloperine derivatives as dual cofactor inhibitors of TMPRSS2 and SR-B1. Chinese Chemical Letters, 2024, 35(5): 108792-. doi: 10.1016/j.cclet.2023.108792

    19. [19]

      Ao SunZipeng LiShuchun LiXiangbao MengZhongtang LiZhongjun Li . Stereoselective synthesis of α-3-deoxy-D-manno-oct-2-ulosonic acid (α-Kdo) derivatives using a C3-p-tolylthio-substituted Kdo fluoride donor. Chinese Chemical Letters, 2025, 36(3): 109972-. doi: 10.1016/j.cclet.2024.109972

    20. [20]

      Xiangyuan Zhao Jinjin Wang Jinzhao Kang Xiaomei Wang Hong Yu Cheng-Feng Du . Ni nanoparticles anchoring on vacuum treated Mo2TiC2Tx MXene for enhanced hydrogen evolution activity. Chinese Journal of Structural Chemistry, 2023, 42(10): 100159-100159. doi: 10.1016/j.cjsc.2023.100159

Metrics
  • PDF Downloads(1)
  • Abstract views(273)
  • HTML views(5)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return