Citation: Liang MA, Qing-Zhao YAO, Yu-Ming ZHOU, Ming-Liang WANG, Bai-Wang SUN, Yi XUE, Chang GUO. Synthesis, Crystal Structures, Hirshfeld Surfaces, Thermo Characteristics and Solubility of Co-crystal of Buprofezin with Hydrofluoric Acid[J]. Chinese Journal of Structural Chemistry, ;2020, 39(3): 500-510. doi: 10.14102/j.cnki.0254–5861.2011–2569 shu

Synthesis, Crystal Structures, Hirshfeld Surfaces, Thermo Characteristics and Solubility of Co-crystal of Buprofezin with Hydrofluoric Acid

  • Corresponding author: Yu-Ming ZHOU, fchem@163.com
  • Received Date: 12 August 2019
    Accepted Date: 15 November 2019

    Fund Project: the National Natural Science Foundation of China 51673040the Natural Science Foundation of Jiangsu Province BK20180366the Natural Science Foundation of Jiangsu Province BK20171357the Fundamental Research Funds for the Central Universities 2242019k30042Scientific Innovation Research Foundation of College Graduate in Jiangsu Province KYLX16_0266a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PADA) 1107047002Fund Project for Transformation of Scientific and Technological Achievements of Jiangsu Province of China BA2018045

Figures(12)

  • A new kind of co-crystal of buprofezin (C16H24FN3OS) with hydrofluoric acid has been prepared through evaporation technique. It crystallizes in the triclinic space group P\begin{document}$ \overline 1 $\end{document}, with a = 9.9733(8), b = 10.3460(9), c = 10.5739(12) Å, α = 68.655(9), β = 73.291(9), γ = 66.738(8)º, V = 920.34(17) Å3, Mr = 325.44, Dc = 1.174 g/cm3, Z = 2, F(000) = 348, μ = 0.190 mm-1, the final GOOF = 1.042, R = 0.0485 and wR = 0.1167. Single-crystal X-ray diffraction, XRPD, DSC, TGA, Hirshfeld surface analysis, Raman spectroscopy and FT-IR were used to characterize the co-crystal. It has a two-dimensional plane structure, and the intermolecular interactions of co-crystal are mainly H–F⋅⋅⋅H, H–O⋅⋅⋅H and H–O⋅⋅⋅H. Thermology study further confirmed that co-crystal has stronger thermal stability and higher melting point than buprofezin, and it has stronger water solubility. The results show that this co-crystal is valuable for the study of residual activity and application effects of buprofezin.
  • 加载中
    1. [1]

      Dunitz, J. D.; Gavezzotti, A. How molecules stick together in organic crystals: weak intermolecular interactions. Chem. Soc. Rev. 2009, 38, 2622-2633.  doi: 10.1039/b822963p

    2. [2]

      Xiao, M.; Xian, Y.; Shi, F. Precise macroscopic supramolecular assembly by combining spontaneous locomotion driven by the Marangoni effect and molecular recognition. Angew. Chem. Int. Edit. 2015, 54, 8952-8956.  doi: 10.1002/anie.201502349

    3. [3]

      Seth, S. K.; Das, N. K.; Aich, K.; Sen, D.; Fun, H. K.; Goswami, S. Exploring contribution of intermolecular interactions in supramolecular layered assembly of naphthyridine co-crystals: insights from Hirshfeld surface analysis of their crystalline states. J. Mol. Struct. 2013, 1048, 157-165.  doi: 10.1016/j.molstruc.2013.05.048

    4. [4]

      Schneider, H. J. Binding mechanisms in supramolecular complexes. Angew. Chem. Int. Edit. 2009, 48, 3924-3977.  doi: 10.1002/anie.200802947

    5. [5]

      Ling, A. R. LII. Studies on isomeric change. No. Ⅳ. Halogen derivatives of quinone. Part Ⅰ. J. Chem. Soc., Trans. 1892, 61, 558-581.  doi: 10.1039/CT8926100558

    6. [6]

      Parthasarathi, R.; Subramanian, V.; Sathyamurthy, N. Hydrogen bonding without borders:   an atoms-in-molecules perspective. J. Phys. Chem. A 2006, 110, 3349-3351.  doi: 10.1021/jp060571z

    7. [7]

      Shimizu, G. K. H.; Vaidhyanathan, R.; Taylor, J. M. Phosphonate and sulfonate metal organic frameworks. Chem. Soc. Rev. 2009, 38, 1430-1449.  doi: 10.1039/b802423p

    8. [8]

      Liu, X. G.; Bao, S. S.; Li, Y. Z.; Zheng, L. M. Polymorphism in homochiral zinc phosphonates. Inorg. Chem. 2008, 47, 5525-5527.  doi: 10.1021/ic800663t

    9. [9]

      Nechipadappu, S. K.; Trivedi, D. R. Cocrystal of nutraceutical sinapic acid with active pharmaceutical ingredients ethenzamide and 2-chloro-4-nitrobenzoic acid: equilibrium solubility and stability study. J. Mol. Struct. 2018, 1171, 898-905.  doi: 10.1016/j.molstruc.2018.06.074

    10. [10]

      Zhou, P.; Liang, Y.; Zhang, H.; Jiang, H.; Feng, K.; Xu, P.; Wang, J.; Wang, X.; Ding, K.; Luo, C.; Liu, M.; Wang, Y. Design, synthesis, biological evaluation and cocrystal structures with tubulin of chiral β-lactam bridged combretastatin A-4 analogues as potent antitumor agents. Eur. J. Med. Chem. 2018, 144, 817-842.  doi: 10.1016/j.ejmech.2017.12.004

    11. [11]

      Qin, X.; Hao, Z.; Tian, Q.; Zhang, Z.; Zhou, C.; Xie, W. Cocrystal structures of glycyl-tRNA synthetase in complex with tRNA suggest multiple conformational states in glycylation. J. Biol. Chem. 2014, 289, 20359-20369.  doi: 10.1074/jbc.M114.557249

    12. [12]

      Ames, B.; Nguyen, C.; Bruegger, J.; Smith, P.; Xu, W.; Ma, S.; Wong, E.; Wong, S.; Xie, X.; Li, W. H.; Vederas, J.; Tang, Y.; Tsai, S. C. Crystal structure and biochemical studies of the trans-acting polyketide enoyl reductase LovC from lovastatin biosynthesis. Proc. Natl. Acad. Sci. 2012, 109, 11144-11149.  doi: 10.1073/pnas.1113029109

    13. [13]

      Shaikh, R.; Singh, R.; Walker, G. M.; Croker, D. M. Pharmaceutical cocrystal drug products: an outlook on product development. Trends Pharmacol. Sci. 2018, 39, 1033-1048.  doi: 10.1016/j.tips.2018.10.006

    14. [14]

      Yan, Y.; Chen, J.; Lu, T. B. Simultaneously enhancing the solubility and permeability of acyclovir by crystal engineering approach. CrystEngComm. 2013, 15, 6457-6460.  doi: 10.1039/c3ce41017j

    15. [15]

      Khan, E.; Shukla, A.; Jadav, N.; Telford, R.; Ayala, A. P.; Tandon, P.; Vangala, V. R. Study of molecular structure, chemical reactivity and H-bonding interactions in the cocrystal of nitrofurantoin with urea. New J. Chem. 2017, 41, 11069-11078.  doi: 10.1039/C7NJ01345K

    16. [16]

      Pandey, J.; Prajapati, P.; Shimpi, M.; Tandon, P.; Velaga, S.; Srivastava, D. A.; Sinha, K. Studies of molecular structure, hydrogen bonding and chemical activity of a nitrofurantoin-L-proline cocrystal: a combined spectroscopic and quantum chemical approach. RSC Adv. 2016, 6, 74135-74154.  doi: 10.1039/C6RA13035F

    17. [17]

      Srivastava, K.; Khan, E.; Shimpi, M.; Tandon, P.; Sinha, K.; Velaga, S. Molecular structure and hydrogen bond interactions of a paracetamol-4, 4'-bipyridine cocrystal studied using vibrational spectroscopic and quantum chemical approach. CrystEngComm. 2017, 20, 213-222.

    18. [18]

      Cabras, P.; Angioni, A.; Garau, V.; Melis, M.; Pirisi, F.; Cabitza, F.; Dedola, F.; Navickiene, S. Determination of buprofezin, pyridaben, and tebufenpyrad residues by gas chromatography-mass-selective detection in clementine citrus. J. Agric. Food Chem. 1998, 46, 4255-4259.  doi: 10.1021/jf9802171

    19. [19]

      Wang, Z.; Zhou, C.; Long, G. Y.; Yang, H.; Jin, D. C. Sublethal effects of buprofezin on development, reproduction, and chitin synthase 1 gene (SfCHS1) expression in the white-backed planthopper, Sogatella furcifera (Hemiptera: Delphacidae). J. Asia-Pac. Entomol. 2018, 21, 585-591.  doi: 10.1016/j.aspen.2018.03.009

    20. [20]

      Ali, E.; Liao, X.; Yang, P.; Mao, K.; Zhang, X.; Shakeel, M.; Markaz, A.; Wan, H.; Li, J. Sublethal effects of buprofezin on development and reproduction in the white-backed planthopper, Sogatella furcifera (Hemiptera: Delphacidae). Sci. Rep. 2017, 05, 16913-9.

    21. [21]

      Zia Qureshi, I.; Bibi, A.; Shahid, S.; Ghazanfar, M. Exposure to sub-acute doses of fipronil and buprofezin in combination or alone induces biochemical, hematological, histopathological and genotoxic damage in common carp (Cyprinus carpio L. ). Aquat. Toxicol. 2016, 179, 103-114.  doi: 10.1016/j.aquatox.2016.08.012

    22. [22]

      Ji, X.; Ku, T.; Zhu, N.; Ning, X.; Wei, W.; Li, G.; Sang, N. Potential hepatic toxicity of buprofezin at sublethal concentrations: ros-mediated conversion of energy metabolism. J. Hazard. Mater. 2016, 320, 176-186.  doi: 10.1016/j.jhazmat.2016.08.027

    23. [23]

      Wang, G.; Xu, D.; Xiong, M.; Zhang, H.; Li, F.; Liu, Y. Novel degradation pathway and kinetic analysis for buprofezin removal by newly isolated Bacillus sp. J. Environ. Manage. 2016, 180, 59-67.  doi: 10.1016/j.jenvman.2016.04.061

    24. [24]

      Zhu, Z.; Zhou, Y.; Yao, Q.; Sun, B.; Wang, M.; Zhong, X.; Wang, B.; Xue, Y.; Chen, X. Two polymorphs and a sulfate of buprofezin: crystal structure and Hirshfeld surface analysis. Polyhedron 2018, 155, 85-93.  doi: 10.1016/j.poly.2018.08.034

    25. [25]

      Chen, X.; Zhou, Z.; Chen, J.; Chu, C.; Zheng, J.; Wang, S.; Jia, W.; Zhao, J.; Li, R.; Han, D. Solubility determination and thermodynamic modeling of buprofezin in different solvents and mixing properties of solutions. J. Chem. Eng. Data 2019, 64, 1177-1186.  doi: 10.1021/acs.jced.8b01099

  • 加载中
    1. [1]

      Hongwei Ma Fang Zhang Hui Ai Niu Zhang Shaochun Peng Hui Li . Integrated Crystallographic Teaching with X-ray,TEM and STM. University Chemistry, 2024, 39(3): 5-17. doi: 10.3866/PKU.DXHX202308107

    2. [2]

      Jingqi Ma Huangjie Lu Junpu Yang Liangwei Yang Jian-Qiang Wang Xianlong Du Jian Lin . Rational design and synthesis of a uranyl-organic hybrid for X-ray scintillation. Chinese Journal of Structural Chemistry, 2024, 43(5): 100275-100275. doi: 10.1016/j.cjsc.2024.100275

    3. [3]

      Xin DongJing LiangZhijin XuHuajie WuLei WangShihai YouJunhua LuoLina Li . Exploring centimeter-sized crystals of bismuth-iodide perovskite toward highly sensitive X-ray detection. Chinese Chemical Letters, 2024, 35(6): 108708-. doi: 10.1016/j.cclet.2023.108708

    4. [4]

      Xiuwen XuQuan ZhouYacong WangYunjie HeQiang WangYuan WangBing Chen . Expanding the toolbox of metal-free organic halide perovskite for X-ray detection. Chinese Chemical Letters, 2024, 35(9): 109272-. doi: 10.1016/j.cclet.2023.109272

    5. [5]

      Hong-Jin LiaoZhu ZhuoQing LiYoshihito ShiotaJonathan P. HillKatsuhiko ArigaZi-Xiu LuLu-Yao LiuZi-Ang NanWei WangYou-Gui Huang . A new class of crystalline X-ray induced photochromic materials assembled from anion-directed folding of a flexible cation. Chinese Chemical Letters, 2024, 35(8): 109052-. doi: 10.1016/j.cclet.2023.109052

    6. [6]

      Xuying YuJiarong MiYulan HanCai SunMingsheng WangGuocong Guo . A stable radiochromic semiconductive viologen-based metal–organic framework for dual-mode direct X-ray detection. Chinese Chemical Letters, 2024, 35(9): 109233-. doi: 10.1016/j.cclet.2023.109233

    7. [7]

      Xin Dong Tianqi Chen Jing Liang Lei Wang Huajie Wu Zhijin Xu Junhua Luo Li-Na Li . Structure design of lead-free chiral-polar perovskites for sensitive self-powered X-ray detection. Chinese Journal of Structural Chemistry, 2024, 43(6): 100256-100256. doi: 10.1016/j.cjsc.2024.100256

    8. [8]

      Yu PangMin WangNing-Hua YangMin XueYong Yang . One-pot synthesis of a giant twisted double-layer chiral macrocycle via [4 + 8] imine condensation and its X-ray structure. Chinese Chemical Letters, 2024, 35(10): 109575-. doi: 10.1016/j.cclet.2024.109575

    9. [9]

      Xiping DongXuan WangZhixiu LuQinhao ShiZhengyi YangXuan YuWuliang FengXingli ZouYang LiuYufeng Zhao . Construction of Cu-Zn Co-doped layered materials for sodium-ion batteries with high cycle stability. Chinese Chemical Letters, 2024, 35(5): 108605-. doi: 10.1016/j.cclet.2023.108605

    10. [10]

      Bin DongNing YuQiu-Yue WangJing-Ke RenXin-Yu ZhangZhi-Jie ZhangRuo-Yao FanDa-Peng LiuYong-Ming Chai . Double active sites promoting hydrogen evolution activity and stability of CoRuOH/Co2P by rapid hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109221-. doi: 10.1016/j.cclet.2023.109221

    11. [11]

      Jing JINZhuming GUOZhiyin XIAOXiujuan JIANGYi HEXiaoming LIU . Tuning the stability and cytotoxicity of fac-[Fe(CO)3I3]- anion by its counter ions: From aminiums to inorganic cations. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 991-1004. doi: 10.11862/CJIC.20230458

    12. [12]

      Ningning GaoYue ZhangZhenhao YangLijing XuKongyin ZhaoQingping XinJunkui GaoJunjun ShiJin ZhongHuiguo Wang . Ba2+/Ca2+ co-crosslinked alginate hydrogel filtration membrane with high strength, high flux and stability for dye/salt separation. Chinese Chemical Letters, 2024, 35(5): 108820-. doi: 10.1016/j.cclet.2023.108820

    13. [13]

      Mianying Huang Zhiguang Xu Xiaoming Lin . Mechanistic analysis of Co2VO4/X (X = Ni, C) heterostructures as anode materials of lithium-ion batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100309-100309. doi: 10.1016/j.cjsc.2023.100309

    14. [14]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    15. [15]

      Juan GuoMingyuan FangQingsong LiuXiao RenYongqiang QiaoMingju ChaoErjun LiangQilong Gao . Zero thermal expansion in Cs2W3O10. Chinese Chemical Letters, 2024, 35(7): 108957-. doi: 10.1016/j.cclet.2023.108957

    16. [16]

      Xinzhi Ding Chong Liu Jing Niu Nan Chen Shutao Xu Yingxu Wei Zhongmin Liu . Solid-state NMR study of the stability of MOR framework aluminum. Chinese Journal of Structural Chemistry, 2024, 43(4): 100247-100247. doi: 10.1016/j.cjsc.2024.100247

    17. [17]

      Jingyuan YangXinyu TianLiuzhong YuanYu LiuYue WangChuandong Dou . Enhancing stability of diradical polycyclic hydrocarbons via P=O-attaching. Chinese Chemical Letters, 2024, 35(8): 109745-. doi: 10.1016/j.cclet.2024.109745

    18. [18]

      Ting WangXin YuYaqiang Xie . Unlocking stability: Preserving activity of biomimetic catalysts with covalent organic framework cladding. Chinese Chemical Letters, 2024, 35(6): 109320-. doi: 10.1016/j.cclet.2023.109320

    19. [19]

      Tao LIUYuting TIANKe GAOXuwei HANRu'nan MINWenjing ZHAOXueyi SUNCaixia YIN . A photothermal agent with high photothermal conversion efficiency and high stability for tumor therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1622-1632. doi: 10.11862/CJIC.20240107

    20. [20]

      Ruizhi Yang Xia Li Weiping Guo Zixuan Chen Hongwei Ming Zhong-Zhen Luo Zhigang Zou . New thermoelectric semiconductors Pb5Sb12+xBi6-xSe32 with ultralow thermal conductivity. Chinese Journal of Structural Chemistry, 2024, 43(3): 100268-100268. doi: 10.1016/j.cjsc.2024.100268

Metrics
  • PDF Downloads(1)
  • Abstract views(178)
  • HTML views(5)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return