Citation: Han XU, Zhao-Rui PAN. A Metal-organic Framework Constructed from a Rare Rod-shaped Secondary Building Unit and Its Highly Efficient Photocatalytic Activity[J]. Chinese Journal of Structural Chemistry, ;2020, 39(8): 1475-1482. doi: 10.14102/j.cnki.0254–5861.2011–2605 shu

A Metal-organic Framework Constructed from a Rare Rod-shaped Secondary Building Unit and Its Highly Efficient Photocatalytic Activity

  • Corresponding author: Zhao-Rui PAN, pzr_2006@163.com
  • Received Date: 21 August 2019
    Accepted Date: 6 December 2019

    Fund Project: Key Projects of Natural Science Research in Universities of Anhui Province KJ2018A0409National Undergraduate Training Programs for Innovation and Entrepreneurship 201810375012National Undergraduate Training Programs for Innovation and Entrepreneurship 201810375039

Figures(11)

  • A new Cu(II) coordination polymer, {[Cu3(oba)2(μ3-OH)2(H2O)2]⋅6H2O}n (H2oba = 4, 4΄-oxydibenzoic acid), was synthesized by the solvothermal route and characterized by IR, TGA and XRD. The complex crystallizes in the monoclinic system, space group P21/c with a = 5.957(6), b = 29.746(3), c = 9.351(7) Å, β = 125.709(4)º, V = 1345.4(2) Å3, Z = 2, C28H36Cu3O20, Mr= 883.09, Dc = 1.913 g/cm3, F(000) = 782, μ = 2.427 mm-1, R = 0.0780 and wR= 0.1688 for 3120 observed reflections with I > 2σ(I). The complex forms a 3D framework based on rare infinite rod-shaped secondary building units (SBUs), and C–H···π interactions play an important role in stabilizing the 3D supramolecular architecture. It shows excellent catalytic activities for the degradation of safranin O (SO) and methylene blue (MB) dyes in aqueous solution under UV light irradiation. Furthermore, the apparent rate constants have also been investigated.
  • 加载中
    1. [1]

      Jennifer, S. J.; Jana, A. K. Influence of pyrazine/piperazine based guest molecules in the crystal structures of uranyl thiophene dicarboxylate coordination polymers: structural diversities and photocatalytic activities for the degradation of organic dye. Cryst. Growth Des. 2017, 17, 5318−5329.  doi: 10.1021/acs.cgd.7b00826

    2. [2]

      Han, L. J.; Kong, Y. J.; Yan, T. J.; Fan, L. T.; Zhang, Q.; Zhao, H. J.; Zheng, H. G. A new five-coordinated copper compound for efficient degradation of methyl orange andcongo red in the absence of UV-visible radiation. Dalton Trans. 2016, 45, 18566−18571.  doi: 10.1039/C6DT03273G

    3. [3]

      Maspoch, D.; Domingo, N.; Ruiz, M. D.; Wurst, K.; Hernandez, J. M.; Vaughan, G.; Rovira, C.; Lloret, F.; Tejada, J.; Veciana, J. Coexistence of ferroand antiferromagnetic interactions in a metal-organic radical-based (6, 3)-helical network with large channels. Chem. Commun. 2005, 40, 5035−5037.

    4. [4]

      Li, H. H.; Shi, W.; Xu, N.; Zhang, Z. J.; Niu, Z.; Han, T.; Cheng, P. Structural diversity of four metal-organic frameworks based on linear homo/heterotrinuclear nodes with furan-2, 5-dicarboxylic acid: structures and luminescent and magnetic properties. Cryst. Growth Des. 2012, 12, 2602−2612.  doi: 10.1021/cg300196w

    5. [5]

      Wang, J.; Gao, L. L.; Zhang, J.; Zhao, L.; Wang, X. Q.; Niu, X. Y.; Fan, L. M.; Hu, T. M. Syntheses, gas adsorption, and sensing properties of solvent controlled Zn(II) pseudo-supramolecular isomers and Pb(II) supramolecular isomers. Cryst. Growth Des. 2019, 19, 630−637.  doi: 10.1021/acs.cgd.8b01077

    6. [6]

      Rao, P. C.; Mandal, S. Europium-based metal-organic framework as a dual luminescence sensor for the selective detection of phosphate anion and Fe3+ ion in aqueous media. Inorg. Chem. 2018, 57, 11855−11858.  doi: 10.1021/acs.inorgchem.8b02017

    7. [7]

      Chen, C.; Zhang, M. X.; Zhang, W. W.; Bai, J. F. Stable amide-functionalized metal-organic framework with highly selective CO2 adsorption. Inorg. Chem. 2019, 58, 2729−2735.  doi: 10.1021/acs.inorgchem.8b03308

    8. [8]

      Wang, Q.; Bai, J. F.; Lu, Z. Y.; Pan, Y.; You, X. Z. Finely tuning MOFs towards high-performance post-combustion CO2 capture materials. Chem. Commun. 2016, 52, 443−452.  doi: 10.1039/C5CC07751F

    9. [9]

      Du, L. T.; Lu, Z. Y.; Zheng, K. Y.; Wang, J. Y.; Zheng, X.; Pan, Y.; You, X. Z.; Bai, J. F. Fine-tuning pore size by shifting coordination sites of ligands and surface polarization: a porous coordination polymer of metal-organic frameworks to sharply enhance the selectivity for CO2. J. Am. Chem. Soc. 2013, 135, 562−565.  doi: 10.1021/ja309992a

    10. [10]

      Ding, Y.; Chen, Y. P.; Zhang, X.; Chen, L.; Dong, Z.; Jiang, H. L.; Xu, H.; Zhou, H. C. Controlled intercalation and chemical exfoliation of layered metal-organic frameworks using a chemically labile intercalating agent. J. Am. Chem. Soc. 2017, 139, 9136−9149.  doi: 10.1021/jacs.7b04829

    11. [11]

      He, P.; Yu, X. Y.; Lou, X. W. Carbon-incorporate nickel-cobalt mixed metal phosphide nanoboxes with enhanced electro-catalytic activity for oxygen evolution. Angew. Chem., Int. Ed. 2017, 56, 3897−3900.  doi: 10.1002/anie.201612635

    12. [12]

      Huang, Y. B.; Liang, J.; Wang, X. S.; Cao, R. Multifunctional metal-organic framework catalyst: synergistic catalysis and tandem reations. Chem. Soc. Rev. 2017, 46, 126−157.

    13. [13]

      Roy, M.; Sengupta, S.; Bala, S.; Bhattcharya, S.; Mondal, R. Systematic study of mutually inclusive influences of temperature and substitution on the coordination geometry Co(II) in a series of coordination polymers and their properties. Cryst. Growth Des. 2016, 16, 3170−3179.  doi: 10.1021/acs.cgd.5b01835

    14. [14]

      Qin, L.; Chen, H. Z.; Lei, J.; Wang, Y. Q.; Ye, T. Q.; Zheng, H. G. Photodegradation of some organic dyes over two metal-organic frameworks with especially high efficiency for safranine T. Cryst. Growth Des. 2017, 17, 1293−1298.  doi: 10.1021/acs.cgd.6b01690

    15. [15]

      Chen, Y. Q.; Li, G. R.; Qu, Y. K.; Zhang, Y. H.; He, K. H.; Gao, Q.; Bu, X. H. Water-insoluble heterometal-oxide-based photocatalysts effective for the photo-decomposition of methyl organge. Cryst. Growth Des. 2013, 13, 901−907.  doi: 10.1021/cg3016244

    16. [16]

      Wang, Z. J.; Han, L. J.; Gao, X. J.; Zheng, H. G. Three Cd(II) MOFs with different functional groups: selective CO2 capture and metal ions detection. Inorg. Chem. 2018, 57, 5232−5239.  doi: 10.1021/acs.inorgchem.8b00272

    17. [17]

      Sheldrick, G. M. SHELXL-97, Program for X-ray Crystal Structure Refinement. University of Göttingen, Germany 1997.

    18. [18]

      Spek. A. L. PLATON SQUEEZE: a tool for the calculation of the disordered solvent contribution to the calculate structure factors. Actacrystallogr. Sect. C: Struct. Chem. 2015, 71, 9−18.  doi: 10.1107/S2053229614024929

    19. [19]

      Wang, A. L.; Zhou, D.; Chen, Y. N.; Li, J. J.; Zhang, H. X.; Zhao, Y. L.; Chu, H. B. Crystal structure and photoluminescence of europium, terbium and samarium compounds with halogen-benzoate and 2, 4, 6-tri(2-pyridyl)-s-triazine. J. Lumin. 2016, 177, 22−30.  doi: 10.1016/j.jlumin.2016.04.024

    20. [20]

      Xu, W. T.; Chen, L.; Jiang, F. L.; Hong, M. C. Synthesis, crystal structure and properties of a nanotubular metal-organic framework (MOFs) based on Cu(II) oxide chains and benzenedicarboxylates. Chin. J. Struct. Chem. 2012, 3, 321−326.

    21. [21]

      Li, X.; Chen, D. Y.; Lin, J. L.; Li, Z. F.; Zheng, Y. Q. Di-, tetra-, and hexanuclear hydroxy-bridged copper(II) cluster compounds: syntheses, structures, and properties. Cryst. Growth Des. 2008, 8, 2853−2861.  doi: 10.1021/cg701150q

    22. [22]

      Veselska, O.; Cai, L. W.; Podbevšek, D.; Ledoux, G.; Guillou, N.; Pilet, G.; Fateeva, A.; Demessence, A. Structural diversity of coordination polymers based on a heterotopic ligand: Cu(II)-carboxylate vs Cu(I)-thiolate. Inorg. Chem. 2019, 58, 2736−2743.  doi: 10.1021/acs.inorgchem.8b03310

    23. [23]

      Tomar, K.; Verma, A.; Bharadwaj, P. K. Exploiting dimensional variability in Cu paddle-wheel secondary building unit based mixed valence Cu(II)/Cu(I) frameworks from a bispyrazole ligand by solvent/pH variation. Cryst. Growth Des. 2018, 18, 2397−2404.  doi: 10.1021/acs.cgd.8b00002

    24. [24]

      Rosi, N. L.; Kim, J.; Eddaoudi, M.; Chenm B. L.; O'Keeffe, M.; Yaghi, O. M. Rod packings and metal-organic frameworks constructed from rod-shaped secondary building units. J. Am. Chem. Soc. 2005, 127, 1504−1518  doi: 10.1021/ja045123o

    25. [25]

      Li, N.; Chen, L.; Lian, F. Y.; Jiang, F. L.; Hong, M. C. Syntheses and crystal structures of three novel Zn-sulfonyldibenzoilatecoordination polymers. Chin. J. Struct. Chem. 2009, 28, 1417−1426.

    26. [26]

      Zhang, C. H.; Ai, L. H.; Jiang, J. Graphene hybridized photoactive iron terephthalate with enhanced photocatalytic activity for the degradation of rhodamine B under visible light. J. Ind. Eng. Chem. Res. 2015, 54, 153−163.  doi: 10.1021/ie504111y

    27. [27]

      Akhtar, S.; Bala, S.; De, A.; Das, K. S.; Adhikary, A.; Jyotsna, S.; Poddar, P.; Mondal, R. Designing multifunctional MOFs using the inorganic motif [Cu3(μ3-OH)(μ-pyz)] as an SBU and their properties. Cryst. Growth Des. 2019, 19, 992−1004.  doi: 10.1021/acs.cgd.8b01540

    28. [28]

      Pham, N.; Xing, G.; Miller, C.; Waite, T. D. Fenton-like copper redox chemistry revisited: hydrogen peroxide and superoxide mediation of copper-catalyzed oxidant production. J. Catal. 2013, 301, 54−64.  doi: 10.1016/j.jcat.2013.01.025

    29. [29]

      Gray, R. D. Kinetic of oxidation of copper(I) by molecular oxygen in perchloric by the Cu2+-2, 2΄-bipyridyl complex. J. Am. Chem. Soc. 1969, 91, 56−62.  doi: 10.1021/ja01029a012

    30. [30]

      Wang, C. K.; Xing, F. F.; Bai, Y. L.; Zhao, Y. M.; Li, M. X.; Zhu, S. R. Synthesis and structure of semirigid tetracarboxylate copper(II) porous coordination polymers and their versatile high-efficiency catalytic dye degradation in neutral aqueous solution. Cryst. Growth Des. 2016, 16, 2277−2288.  doi: 10.1021/acs.cgd.6b00065

    31. [31]

      Bala, S.; Bhattacharya, S.; Goswami, A.; Adhikary, A.; Konar, S. Designing functional metal-organic frameworks by imparting a hexanuclear copper-based secondary building unit specific properties: structural correlation with magnetic and photocatalytic activity. Cryst. Growth Des. 2014, 14, 6391−6398.  doi: 10.1021/cg501226v

  • 加载中
    1. [1]

      Wenhao WangGuangpu ZhangQiufeng WangFancang MengHongbin JiaWei JiangQingmin Ji . Hybrid nanoarchitectonics of TiO2/aramid nanofiber membranes with softness and durability for photocatalytic dye degradation. Chinese Chemical Letters, 2024, 35(7): 109193-. doi: 10.1016/j.cclet.2023.109193

    2. [2]

      Liang Ma Zhou Li Zhiqiang Jiang Xiaofeng Wu Shixin Chang Sónia A. C. Carabineiro Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2023.100416

    3. [3]

      Chi ZhangNing DingYuwei PanLichun FuYing Zhang . The degradation pathways of contaminants by reactive oxygen species generated in the Fenton/Fenton-like systems. Chinese Chemical Letters, 2024, 35(10): 109579-. doi: 10.1016/j.cclet.2024.109579

    4. [4]

      Yiqian JiangZihan YangXiuru BiNan YaoPeiqing ZhaoXu Meng . Mediated electron transfer process in α-MnO2 catalyzed Fenton-like reaction for oxytetracycline degradation. Chinese Chemical Letters, 2024, 35(8): 109331-. doi: 10.1016/j.cclet.2023.109331

    5. [5]

      Shiyu PanBo CaoDeling YuanTifeng JiaoQingrui ZhangShoufeng Tang . Complexes of cupric ion and tartaric acid enhanced calcium peroxide Fenton-like reaction for metronidazole degradation. Chinese Chemical Letters, 2024, 35(7): 109185-. doi: 10.1016/j.cclet.2023.109185

    6. [6]

      Weichen ZhuWei ZuoPu WangWei ZhanJun ZhangLipin LiYu TianHong QiRui Huang . Fe-N-C heterogeneous Fenton-like catalyst for the degradation of tetracycline: Fe-N coordination and mechanism studies. Chinese Chemical Letters, 2024, 35(9): 109341-. doi: 10.1016/j.cclet.2023.109341

    7. [7]

      Cunjun LiWencong LiuXianlei ChenLiang LiShenyu LanMingshan Zhu . Adsorption and activation of peroxymonosulfate on BiOCl for carbamazepine degradation: The role of piezoelectric effect. Chinese Chemical Letters, 2024, 35(10): 109652-. doi: 10.1016/j.cclet.2024.109652

    8. [8]

      Jian PengYue JiangShuangyu WuYanran ChengJingyu LiangYixin WangZhuo LiSijie Lin . A nonradical oxidation process initiated by Ti-peroxo complex showed high specificity toward the degradation of tetracycline antibiotics. Chinese Chemical Letters, 2024, 35(5): 108903-. doi: 10.1016/j.cclet.2023.108903

    9. [9]

      Ruonan GuoHeng ZhangChangsheng GuoNingqing LvBeidou XiJian Xu . Degradation of neonicotinoids with different molecular structures in heterogeneous peroxymonosulfate activation system through different oxidation pathways. Chinese Chemical Letters, 2024, 35(9): 109413-. doi: 10.1016/j.cclet.2023.109413

    10. [10]

      Qiang Zhang Weiran Gong Huinan Che Bin Liu Yanhui Ao . S doping induces to promoted spatial separation of charge carriers on carbon nitride for efficiently photocatalytic degradation of atrazine. Chinese Journal of Structural Chemistry, 2023, 42(12): 100205-100205. doi: 10.1016/j.cjsc.2023.100205

    11. [11]

      Kai Han Guohui Dong Ishaaq Saeed Tingting Dong Chenyang Xiao . Morphology and photocatalytic tetracycline degradation of g-C3N4 optimized by the coal gangue. Chinese Journal of Structural Chemistry, 2024, 43(2): 100208-100208. doi: 10.1016/j.cjsc.2023.100208

    12. [12]

      Xingmin ChenYunyun WuYao TangPeishen LiShuai GaoQiang WangWen LiuSihui Zhan . Construction of Z-scheme Cu-CeO2/BiOBr heterojunction for enhanced photocatalytic degradation of sulfathiazole. Chinese Chemical Letters, 2024, 35(7): 109245-. doi: 10.1016/j.cclet.2023.109245

    13. [13]

      Weixu Li Yuexin Wang Lin Li Xinyi Huang Mengdi Liu Bo Gui Xianjun Lang Cheng Wang . Promoting energy transfer pathway in porphyrin-based sp2 carbon-conjugated covalent organic frameworks for selective photocatalytic oxidation of sulfide. Chinese Journal of Structural Chemistry, 2024, 43(7): 100299-100299. doi: 10.1016/j.cjsc.2024.100299

    14. [14]

      Zhi Zhu Xiaohan Xing Qi Qi Wenjing Shen Hongyue Wu Dongyi Li Binrong Li Jialin Liang Xu Tang Jun Zhao Hongping Li Pengwei Huo . Fabrication of graphene modified CeO2/g-C3N4 heterostructures for photocatalytic degradation of organic pollutants. Chinese Journal of Structural Chemistry, 2023, 42(12): 100194-100194. doi: 10.1016/j.cjsc.2023.100194

    15. [15]

      Meijuan ChenLiyun ZhaoXianjin ShiWei WangYu HuangLijuan FuLijun Ma . Synthesis of carbon quantum dots decorating Bi2MoO6 microspherical heterostructure and its efficient photocatalytic degradation of antibiotic norfloxacin. Chinese Chemical Letters, 2024, 35(8): 109336-. doi: 10.1016/j.cclet.2023.109336

    16. [16]

      Ruiying Liu Li Zhao Baishan Liu Jiayuan Yu Yujie Wang Wanqiang Yu Di Xin Chaoqiong Fang Xuchuan Jiang Riming Hu Hong Liu Weijia Zhou . Modulating pollutant adsorption and peroxymonosulfate activation sites on Co3O4@N,O doped-carbon shell for boosting catalytic degradation activity. Chinese Journal of Structural Chemistry, 2024, 43(8): 100332-100332. doi: 10.1016/j.cjsc.2023.100332

    17. [17]

      Maosen XuPengfei ZhuQinghong CaiMeichun BuChenghua ZhangHong WuYouzhou HeMin FuSiqi LiXingyan LiuIn-situ fabrication of TiO2/NH2−MIL-125(Ti) via MOF-driven strategy to promote efficient interfacial effects for enhancing photocatalytic NO removal activity. Chinese Chemical Letters, 2024, 35(10): 109524-. doi: 10.1016/j.cclet.2024.109524

    18. [18]

      Ping Lu Baoyin Du Ke Liu Ze Luo Abiduweili Sikandaier Lipeng Diao Jin Sun Luhua Jiang Yukun Zhu . Heterostructured In2O3/In2S3 hollow fibers enable efficient visible-light driven photocatalytic hydrogen production and 5-hydroxymethylfurfural oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100361-100361. doi: 10.1016/j.cjsc.2024.100361

    19. [19]

      Guangyao WangZhitong XuYe QiYueguang FangGuiling NingJunwei Ye . Electrospun nanofibrous membranes with antimicrobial activity for air filtration. Chinese Chemical Letters, 2024, 35(10): 109503-. doi: 10.1016/j.cclet.2024.109503

    20. [20]

      Tianze WangJunyi RenDongxiang ZhangHuan WangJianjun DuXin-Dong JiangGuiling Wang . Development of functional dye with redshifted absorption based on Knoevenagel condensation at 1-site in phenyl[b]-fused BODIPY. Chinese Chemical Letters, 2024, 35(6): 108862-. doi: 10.1016/j.cclet.2023.108862

Metrics
  • PDF Downloads(2)
  • Abstract views(188)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return