Citation: Bu-Tong LI, Lu-Lin LI, Jia-Xin HE. Looking for High Energy Density Molecules in the Nitro-substituted Derivatives of Pyridazine[J]. Chinese Journal of Structural Chemistry, ;2020, 39(5): 849-854. doi: 10.14102/j.cnki.0254–5861.2011–2531 shu

Looking for High Energy Density Molecules in the Nitro-substituted Derivatives of Pyridazine

  • Corresponding author: Bu-Tong LI, libutong@hotmail.com
  • Received Date: 15 July 2019
    Accepted Date: 18 September 2019

    Fund Project: the Foundation of Natural Science of Guizhou Education University 14BS017

Figures(1)

  • A series of derivatives of pyridazine were designed through substituting hydrogens on the pyridazine ring with nitro groups. To explore the thermal stability of the title molecules, heats of formation, bond dissociation energies, and bond orders were calculated at the B3PW91/6-311+G(d, p) level. To confirm the potential usage as high energy density compounds, the detonation pressure and detonation velocity were predicted by using the empirical Kamlet-Jacobs (K-J) equation. Based on our calculated results, both thermal and kinetic stabilities of the title molecules are confirmed with good detonation characters. Especially, 3, 4, 5-trinitropyridazide and 3, 4, 6-trinitropyridazide represent excellent detonation parameters better than 1, 3, 5-trinitro-1, 3, 5-triazacyclohexane (RDX) and are screened out as potential high energy density compounds.
  • 加载中
    1. [1]

      Boddu, V. M.; Viswanath, D. S.; Ghosh, T. K.; Damavarapu, R. 2, 4, 6-Triamino-1, 3, 5-trinitrobenzene (TATB) and TATB-based formulations — a review. J. Hazard. Mater. 2010, 181, 1–8.  doi: 10.1016/j.jhazmat.2010.04.120

    2. [2]

      Ariyarathna, T.; Vlahos, P.; Tobias, C.; Smith, R. Sorption kinetics of TNT and RDX in anaerobic freshwater and marine sediments: batch studies. Environ. Toxicol. Chem. 2016, 35, 47–55.  doi: 10.1002/etc.3149

    3. [3]

      Wang, X.; Wang, Y.; Miao, M.; Zhong, X.; Lv, J.; Cui, T.; Li, J.; Chen, L.; Pickard, C. J.; Ma, Y. Cagelike diamondoid nitrogen at high pressures. Phys. Rev. Lett. 2012, 109, 175502–175506.  doi: 10.1103/PhysRevLett.109.175502

    4. [4]

      Li, B.; Zhou, M.; Peng, J.; Li, L.; Guo, Y. Theoretical calculations about nitro-substituted pyridine as high-energy-density compounds (HEDCs). J. Mol. Model. 2019, 25, 23–28.  doi: 10.1007/s00894-018-3904-4

    5. [5]

      Liu, T.; Jia, J.; Li, B.; Gao, K. Theoretical exploration on structural stabilities and detonation properties of nitrimino substituted derivatives of cyclopropane. Chin. J. Struct. Chem. 2019, 38, 688–694.

    6. [6]

      Gümüş, S. A computational study on substituted diazabenzenes. Turk. J. Chem. 2011, 35, 803–808.

    7. [7]

      Gökçınar, E.; Klapötke, T. M.; Bellamy, A. J. Computational study on 2, 6-diamino-3, 5-dinitropyrazine and its 1-oxide and 1, 4-dioxide derivatives. J. Mol. Struct. Theochem. 2010, 953, 18–23.  doi: 10.1016/j.theochem.2010.04.015

    8. [8]

      Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery Jr., J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian, Inc., Pittsburgh PA. Gaussian 03, Revision B. 01 2003.

    9. [9]

      Kamlet, M. J.; Jacobs, S. J. Chemistry of detonations. I. A simple method for calculating detonation properties of C–H–N–O explosives. J. Chem. Phys. 1968, 48, 23–35.  doi: 10.1063/1.1667908

    10. [10]

      Glendening, E. D.; Landis, C. R.; Weinhold F. NBO 6.0: natural bond orbital analysis program. J. Comput. Chem. 2013, 34, 1429–1437.  doi: 10.1002/jcc.23266

    11. [11]

      Rice, B. M.; Sahu, S.; Owens, F. J. Density functional calculations of bond dissociation energies for NO2 scission in some nitroaromatic molecules. J. Mol. Struct. Theochem. 2002, 583, 69–72.  doi: 10.1016/S0166-1280(01)00782-5

    12. [12]

      Harris, N. J.; Lammertsma, K. Ab initio density functional computations of conformations and bond dissociation energies for hexahydro-1, 3, 5-trinitro-1, 3, 5-triazine. J. Am. Chem. Soc. 1997, 119, 6583–6589.  doi: 10.1021/ja970392i

    13. [13]

      Li, B.; Li, L.; Chen, S. Thermal stability and detonation character of nitro-substituted derivatives of imidazole. J. Mol. Model. 2019, 25, 298–304.  doi: 10.1007/s00894-019-4190-5

    14. [14]

      Ghule, V. D.; Sarangapani, R.; Jadhav, P. M.; Tewari, S. P. Theoretical studies on nitrogen rich energetic azoles. J. Mol. Model. 2011, 17, 1507–1515.  doi: 10.1007/s00894-010-0848-8

    15. [15]

      Jensen, T. L.; Moxnes, J. F.; Kjønstad, E. F.; Unneberg, E. A study of the detonation properties, propellant impulses, impact sensitivities and synthesis of nitrated anta and nto derivatives. Cent. Eur. J. Energetic Mater. 2016, 13, 445–467.  doi: 10.22211/cejem/64995

    16. [16]

      Sieranski, T. Discovering the stacking landscape of a pyridine-pyridine system. J. Mol. Model. 2017, 23, 338–353.  doi: 10.1007/s00894-017-3496-4

    17. [17]

      Pospíšil, M.; Vávra, P.; Concha, M.; Murray, J.; Politzer, P. A possible crystal volume factor in the impact sensitivities of some energetic compounds. J. Mol. Model. 2010, 16, 895–901.  doi: 10.1007/s00894-009-0587-x

    18. [18]

      Politzer, P.; Martinez, J.; Murray, J. S.; Concha, M. C.; Toro-Labbé, A. An electrostatic interaction correction for improved crystal density prediction. Mol. Phys. 2009, 107, 2095–2101.  doi: 10.1080/00268970903156306

  • 加载中
    1. [1]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    2. [2]

      Xu HuangKai-Yin WuChao SuLei YangBei-Bei Xiao . Metal-organic framework Cu-BTC for overall water splitting: A density functional theory study. Chinese Chemical Letters, 2025, 36(4): 109720-. doi: 10.1016/j.cclet.2024.109720

    3. [3]

      Qingyun HuWei WangJunyuan LuHe ZhuQi LiuYang RenHong WangJian Hui . High-throughput screening of high energy density LiMn1-xFexPO4 via active learning. Chinese Chemical Letters, 2025, 36(2): 110344-. doi: 10.1016/j.cclet.2024.110344

    4. [4]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    5. [5]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    6. [6]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    7. [7]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    8. [8]

      Xiumei LIYanju HUANGBo LIUYaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109

    9. [9]

      Yunfei Shen Long Chen . Gradient imprinted Zn metal anodes assist dendrites-free at high current density/capacity. Chinese Journal of Structural Chemistry, 2024, 43(10): 100321-100321. doi: 10.1016/j.cjsc.2024.100321

    10. [10]

      Zhilong XieGuohui ZhangYa MengYefei TongJian DengHonghui LiQingqing MaShisong HanWenjun Ni . A natural nano-platform: Advances in drug delivery system with recombinant high-density lipoprotein. Chinese Chemical Letters, 2024, 35(11): 109584-. doi: 10.1016/j.cclet.2024.109584

    11. [11]

      Renshu Huang Jinli Chen Xingfa Chen Tianqi Yu Huyi Yu Kaien Li Bin Li Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171

    12. [12]

      Huyi Yu Renshu Huang Qian Liu Xingfa Chen Tianqi Yu Haiquan Wang Xincheng Liang Shibin Yin . Te-doped Fe3O4 flower enabling low overpotential cycling of Li-CO2 batteries at high current density. Chinese Journal of Structural Chemistry, 2024, 43(3): 100253-100253. doi: 10.1016/j.cjsc.2024.100253

    13. [13]

      Longsheng ZhanYuchao WangMengjie LiuXin ZhaoDanni DengXinran ZhengJiabi JiangXiang XiongYongpeng Lei . BiVO4 as a precatalyst for CO2 electroreduction to formate at large current density. Chinese Chemical Letters, 2025, 36(3): 109695-. doi: 10.1016/j.cclet.2024.109695

    14. [14]

      Jie YangXin-Yue LouDihua DaiJingwei ShiYing-Wei Yang . Desymmetrized pillar[8]arenes: High-yield synthesis, functionalization, and host-guest chemistry. Chinese Chemical Letters, 2025, 36(1): 109818-. doi: 10.1016/j.cclet.2024.109818

    15. [15]

      Biao HuangTao TangFushou LiuShi-Hui ChenZhi-Ling ZhangMingxi ZhangRan Cui . Quantum dots boost large-view NIR-Ⅱ imaging with high fidelity for fluorescence-guided tumor surgery. Chinese Chemical Letters, 2024, 35(12): 109694-. doi: 10.1016/j.cclet.2024.109694

    16. [16]

      Liwen WangBoyang WangSiyu LuShubo LvXiaoli Qu . High quantum yield yellow emission carbon dots for the construction of blue light blocking films. Chinese Chemical Letters, 2025, 36(2): 110497-. doi: 10.1016/j.cclet.2024.110497

    17. [17]

      Zeyu JiangYadi WangChangwei ChenChi He . Progress and challenge of functional single-atom catalysts for the catalytic oxidation of volatile organic compounds. Chinese Chemical Letters, 2024, 35(9): 109400-. doi: 10.1016/j.cclet.2023.109400

    18. [18]

      Xinyu RenHong LiuJingang WangJiayuan Yu . Electrospinning-derived functional carbon-based materials for energy conversion and storage. Chinese Chemical Letters, 2024, 35(6): 109282-. doi: 10.1016/j.cclet.2023.109282

    19. [19]

      Leichen WangAnqing MeiNa LiXiaohong RuanXu SunYu CaiJinjun ShaoXiaochen Dong . Aza-BODIPY dye with unexpected bromination and high singlet oxygen quantum yield for photoacoustic imaging-guided synergetic photodynamic/photothermal therapy. Chinese Chemical Letters, 2024, 35(6): 108974-. doi: 10.1016/j.cclet.2023.108974

    20. [20]

      Wei Chen Pieter Cnudde . A minireview to ketene chemistry in zeolite catalysis. Chinese Journal of Structural Chemistry, 2024, 43(11): 100412-100412. doi: 10.1016/j.cjsc.2024.100412

Metrics
  • PDF Downloads(1)
  • Abstract views(303)
  • HTML views(7)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return