Citation: Xiao-Ming SHI, Li-Na XIAO, Shu-Jing LI, Xiao-Zeng LI. Synthesis and Characterization of Heterobimetallic Zigzag Chains with a Close-packed Structure Based on Macrocyclic Metalloligands[J]. Chinese Journal of Structural Chemistry, ;2020, 39(8): 1465-1474. doi: 10.14102/j.cnki.0254–5861.2011–2603 shu

Synthesis and Characterization of Heterobimetallic Zigzag Chains with a Close-packed Structure Based on Macrocyclic Metalloligands

  • Corresponding author: Xiao-Ming SHI, lixiaozeng321@tju.edu.cn Xiao-Zeng LI, shixiaoming2019@163.com
  • Received Date: 16 September 2019
    Accepted Date: 2 December 2019

    Fund Project: the Natural Science Foundation of He'nan Educational Committee of China 17A150056the National Natural Science Foundation of China 21501203the Funds of Basic and Advanced Technology Research Project of Henan Province of China 192012310497the Research Fund for the Doctoral Program of Higher Education of China ZKNUB2013003the Funds of Zhoukou Normal University ZKNUB115202

Figures(9)

  • Two new heterobimetallic coordination polymers {[Co(NiL)(H2O)3]·4H2O}n (1) and {[Cu(NiL)(H2O)3]·4H2O}n (2) were synthesized based on metalloligand under the same self-assembly conditions. X-ray diffraction analyses reveal that the two compounds involve close-packed zigzag chains, which expand into various three-dimensional supramolecular frameworks through the second interactions such as hydrogen bonds and π∙∙∙π stacking interactions. In these two compounds, NiL as a bridging ligand chelates the metal ion nodes via two oxamido carbonyls and carboxylate oxygen atom. The central Co(II) and Cu(II) ions in 1 and 2 both exhibit distorted octahedral coordination geometry. They are bridged by macrocyclic oxamido metalloligands fusing the zigzag chains with a ''head-to-tail'' arrangement. The Ni(II) ion in metalloligand is coordinated by four nitrogen atoms with the [NiN4] chromophore exhibiting distorted planarity. The two investigated compounds were further characterized by thermogravimetric analysis and FT-IR spectroscopy. The fluorescent properties of 1 and 2 in the solid state were also investigated.
  • 加载中
    1. [1]

      Furukawa, H.; Cordova, K. E.; Keeffe, M. O'; Yaghi, O. M. The chemistry and applications of metal-organic frameworks. Science 2013, 431, 974–986.

    2. [2]

      Gascon, J.; Corma, A.; Kapteijn, F.; Llabrés, I.; Xamena, F. X. Metal organic framework catalysis: Quo vadis? ACS Catal. 2014, 4, 361–378.  doi: 10.1021/cs400959k

    3. [3]

      Tao, B.; Jiang, X.; Li, X. W.; Zhu, Y. F.; Xia, H. A two-dimensional coordination polymer with a brick wall structure: synthesis, crystal structure, and properties of a nickel(II) hexaazamacrocyclic complex with azido ligand. J. Mol. Struct. 2011, 1003, 111–114.  doi: 10.1016/j.molstruc.2011.07.047

    4. [4]

      Amiria, N.; Hajji, M.; Taheur, F. B.; Chevreux, S.; Roisnel, T.; Lemercier, G.; Nasri, H. Two novel magnesium(II) meso-tetraphenylporphyrin-based coordination complexes: syntheses, combined experimental and theoretical structures elucidation, spectroscopy, photophysical properties and antibacterial activity. J. Solid State Chem. 2018, 258, 477–484.  doi: 10.1016/j.jssc.2017.11.018

    5. [5]

      Cador, O.; Mathonière, C.; Kahn, O. Optical absorption spectroscopy of the tetranuclear compound [Mn{Cu(oxpn)}3](ClO4)2·2H2O (oxpn = N, N΄-bis(3-aminopropyl)oxamide): complementarity with magnetic properties. Inorg. Chem. 1997, 36, 1923–1928.  doi: 10.1021/ic960857q

    6. [6]

      Wu, H.; Yang, J.; Liu, Y. Y.; Ma, J. F. pH-controlled assembly of two unusual entangled motifs based on a tridentate ligand and octamolybdate clusters: 1D + 1D → 3D poly-pseudorotaxane and 2D → 2D → 3D polycatenation. Cryst. Growth Des. 2012, 12, 2272–2276.  doi: 10.1021/cg201555f

    7. [7]

      Ramaswamy, P.; Wong, N. E.; Shimizu, G. K. H. MOFs as proton conductors-challenges and opportunities. Chem. Soc. Rev. 2014, 43, 5913–5932.  doi: 10.1039/C4CS00093E

    8. [8]

      Madalan, A. M.; Avarvari, N.; Andruh, M. Rational design of supramolecular gridlike layers and zigzag chains through a unique interplay of d10-d10 and π-π stacking interactions. Cryst. Growth Des. 2006, 06, 1671–1675.  doi: 10.1021/cg060131x

    9. [9]

      Arellano, C. R. D.; Escrivà, E.; Gómez-García, C. J.; Espallargas, G. M.; Ballesterosa R.; Abarcaa, B. Hydrogen bonding versus π-stacking in ferromagnetic interactions. Studies on a copper triazolopyridine complex. CrystEngComm. 2013, 15, 1836–1839.  doi: 10.1039/c2ce26654g

    10. [10]

      Kounavi, K. A.; Moushi, E. E.; Manos, M. J.; Papatrianta-fyllopoulou, C.; Tasiopoulosb, A. J.; Nastopoulos, V. Supramolecular patterns of cationic and neutral Ni(II) complexes from the interplay of hydrogen-bonding, stacking interactions and metal-coordination motifs. CrystEngComm. 2012, 14, 6492–6502.  doi: 10.1039/c2ce25704a

    11. [11]

      Zhu, L. N.; Xu, N.; Zhang, W.; Liao, D. Z.; Yoshimura, K.; Mibu, K.; Jiang, Z. H.; Yan, S. P.; Cheng, P. Heteronuclear complexes of macrocyclic oxamide with co-ligands: syntheses, crystal structures, and magnetic properties. Inorg. Chem. 2007, 46, 1297–1304.  doi: 10.1021/ic061792m

    12. [12]

      Li, X. Z.; Hao, P. P.; Wang, D.; Zhu, L. N. Analysis of factors governing the formation of single-stranded helical coordination polymers from a macrocyclic metalloligand and Ca2+, Mn2+, Fe2+, Co2+, Ni2+, Cu2+, Zn2+ and Pb2+. CrystEngComm. 2013, 15, 2800–2803.  doi: 10.1039/c3ce40124c

    13. [13]

      Li, X. Z.; Hao, P. P.; Wang, D.; Zhang, W. Q.; Zhu, L. N. New metalloligands suitable for the construction of polynuclear complexes and coordination polymers with exposed metal sites. CrystEngComm. 2012, 14, 366–369.  doi: 10.1039/C1CE06273E

    14. [14]

      Ou, G. C.; Liao, Y.; Xiang, Y. F.; Yuan, X. Y.; Li, Z. Z. Syntheses and structures of three hybrid materials using vanadium polyoxoanions and macrocyclic copper complex as building blocks. Chin. J. Struct. Chem. 2017, 36, 135–142.

    15. [15]

      Chen, B.; Xiang, S.; Qian, G. Metal-organic frameworks with functional pores for recognition of small molecules. Acc. Chem. Res. 2010, 43, 1115–1124.  doi: 10.1021/ar100023y

    16. [16]

      Sun, Y. Q.; Fan, L. L.; Gao, D. Z.; Wang, Q. L.; Du, M.; Liao, D. Z.; Zhang, C. X. Polynuclear complexes of macrocyclic oxamide with 5-sulfosalicylate: syntheses, crystal structures and magnetic properties. Dalton Trans. 2010, 39, 9654–9661.  doi: 10.1039/c0dt00082e

    17. [17]

      Sun, Y. Q.; Liu, S. Y.; Wang, J. Heterometallic trinuclear Ni2Zn and Ni2Mn complexes of macrocyclic oxamide: synthesis and crystal structures. Chin. J. Struct. Chem. 2013, 32, 39–44.

    18. [18]

      Baron, V.; Gillon, B.; Plantevin, O.; Cousson, A.; Mathonière, C.; Kahn, O.; Grand, A.; Öhrström, L.; Delley, B. Spin-density maps for an oxamido-bridged Mn(II) Cu(II) binuclear compound. Polarized neutron diffraction and theoretical studies. J. Am. Chem. Soc. 1996, 118, 11822–11830.  doi: 10.1021/ja961545p

    19. [19]

      Shi, X. M.; Li, X. Z.; Ding, B. B.; Zhu, L. N. Synthesis, structures, and properties of new discrete hetero-tetranuclear metallocycle complexes based on macrocyclic oxamide metalloligands. Z. Anorg. Allg. Chem. 2013, 639, 592–599.  doi: 10.1002/zaac.201200411

    20. [20]

      Black, D. S. C.; Moss, G. I. Metal template reactions. XXIII. Synthesis of macrocyclic amide and ester complexes via 1, 1΄-oxalylbisisatin. Aust. J. Chem. 1987, 40, 129–142.  doi: 10.1071/CH9870129

    21. [21]

      Sheldrick, G. M. SHELXS-97, Program for Crystal Structure Solution. University of Göttingen, Germany 1997.

    22. [22]

      Sheldrick, G. M. SHELXL-97, Program for the Refinement of Crystal Structure. University of Göttingen, Germany 1997.

    23. [23]

      Felices, L. S.; Vitoria, P.; Gutiérrez-Zorrilla, J. M.; Lezama, L.; Reinoso, S. Hybrid inorganic-metalorganic compounds containing copper(II)-monosubstituted keggin polyanions and polymeric copper(I) complexes. Inorg. Chem. 2006, 45, 7748–7757.  doi: 10.1021/ic060762g

    24. [24]

      Wang, D.; Niu, C. J.; Li, X. Z.; Zhu, L. N.; Hao, P. P. Syntheses, crystal structures and properties of lanthanide complexes featuring infinite molecular rectangle strands constructed from a new macrocyclic metalloligand. Inorg. Chem. Acta 2012, 391, 20–27.  doi: 10.1016/j.ica.2012.05.005

    25. [25]

      Meng, F.; Zhang, M.; Shen, K.; Li, Y.; Zheng, H. A series of MOFs based on a triangular tri(4-pyridylphenyl)amine ligand combined with carboxylate or nitrate auxiliary ligands. Dalton Trans. 2015, 44, 1412–1419.  doi: 10.1039/C4DT02811B

    26. [26]

      Sun, J. Y.; Wang, L.; Zhang, D. J.; Li, D.; Cao, Y.; Zhang, L. Y.; Zeng, S. L.; Pang, G. S.; Fan, Y.; Xu, J. N.; Song, T. Y. Construction of metal-organic coordination polymers derived from 4-substituted tetrazole-benzoate ligands: synthesis, structure, luminescence, and magnetic behaviors. CrystEngComm. 2013, 15, 3402–3411.  doi: 10.1039/c2ce26793d

    27. [27]

      Cui, P.; Chen, Z.; Gao, D.; Zhao, B.; Shi, W.; Cheng, P. Syntheses, structures, and photoluminescence of a series of three-dimensional Cd(II) frameworks with a flexible ligand, 1, 5-bis(5-tetrazolo)-3-oxapentane. Cryst. Growth Des. 2010, 10, 4370–4378.  doi: 10.1021/cg100467p

    28. [28]

      Chen, B. L.; Yang, Y.; Zapata, F.; Qian, G. D.; Luo, Y. S.; Zhang, J. H.; Lobkovsky, E. B. Enhanced near-infrared-luminescence in an erbium tetrafluoroterephthalate framework. Inorg. Chem. 2006, 45, 8882–8886.  doi: 10.1021/ic060568u

    29. [29]

      Fabbrizzi, L.; Licchelli, M.; Pallavicini, P.; Perotti, A.; Sacchi, D. An anthracene-based fluorescent sensor for transition meal ions. Angew. Chem. Int. Ed. Engl. 1994, 33, 1975–1977.  doi: 10.1002/anie.199419751

    30. [30]

      Rurack, K. Flipping the light switch 'ON'-the design of sensor molecules that show cation-induced fluorescence enhancement with heavy and transition metal ions. Spectrochim. Acta A 2001, 57, 2161–2195.  doi: 10.1016/S1386-1425(01)00492-9

    31. [31]

      Wang, C.; Niu, J.; Li, J.; Ma, X. X. Synthesis, characterization, structures and Suzuki coupling reaction of Cu(II) complexes derived from N and O-containing organic ligand. Inorg. Chem. Acta 2017, 464, 81–87.  doi: 10.1016/j.ica.2017.04.061

  • 加载中
    1. [1]

      Yao HUANGYingshu WUZhichun BAOYue HUANGShangfeng TANGRuixue LIUYancheng LIUHong LIANG . Copper complexes of anthrahydrazone bearing pyridyl side chain: Synthesis, crystal structure, anticancer activity, and DNA binding. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 213-224. doi: 10.11862/CJIC.20240359

    2. [2]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    3. [3]

      Lulu DONGJie LIUHua YANGYupei FUHongli LIUXiaoli CHENHuali CUILin LIUJijiang WANG . Synthesis, crystal structure, and fluorescence properties of Cd-based complex with pcu topology. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 809-820. doi: 10.11862/CJIC.20240171

    4. [4]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    5. [5]

      Shuwen SUNGaofeng WANG . Two cadmium coordination polymers constructed by varying Ⅴ-shaped co-ligands: Syntheses, structures, and fluorescence properties. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 613-620. doi: 10.11862/CJIC.20230368

    6. [6]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    7. [7]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    8. [8]

      Jia JIZhaoyang GUOWenni LEIJiawei ZHENGHaorong QINJiahong YANYinling HOUXiaoyan XINWenmin WANG . Two dinuclear Gd(Ⅲ)-based complexes constructed by a multidentate diacylhydrazone ligand: Crystal structure, magnetocaloric effect, and biological activity. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 761-772. doi: 10.11862/CJIC.20240344

    9. [9]

      Xiumei LIYanju HUANGBo LIUYaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109

    10. [10]

      Xiumei LILinlin LIBo LIUYaru PAN . Syntheses, crystal structures, and characterizations of two cadmium(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 613-623. doi: 10.11862/CJIC.20240273

    11. [11]

      Dongdong YANGJianhua XUEYuanyu YANGMeixia WUYujia BAIZongxuan WANGQi MA . Design and synthesis of two coordination polymers for the rapid detection of ciprofloxacin based on triphenylpolycarboxylic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2466-2474. doi: 10.11862/CJIC.20240266

    12. [12]

      Chao LIUJiang WUZhaolei JIN . Synthesis, crystal structures, and antibacterial activities of two zinc(Ⅱ) complexes bearing 5-phenyl-1H-pyrazole group. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1986-1994. doi: 10.11862/CJIC.20240153

    13. [13]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    14. [14]

      Xiaoling WANGHongwu ZHANGDaofu LIU . Synthesis, structure, and magnetic property of a cobalt(Ⅱ) complex based on pyridyl-substituted imino nitroxide radical. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 407-412. doi: 10.11862/CJIC.20240214

    15. [15]

      Yan XUSuzhi LIYan LILushun FENGWentao SUNXinxing LI . Structure variation of cadmium naphthalene-diphosphonates with the changing rigidity of N-donor auxiliary ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 395-406. doi: 10.11862/CJIC.20240226

    16. [16]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    17. [17]

      Shuyan ZHAO . Field-induced Co single-ion magnet with pentagonal bipyramidal configuration. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1583-1591. doi: 10.11862/CJIC.20240231

    18. [18]

      Yinling HOUJia JIHong YUXiaoyun BIANXiaofen GUANJing QIUShuyi RENMing FANG . A rhombic Dy4-based complex showing remarkable single-molecule magnet behavior. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 605-612. doi: 10.11862/CJIC.20240251

    19. [19]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    20. [20]

      Chen LUQinlong HONGHaixia ZHANGJian ZHANG . Syntheses, structures, and properties of copper-iodine cluster-based boron imidazolate framework materials. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 149-154. doi: 10.11862/CJIC.20240407

Metrics
  • PDF Downloads(1)
  • Abstract views(288)
  • HTML views(7)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return