Citation: Fatemeh HAGHIGHI, Ali MORSALI, Mohammad Reza BOZORGMEHR, S. Ali BEYRAMABADI. Quantum Chemical Studies of Host-guest Nanostructures of PAMAM Dendrimers in Drug Deliver[J]. Chinese Journal of Structural Chemistry, ;2020, 39(5): 838-848. doi: 10.14102/j.cnki.0254–5861.2011–2510 shu

Quantum Chemical Studies of Host-guest Nanostructures of PAMAM Dendrimers in Drug Deliver

Figures(5)

  • Using B3LYP and M06-2X functionals, eight noncovalent configurations for the adsorption of D-penicillamine drug (DPA) drug on poly(amidoamine) G0 generation dendrimer (PAMAMG0) carrier have been investigated. The quantum molecular descriptors and the binding and solvation energies were examined in aqueous solution and gas phase. The binding energies demonstrated the energetic stability of non-bonded species (PAMAMG0/DPA1-8). The solvation energies showed that solubility of DPA rises in the vicinity of PAMAMG0 carrier which is a fundamental factor for applicability of a carrier. Considering quantum molecular descriptors such as electrophilicity power and global hardness, the toxicity of DPA drug in the vicinity of PAMAMG0 carrier decreases and drug release is facilitated. The AIM analysis for all PAMAMG0/DPA1-8 structures indicated that the hydrogen and pseudo-hydrogen bonds play important roles in the functionalization of PAMAMG0 with DPA drug. The configuration in which DPA drug interacts simultaneously with two -NH2 functional groups of PAMAMG0 is the most stable configuration.
  • 加载中
    1. [1]

      Chauhan, A. S. Dendrimers for drug delivery. Molecules 2018, 23, 938–947.  doi: 10.3390/molecules23040938

    2. [2]

      Marasini, N.; Haque, S.; Kaminskas, L. M. Polymer-drug conjugates as inhalable drug delivery systems: a review. Curr. Opin. Colloid Interface Sci. 2017, 31, 18−29.  doi: 10.1016/j.cocis.2017.06.003

    3. [3]

      Pattni, B. S.; Chupin, V. V.; Torchilin, V. P. New developments in liposomal drug delivery. Chem. Rev. 2015, 115, 10938−10966.  doi: 10.1021/acs.chemrev.5b00046

    4. [4]

      Raza, K.; Thotakura, N.; Kumar, P.; Joshi, M.; Bhushan, S.; Bhatia, A.; Kumar, V.; Malik, R.; Sharma, G.; Guru, S. K. C60-fullerenes for delivery of docetaxel to breast cancer cells: a promising approach for enhanced efficacy and better pharmacokinetic profile. Int. J. Pharm. 2015, 495, 551−559.  doi: 10.1016/j.ijpharm.2015.09.016

    5. [5]

      Meysam, N. Antioxidant activity of sesamol derivatives and their drug delivery via C60 nanocage: a theoretical study. Chin. J. Struct. Chem. 2019, 38, 195−200.

    6. [6]

      Spencer, D. S.; Puranik, A. S.; Peppas, N. A. Intelligent nanoparticles for advanced drug delivery in cancer treatment. Curr. Opin. Chem. Eng. 2015, 7, 84−92.  doi: 10.1016/j.coche.2014.12.003

    7. [7]

      Khorram, R.; Morsali, A.; Raissi, H.; Hakimi, M.; Beyramabadi, S. A. Mechanistic, energetic and structural aspects of the adsorption of carmustine on the functionalized carbon nanotubes. Chin. J. Struc. Chem. 2017, 36, 1639−1646.

    8. [8]

      Kamel, M.; Raissi, H.; Morsali, A.; Shahabi, M. Assessment of the adsorption mechanism of flutamide anticancer drug on the functionalized single-walled carbon nanotube surface as a drug delivery vehicle: an alternative theoretical approach based on DFT and MD. Appl. Surf. Sci. 2018, 434, 492−503.  doi: 10.1016/j.apsusc.2017.10.165

    9. [9]

      Lotfi, M.; Morsali, A.; Bozorgmehr, M. R. Comprehensive quantum chemical insight into the mechanistic understanding of the surface functionalization of carbon nanotube as a nanocarrier with cladribine anticancer drug. Appl. Surf. Sci. 2018, 462, 720−729.  doi: 10.1016/j.apsusc.2018.08.151

    10. [10]

      Hamedani, S.; Moradi, S.; Aghaie, H. Adsorption of folic acid on the single-walled carbon nanotubes: AIM and NBO analyses via DFT. Chin. J. Struc. Chem. 2015, 34, 1161−1169.

    11. [11]

      Jansen, J. F.; Meijer, E.; de Brabander-van den Berg, E. M. The dendritic box: shape-selective liberation of encapsulated guests. J. Am. Chem. Soc. 1995, 117, 4417−4418.  doi: 10.1021/ja00120a032

    12. [12]

      Zimmerman, S. C.; Zeng, F.; Reichert, D. E.; Kolotuchin, S. V. Self-assembling dendrimers. Science 1996, 271, 1095−1098.  doi: 10.1126/science.271.5252.1095

    13. [13]

      Tomalia, D. A.; Baker, H.; Dewald, J.; Hall, M.; Kallos, G.; Martin, S.; Roeck, J.; Ryder, J.; Smith, P. A new class of polymers: starburst-dendritic macromolecules. Polym. J. 1985, 17, 117−132.  doi: 10.1295/polymj.17.117

    14. [14]

      Tomalia, D. A.; Naylor, A. M.; Goddard Ⅲ, W. A. Starburst dendrimers: molecular‐level control of size, shape, surface chemistry, topology, and flexibility from atoms to macroscopic matter. Angew. Chem. Int. Ed. Engl. 1990, 29, 138−175.  doi: 10.1002/anie.199001381

    15. [15]

      Huang, D.; Wu, D. Biodegradable dendrimers for drug delivery. Mater. Sci. Eng.: C 2018, 90, 713−727.

    16. [16]

      Svenson, S.; Tomalia, D. A. Dendrimers in biomedical applications-reflections on the field. Adv. Drug Deliv. Rev. 2012, 64, 102−115.  doi: 10.1016/j.addr.2012.09.030

    17. [17]

      Frechet, J. M. Functional polymers and dendrimers: reactivity, molecular architecture, and interfacial energy. Science 1994, 263, 1710−1715.  doi: 10.1126/science.8134834

    18. [18]

      Hawker, C. J.; Frechet, J. M. Preparation of polymers with controlled molecular architecture. A new convergent approach to dendritic acromolecules. J. Am. Chem. Soc. 1990, 112, 7638−7647.  doi: 10.1021/ja00177a027

    19. [19]

      Miller, T. M.; Neenan, T. X. Convergent synthesis of monodisperse dendrimers based upon 1, 3, 5-trisubstituted benzenes. Chem. Mater. 1990, 2, 346−349.  doi: 10.1021/cm00010a006

    20. [20]

      Chen, C. Z.; Cooper, S. L. Interactions between dendrimer biocides and bacterial membranes. Biomaterials 2002, 23, 3359−3368.  doi: 10.1016/S0142-9612(02)00036-4

    21. [21]

      Kukowska-Latallo, J. F.; Bielinska, A. U.; Johnson, J.; Spindler, R.; Tomalia, D. A.; Baker, J. R. Efficient transfer of genetic material into mammalian cells using starburst polyamidoamine dendrimers. Proc. Natl. Acad. Sci. 1996, 93, 4897−4902.  doi: 10.1073/pnas.93.10.4897

    22. [22]

      Kaanumalle, L. S.; Nithyanandhan, J.; Pattabiraman, M.; Jayaraman, N.; Ramamurthy, V. Water-soluble dendrimers as photochemical reaction media: chemical behavior of singlet and triplet radical pairs inside dendritic reaction cavities. J. Am. Chem. Soc. 2004, 126, 8999−9006.  doi: 10.1021/ja049492w

    23. [23]

      Tomalia, D.; Reyna, L.; Svenson, S. Dendrimers as multi-purpose nanodevices for oncology drug delivery and diagnostic imaging. Biochem. Soc. Trans. 2007, 35, 61−67.  doi: 10.1042/BST0350061

    24. [24]

      Kirkpatrick, G. J.; Plumb, J. A.; Sutcliffe, O. B.; Flint, D. J.; Wheate, N. J. Evaluation of anionic half generation 3.5~6.5 poly(amidoamine) dendrimers as delivery vehicles for the active component of the anticancer drug cisplatin. J. Inorg. Biochem. 2011, 105, 1115−1122.  doi: 10.1016/j.jinorgbio.2011.05.017

    25. [25]

      Lim, J.; Simanek, E. E. Triazine dendrimers as drug delivery systems: from synthesis to therapy. Adv. Drug Deliv. Rev. 2012, 64, 826−835.  doi: 10.1016/j.addr.2012.03.008

    26. [26]

      Neerman, M. F.; Chen, H. T.; Parrish, A. R.; Simanek, E. E. Reduction of drug toxicity using dendrimers based on melamine. Mol. Pharm. 2004, 1, 390−393.  doi: 10.1021/mp049957p

    27. [27]

      Du, L.; Jin, Y.; Yang, J.; Wang, S.; Wang, X. A functionalized poly(amidoamine)nanocarrier-loading 5-fluorouracil: pH-responsive drug release and enhanced anticancer effect. Anti-cancer Drugs 2013, 24, 172−180.  doi: 10.1097/CAD.0b013e32835920fa

    28. [28]

      Malik, N.; Evagorou, E. G.; Duncan, R. Dendrimer-platinate: a novel approach to cancer chemotherapy. Anti-cancer Drugs 1999, 10, 767−776.  doi: 10.1097/00001813-199909000-00010

    29. [29]

      Yellepeddi, V. K.; Kumar, A.; Maher, D. M.; Chauhan, S. C.; Vangara, K. K.; Palakurthi, S. Biotinylated PAMAM dendrimers for intracellular delivery of cisplatin to ovarian cancer: role of SMVT. Anticancer Res. 2011, 31, 897−906.

    30. [30]

      Zhu, S.; Hong, M.; Zhang, L.; Tang, G.; Jiang, Y.; Pei, Y. PEGylated PAMAM dendrimer-doxorubicin conjugates: in vitro evaluation and in vivo tumor accumulation. Pharm. Res. 2010, 27, 161−174.  doi: 10.1007/s11095-009-9992-1

    31. [31]

      Kono, K.; Kojima, C.; Hayashi, N.; Nishisaka, E.; Kiura, K.; Watarai, S.; Harada, A. Preparation and cytotoxic activity of poly(ethylene glycol)-modified poly(amidoamine)dendrimers bearing adriamycin. Biomaterials 2008, 29, 1664−1675.  doi: 10.1016/j.biomaterials.2007.12.017

    32. [32]

      Muniswamy, V. J.; Raval, N.; Gondaliya, P.; Tambe, V.; Kalia, K.; Tekade, R. K. 'Dendrimer-cationized-albumin'encrusted polymeric nanoparticle improves BBB penetration and anticancer activity of doxorubicin. Int. J. Pharm. 2019, 555, 77−99.  doi: 10.1016/j.ijpharm.2018.11.035

    33. [33]

      Gajbhiye, V.; Kumar, P. V.; Tekade, R. K.; Jain, N. PEGylated PPI dendritic architectures for sustained delivery of H2 receptor antagonist. Eur. J. Med. Chem. 2009, 44, 1155−1166.  doi: 10.1016/j.ejmech.2008.06.012

    34. [34]

      Majoros, I. J.; Thomas, T. P.; Mehta, C. B.; Baker, J. R. Poly(amidoamine)dendrimer-based multifunctional engineered nanodevice for cancer therapy. J. Med. Chem. 2005, 48, 5892−5899.  doi: 10.1021/jm0401863

    35. [35]

      Devarakonda, B.; Hill, R. A.; de Villiers, M. M. The effect of PAMAM dendrimer generation size and surface functional group on the aqueous solubility of nifedipine. Int. J. Pharm. 2004, 284, 133−140.  doi: 10.1016/j.ijpharm.2004.07.006

    36. [36]

      Lim, J.; Lo, S. T.; Hill, S.; Pavan, G. M.; Sun, X.; Simanek, E. E. Antitumor activity and molecular dynamics simulations of paclitaxel-laden triazine dendrimers. Mol. Pharm. 2012, 9, 404−412.  doi: 10.1021/mp2005017

    37. [37]

      Xie, Y.; Yao, Y. Incorporation with dendrimer-like biopolymer leads to improved soluble amount and in vitro anticancer efficacy of paclitaxel. J. Pharm. Sci. 2019, 108, 1984−1990.  doi: 10.1016/j.xphs.2018.12.026

    38. [38]

      Morgan, M. T.; Carnahan, M. A.; Immoos, C. E.; Ribeiro, A. A.; Finkelstein, S.; Lee, S. J.; Grinstaff, M. W. Dendritic molecular capsules for hydrophobic compounds. J. Am. Chem. Soc. 2003, 125, 15485−15489.  doi: 10.1021/ja0347383

    39. [39]

      Morgan, M. T.; Nakanishi, Y.; Kroll, D. J.; Griset, A. P.; Carnahan, M. A.; Wathier, M.; Oberlies, N. H.; Manikumar, G.; Wani, M. C.; Grinstaff, M. W. Dendrimer-encapsulated camptothecins: increased solubility, cellular uptake, and cellular retention affords enhanced anticancer activity in vitro. Cancer res. 2006, 66, 11913−11921.  doi: 10.1158/0008-5472.CAN-06-2066

    40. [40]

      Wang, F.; Bronich, T. K.; Kabanov, A. V.; Rauh, R. D.; Roovers, J. Synthesis and evaluation of a star amphiphilic block copolymer from poly(ε-caprolactone) and poly(ethylene glycol) as a potential drug delivery carrier. Bioconjugate Chem. 2005, 16, 397−405.  doi: 10.1021/bc049784m

    41. [41]

      Fröhlich, T.; Hahn, F.; Belmudes, L.; Leidenberger, M.; Friedrich, O.; Kappes, B.; Couté, Y.; Marschall, M.; Tsogoeva, S. B. Synthesis of artemisinin‐derived dimers, trimers and dendrimers: investigation of their antimalarial and antiviral activities including putative mechanisms of action. Chem. Eur. J. 2018, 24, 8103−8113.  doi: 10.1002/chem.201800729

    42. [42]

      Pedro-Hernández, L. D.; Martínez-Klimova, E.; Martínez-Klimov, M. E.; Cortez-Maya, S.; Vargas-Medina, A. C.; Ramírez-Ápan, T.; Hernández-Ortega, S.; Martínez-García, M. Anticancer activity of resorcinarene-PAMAM-dendrimer conjugates of flutamide. Anticancer Agents Med. Chem. 2018, 18, 993−1000.  doi: 10.2174/1871520618666171219114532

    43. [43]

      Scutaru, A. M.; Wenzel, M.; Scheffler, H.; Wolber, G.; Gust, R. Optimization of the N-lost drugs melphalan and bendamustine: synthesis and cytotoxicity of a new set of dendrimer-drug conjugates as tumor therapeutic agents. Bioconjugate Chem. 2010, 21, 1728−1743.  doi: 10.1021/bc900453f

    44. [44]

      Soni, N.; Jain, K.; Gupta, U.; Jain, N. Controlled delivery of gemcitabine hydrochloride using mannosylated poly(propyleneimine) dendrimers. J. Nanopart. Res. 2015, 17, 458−465.  doi: 10.1007/s11051-015-3265-1

    45. [45]

      Nabavizadeh, F.; Fanaei, H.; Imani, A.; Vahedian, J.; Amoli, F. A.; Ghorbi, J.; Sohanaki, H.; Mohammadi, S. M.; Golchoobian, R. Evaluation of nanocarrier targeted drug delivery of capecitabine-pamam dendrimer complex in a mice colorectal cancer model. Acta Med. Iran. 2016, 54, 485−493.

    46. [46]

      Neerman, M. F. The efficiency of a PAMAM dendrimer toward the encapsulation of the antileukemic drug 6-mercaptopurine. Anti-cancer Drugs 2007, 18, 839−842.  doi: 10.1097/CAD.0b013e32809ef9d0

    47. [47]

      Maciel, D.; Guerrero-Beltrán, C.; Ceña-Diez, R.; Tomás, H.; Muñoz-Fernández, M. Á.; Rodrigues, J. New anionic poly(alkylideneamine) dendrimers as microbicide agents against HIV-1 infection. Nanoscale 2019, 11, 9679−9690.  doi: 10.1039/C9NR00303G

    48. [48]

      Reguera, R.; Rodrigues, J.; Correa, J.; Munoz-Fernandez, M. A. In Phosphorous Dendrimers in Biology and Nanomedicine. Pan Stanford: Singapore 2018, 195−226.

    49. [49]

      Guerrero-Beltran, C.; Rodriguez-Izquierdo, I.; Serramia, M. J.; Araya-Duran, I.; Márquez-Miranda, V.; Gomez, R.; de la Mata, F. J.; Leal, M.; González-Nilo, F.; Muñoz-Fernández, M. Á. Anionic carbosilane dendrimers destabilize the GP120-CD4 complex blocking HIV-1 entry and cell to cell fusion. Bioconjugate Chem. 2018, 29, 1584−1594.  doi: 10.1021/acs.bioconjchem.8b00106

    50. [50]

      Sepúlveda‐Crespo, D.; Ceña‐Díez, R.; Jiménez, J. L.; Ángeles Muñoz‐Fernández, M. Mechanistic studies of viral entry: an overview of dendrimer‐based microbicides as entry inhibitors against both HIV and HSV‐2 overlapped infections. Med. Res. Rev. 2017, 37, 149−179.  doi: 10.1002/med.21405

    51. [51]

      Aliev, G.; Ashraf, G. M.; Tarasov, V. V.; Chubarev, V. N.; Leszek, J.; Gasiorowski, K.; Makhmutovа, A.; Baeesa, S. S.; Avila-Rodriguez, M.; Ustyugov, A. A. Alzheimer's disease-future therapy based on dendrimers. Curr. Neuropharmacol. 2019, 17, 288−294.  doi: 10.2174/1570159X16666180918164623

    52. [52]

      Wasiak, T.; Marcinkowska, M.; Pieszynski, I.; Zablocka, M.; Caminade, A. M.; Majoral, J. P.; Klajnert-Maculewicz, B. Cationic phosphorus dendrimers and therapy for Alzheimer's disease. New J. Chem. 2015, 39, 4852−4859.  doi: 10.1039/C5NJ00309A

    53. [53]

      Klajnert, B.; Cangiotti, M.; Calici, S.; Majoral, J. P.; Caminade, A. M.; Cladera, J.; Bryszewska, M.; Ottaviani, M. F. EPR study of the interactions between dendrimers and peptides involved in Alzheimer's and prion diseases. Macromol. Biosci. 2007, 7, 1065−1074.  doi: 10.1002/mabi.200700049

    54. [54]

      Solassol, J. M.; Crozet, C.; Perrier, V.; Leclaire, J.; Beranger, F.; Caminade, A. M.; Meunier, B.; Dormont, D.; Majoral, J. P.; Lehmann, S. Cationic phosphorus-containing dendrimers reduce prion replication both in cell culture and in mice infected with scrapie. J. Gen. Virol. 2004, 85, 791−1799.

    55. [55]

      Yiyun, C.; Na, M.; Tongwen, X.; Rongqiang, F.; Xueyuan, W.; Xiaomin, W.; Longping, W. Transdermal delivery of nonsteroidal anti‐inflammatory drugs mediated by polyamidoamine (PAMAM) dendrimers. J. Pharm. Sci. 2007, 96, 595−602.  doi: 10.1002/jps.20745

    56. [56]

      Yiyun, C.; Tongwen, X. Dendrimers as potential drug carriers. Part Ⅰ. Solubilization of non-steroidal anti-inflammatory drugs in the presence of polyamidoamine dendrimers. Eur. J. Med. Chem. 2005, 40, 1188−1192.  doi: 10.1016/j.ejmech.2005.06.010

    57. [57]

      Bohr, A.; Tsapis, N.; Andreana, I.; Chamarat, A.; Foged, C.; Delomenie, C.; Noiray, M.; El Brahmi, N.; Majoral, J. P.; Mignani, S. Anti-inflammatory effect of anti-TNF-α siRNA cationic phosphorus dendrimer nanocomplexes administered intranasally in a murine acute lung injury model. Biomacromolecules 2017, 18, 2379−2388.  doi: 10.1021/acs.biomac.7b00572

    58. [58]

      Castonguay, A.; Ladd, E.; van de Ven, T. G.; Kakkar, A. Dendrimers as bactericides. New J. Chem. 2012, 36, 199−204.  doi: 10.1039/C1NJ20481E

    59. [59]

      Ladd, E.; Sheikhi, A.; Li, N.; van de Ven, T.; Kakkar, A. Design and synthesis of dendrimers with facile surface group functionalization, and an evaluation of their bactericidal efficacy. Molecules 2017, 22, 868−876.  doi: 10.3390/molecules22060868

    60. [60]

      Heredero-Bermejo, I.; Hernández-Ros, J. M.; Sánchez-García, L.; Maly, M.; Verdú-Expósito, C.; Soliveri, J.; de la Mata, F. J.; Copa-Patiño, J. L.; Pérez-Serrano, J.; Sánchez-Nieves, J. Ammonium and guanidine carbosilane dendrimers and dendrons as microbicides. Eur. Polym. J. 2018, 101, 159−168.  doi: 10.1016/j.eurpolymj.2018.02.025

    61. [61]

      Tomalia, D. A. In quest of a systematic framework for unifying and defining nanoscience. J. Nanopart. Res. 2009, 11, 1251−1310.  doi: 10.1007/s11051-009-9632-z

    62. [62]

      Tomalia, D. A. Dendrimer research. Science 1991, 252, 1231−1231.  doi: 10.1126/science.252.5010.1231.c

    63. [63]

      Saikia, N.; Deka, R. C. Adsorption of isoniazid and pyrazinamide drug molecules onto nitrogen-doped single-wall carbon nanotubes: an ab initio study. Struct. Chem. 2014, 25, 593−605.  doi: 10.1007/s11224-013-0327-9

    64. [64]

      Chegini, H.; Morsali, A.; Bozorgmehr, M.; Beyramabadi, S. Theoretical study on the mechanism of covalent bonding of dapsone onto functionalised carbon nanotubes: effects of coupling agent. Prog. React. Kinet. Mech. 2016, 41, 345−355.  doi: 10.3184/146867816X14716178637309

    65. [65]

      Xu, H.; Li, L.; Fan, G.; Chu, X. DFT study of nanotubes as the drug delivery vehicles of Efavirenz. Comput. Theor. Chem. 2018, 1131, 57−68.  doi: 10.1016/j.comptc.2018.03.032

    66. [66]

      Etebari, N.; Morsali, A.; Beyramabadi, S. A. Structural and mechanistic studies of γ-Fe2O3 nanoparticle as capecitabine drug nanocarrier. Chin. J. Struct. Chem. 2018, 37, 375−382.

    67. [67]

      Kamel, M.; Raissi, H.; Morsali, A. Theoretical study of solvent and co-solvent effects on the interaction of flutamide anticancer drug with carbon nanotube as a drug delivery system. J. Mol. Liq. 2017, 248, 490−500.  doi: 10.1016/j.molliq.2017.10.078

    68. [68]

      Khoshbayan, B.; Morsali, A.; Bozorgmehr, M. R. Structural and electronic properties of cyclic peptide-gold nanoparticle as a drug delivery system. Chin. J. Struc. Chem. 2019, 38, 566−580.

    69. [69]

      Shahabi, D.; Tavakol, H. DFT, NBO and molecular docking studies of the adsorption of fluoxetine into and on the surface of simple and sulfur-doped carbon nanotubes. Appl. Surf. Sci. 2017, 420, 267−275.  doi: 10.1016/j.apsusc.2017.05.068

    70. [70]

      Naderi, S.; Morsali, A.; Bozorgmehr, M. R.; Beyramabadi, S. A. Mechanistic, energetic and structural studies of carbon nanotubes functionalised with dihydroartemisinin drug in gas and solution phases. Phys. Chem. Liq. 2018, 56, 610−618.  doi: 10.1080/00319104.2017.1367790

    71. [71]

      Ketabi, S.; Rahmani, L. Carbon nanotube as a carrier in drug delivery system for carnosine dipeptide: a computer simulation study. Mater. Sci. Eng.: C 2017, 73, 173−181.

    72. [72]

      Wadhwa, S.; Mumper, R. J. D-penicillamine and other low molecular weight thiols: review of anticancer effects and related mechanisms. Cancer Lett. 2013, 337, 8−21.  doi: 10.1016/j.canlet.2013.05.027

    73. [73]

      Peisach, J.; Blumberg, W. A mechanism for the action of penicillamine in the treatment of Wilson's disease. Mol. Pharmacol. 1969, 5, 200−209.

    74. [74]

      Walshe, J. Penicillamine: the treatment of first choice for patients with Wilson's disease. Mov. Disord. 1999, 14, 545−550.  doi: 10.1002/1531-8257(199907)14:4<545::AID-MDS1001>3.0.CO;2-U

    75. [75]

      Metushi, I. G.; Zhu, X.; Uetrecht, J. D-penicillamine-induced granulomatous hepatitis in brown Norway rats. Mol. Cell. Biochem. 2014, 393, 229−235.  doi: 10.1007/s11010-014-2065-8

    76. [76]

      Camp, A. Penicillamine in the treatment of rheumatoid arthritis. J. Rheumatol. Suppl. 1980, 7, 103−106.

    77. [77]

      Chandra, A.; Demirhan, I.; Arya, S.; Chandra, P. D‐Penicillamine inhibits transactivation of human immunodeficiency virus type‐1 (HIV‐1) LTR by transactivator protein. FEBS Lett. 1988, 236, 282−286.  doi: 10.1016/0014-5793(88)80038-3

    78. [78]

      Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, J. A. Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian 09, Revision B. 01, Gaussian, Inc., Wallingford CT 2016.

    79. [79]

      Tomasi, J.; Persico, M. Molecular interactions in solution: an overview of methods based on continuous distributions of the solvent. Chem. Rev. 1994, 94, 2027−2094.  doi: 10.1021/cr00031a013

    80. [80]

      Coitiño, E. L.; Tomasi, J.; Cammi, R. On the evaluation of the solvent polarization apparent charges in the polarizable continuum model: a new formulation. J. Comput. Chem. 1995, 16, 20−30.  doi: 10.1002/jcc.540160103

    81. [81]

      Parr, R. G.; Szentpaly, L. V.; Liu, S. Electrophilicity index. J. Am. Chem. Soc. 1999, 121, 1922−1924.  doi: 10.1021/ja983494x

    82. [82]

      Keith, T. A. AIMAll (Version 13.05. 06). TK Gristmill Software, Overland Park KS, USA 2013.

    83. [83]

      Bader, R. F. A quantum theory of molecular structure and its applications. Chem. Rev. 1991, 91, 893−928.  doi: 10.1021/cr00005a013

    84. [84]

      Zhao, Y.; Truhlar, D. G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc. 2008, 120, 215−241.  doi: 10.1007/s00214-007-0310-x

    85. [85]

      Rozas, I.; Alkorta, I.; Elguero, J. Behavior of ylides containing N, O, and C atoms as hydrogen bond acceptors. J. Am. Chem. Soc. 2000, 122, 11154−11161.  doi: 10.1021/ja0017864

    86. [86]

      Espinosa, E.; Souhassou, M.; Lachekar, H.; Lecomte, C. Topological analysis of the electron density in hydrogen bonds. Acta Crystallogr. Sect. B: Struct. Sci. 1999, 55, 563−572.  doi: 10.1107/S0108768199002128

  • 加载中
    1. [1]

      Tsegaye Tadesse Tsega Jiantao Zai Chin Wei Lai Xin-Hao Li Xuefeng Qian . Earth-abundant CuFeS2 nanocrystals@graphite felt electrode for high performance aqueous polysulfide/iodide redox flow batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100192-100192. doi: 10.1016/j.cjsc.2023.100192

    2. [2]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    3. [3]

      Chaozheng HeJia WangLing FuWei Wei . Nitric oxide assists nitrogen reduction reaction on 2D MBene: A theoretical study. Chinese Chemical Letters, 2024, 35(5): 109037-. doi: 10.1016/j.cclet.2023.109037

    4. [4]

      Run-Han LiTian-Yi DangWei GuanJiang LiuYa-Qian LanZhong-Min Su . Evolution exploration and structure prediction of Keggin-type group IVB metal-oxo clusters. Chinese Chemical Letters, 2024, 35(5): 108805-. doi: 10.1016/j.cclet.2023.108805

    5. [5]

      Ting-Ting HuangJin-Fa ChenJuan LiuTai-Bao WeiHong YaoBingbing ShiQi Lin . A novel fused bi-macrocyclic host for sensitive detection of Cr2O72− based on enrichment effect. Chinese Chemical Letters, 2024, 35(7): 109281-. doi: 10.1016/j.cclet.2023.109281

    6. [6]

      Dan-Ying XingXiao-Dan ZhaoChuan-Shu HeBo Lai . Kinetic study and DFT calculation on the tetracycline abatement by peracetic acid. Chinese Chemical Letters, 2024, 35(9): 109436-. doi: 10.1016/j.cclet.2023.109436

    7. [7]

      Songtao CaiLiuying WuYuan LiSoham SamantaJinying WangBing LiuFeihu WuKaitao LaiYingchao LiuJunle QuZhigang Yang . Intermolecular hydrogen-bonding as a robust tool toward significantly improving the photothermal conversion efficiency of a NIR-II squaraine dye. Chinese Chemical Letters, 2024, 35(4): 108599-. doi: 10.1016/j.cclet.2023.108599

    8. [8]

      Keyang LiYanan WangYatao XuGuohua ShiSixian WeiXue ZhangBaomei ZhangQiang JiaHuanhua XuLiangmin YuJun WuZhiyu He . Flash nanocomplexation (FNC): A new microvolume mixing method for nanomedicine formulation. Chinese Chemical Letters, 2024, 35(10): 109511-. doi: 10.1016/j.cclet.2024.109511

    9. [9]

      Xin-Tong ZhaoJin-Zhi GuoWen-Liang LiJing-Ping ZhangXing-Long Wu . Two-dimensional conjugated coordination polymer monolayer as anode material for lithium-ion batteries: A DFT study. Chinese Chemical Letters, 2024, 35(6): 108715-. doi: 10.1016/j.cclet.2023.108715

    10. [10]

      Tao BanXi-Yang YuHai-Kuo TianZheng-Qing HuangChun-Ran Chang . One-step conversion of methane and formaldehyde to ethanol over SA-FLP dual-active-site catalysts: A DFT study. Chinese Chemical Letters, 2024, 35(4): 108549-. doi: 10.1016/j.cclet.2023.108549

    11. [11]

      Huijiao FuPeiqin LiangQianwen ChenYan WangGuang LiXuzi CaiShengtao WangKun ChenShengying ShiZhiqiang YuXuefeng Wang . COX-2 blocking therapy in cisplatin chemosensitization of ovarian cancer: An allicin-based nanomedicine approach. Chinese Chemical Letters, 2024, 35(8): 109241-. doi: 10.1016/j.cclet.2023.109241

    12. [12]

      An LuYuhao GuoYi YanLin ZhaiXiangyu WangWeiran CaoZijie LiZhixia ZhaoYujie ShiYuanjun ZhuXiaoyan LiuHuining HeZhiyu WangJian-Cheng Wang . Nanomedicine integrating the lipidic derivative of 5-fluorouracil, miriplatin and PD-L1 siRNA for enhancing tumor therapy. Chinese Chemical Letters, 2024, 35(6): 108928-. doi: 10.1016/j.cclet.2023.108928

    13. [13]

      Yuanyi ZhouKe MaJinfeng LiuZirun ZhengBo HuYu MengZhizhong LiMingshan Zhu . Is reactive oxygen species the only way for cancer inhibition over single atom nanomedicine? Autophagy regulation also works. Chinese Chemical Letters, 2024, 35(6): 109056-. doi: 10.1016/j.cclet.2023.109056

    14. [14]

      Yating ZhengYulan HuangJing LuoXuqi PengXiran GuiGang LiuYang Zhang . Supercritical fluid technology: A game-changer for biomacromolecular nanomedicine preparation and biomedical application. Chinese Chemical Letters, 2024, 35(7): 109169-. doi: 10.1016/j.cclet.2023.109169

    15. [15]

      Jiaqi HuangRenjiang KongYanmei LiNi YanYeyang WuZiwen QiuZhenming LuXiaona RaoShiying LiHong Cheng . Feedback enhanced tumor targeting delivery of albumin-based nanomedicine to amplify photodynamic therapy by regulating AMPK signaling and inhibiting GSTs. Chinese Chemical Letters, 2024, 35(8): 109254-. doi: 10.1016/j.cclet.2023.109254

    16. [16]

      Zongyi HuangCheng GuoQuanxing ZhengHongliang LuPengfei MaZhengzhong FangPengfei SunXiaodong YiZhou Chen . Efficient photocatalytic biomass-alcohol conversion with simultaneous hydrogen evolution over ultrathin 2D NiS/Ni-CdS photocatalyst. Chinese Chemical Letters, 2024, 35(7): 109580-. doi: 10.1016/j.cclet.2024.109580

    17. [17]

      Xingyan LiuChaogang JiaGuangmei JiangChenghua ZhangMingzuo ChenXiaofei ZhaoXiaocheng ZhangMin FuSiqi LiJie WuYiming JiaYouzhou He . Single-atom Pd anchored in the porphyrin-center of ultrathin 2D-MOFs as the active center to enhance photocatalytic hydrogen-evolution and NO-removal. Chinese Chemical Letters, 2024, 35(9): 109455-. doi: 10.1016/j.cclet.2023.109455

    18. [18]

      Zhenyang Lin . A classification scheme for inorganic cluster compounds based on their electronic structures and bonding characteristics. Chinese Journal of Structural Chemistry, 2024, 43(5): 100254-100254. doi: 10.1016/j.cjsc.2024.100254

    19. [19]

      Xu-Hui YueXiang-Wen ZhangHui-Min HeLei QiaoZhong-Ming Sun . Synthesis, chemical bonding and reactivity of new medium-sized polyarsenides. Chinese Chemical Letters, 2024, 35(7): 108907-. doi: 10.1016/j.cclet.2023.108907

    20. [20]

      Haojie SongLaiyu LuoSiyu WangGuo ZhangBaojiang Jiang . Advances in poly(heptazine imide)/poly(triazine imide) photocatalyst. Chinese Chemical Letters, 2024, 35(10): 109347-. doi: 10.1016/j.cclet.2023.109347

Metrics
  • PDF Downloads(2)
  • Abstract views(165)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return