Citation: Li CHEN, Rui YAN, Wen-Xiu XU, Xiao-Ming XIONG. Structure and Adsorption Properties to TVOC of Orange Peel Modified with KOH[J]. Chinese Journal of Structural Chemistry, ;2020, 39(5): 873-883. doi: 10.14102/j.cnki.0254–5861.2011–2507 shu

Structure and Adsorption Properties to TVOC of Orange Peel Modified with KOH

  • Corresponding author: Li CHEN, clsshine@163.com
  • Received Date: 20 June 2019
    Accepted Date: 10 October 2019

    Fund Project: the science and technology innovation project of Shanxi province universities 2019L0867Key discipline project of "1331" project of Shanxi Province 098-091704Philosophy and social sciences planning project of Shanxi Province 2019B389

Figures(11)

  • Food waste orange peel was employed as a raw material to prepare biomass adsorbent to solve the indoor Total Volatile Organic Compounds (TVOC). The preparation process of orange peel treated with KOH was optimized by the quadratic regression orthogonal rotation, and the regression model and optimal processing conditions were obtained. The structure of the adsorbent was characterized by BET, SEM, TEM, EDS, XRD and FTIR analysis. The adsorption properties and desorption regeneration were discussed. The results showed the maximal removal rate Ymax was 9.4824% when KOH concentration was 0.3 mol/L, the soaking time of KOH was 26 h and that of HCl was 2.89 h. The best single factor condition was the adsorbent with 40 mesh size and 6.0 g. The adsorption of modified orange peel on TVOC conformed to the Freundlich models, which was more inclined to multi-layer active site adsorption. The adsorption law followed the quasi-second-order kinetic model (R2 = 0.955), indicating the adsorption was a physico-chemical mixture but controlled by physical adsorption and it was a spontaneous endothermic process. The modified orange peel exposed more sites and had stronger chemical groups, which were beneficial to adsorption. The adsorbent has a significantly better TVOC removal rate than other materials at 1% level, that is, modified orange peel > diatomite > activated carbon > bamboo charcoal > macroporous resin. In addition, it had good recycling and regeneration capacity.
  • 加载中
    1. [1]

      Molhave, L.; Clausen, G.; Berglund, B.; Ceaurriz, J.; Lindvall, T.; Maroni, M.; Pickering, A. C.; Risse, U.; Rothweiler, H.; Seifert, B.; Younes, M. Total volatile organic compounds (TVOC) in indoor air quality investigation. Indoor Air. 1997, 7, 225–240.  doi: 10.1111/j.1600-0668.1997.00002.x

    2. [2]

      Weetman, D. F. Volatile organic chemicals in the environment. Indoor Env. 1994, 3, 55–57.

    3. [3]

      Luo, Y. Z. Determination of TVOC by gas chromatography. Chem. Indu. Times 2018, 32, 31–32.

    4. [4]

      Zhang, L. Harm and control of main indoor air pollutants. Anhui Jianzhu 2012, 04, 190–191.

    5. [5]

      Klepeis, N. E.; Nelson, W. C.; Ott, W. R. The national human activity pattern survey (NHAPS): a resource for assessing exposure to environmental pollutants. J. Expo. Anal. Env. Epid. 2001, 11, 231–252.  doi: 10.1038/sj.jea.7500165

    6. [6]

      Fang, J. Analysis of the harm of indoor pollutant TVOC. Anhui Jianzhu 2012, 04, 187–188.

    7. [7]

      Guo, L. L. On the sources of indoor environmental pollution and its prevention and control measure. Develop. Guide Build Mater. 2019, 17, 53–54.

    8. [8]

      Yu, L. H.; Lei, J. J.; Zhang, W.; Yu, J. M.; Wang, J. Y.; Zhang, S. J.; Liu, L. X.; An, Y. D.; Zheng, W. The purification effect of potted plants on indoor formaldehyde. J. Env. Health. 2017, 34, 916–917.

    9. [9]

      Hu, X. F.; Meng, B.; Wei, L. H.; Li, Z. C.; Kang, X. O.; Yang, S. Review of research advances on the application effects of the room-in air purification technologies. J. Safe Env. 2015, 15, 202–206.

    10. [10]

      Lin, C. Y. Analysis and research on the application of TVOC in indoor air. Guangdong Chem. Ind. 2018, 45, 162–188.

    11. [11]

      Chen, L. Ouadratic rotation-orthogonal composite experimental design for the optiimization of experimental conditions for Pb2+ adsorption by wheat bran dietary fiber. Food Sci. 2013, 02, 99–104.

    12. [12]

      Li, Z. Z.; Tang, Q.; Tang, X. W. Leaf char: an alternative adsorbent for Cd(Ⅲ). J. Elsevier. 2010, 1, 70–77.

    13. [13]

      Torab-Mostaedi, M.; Asadolahzadeh, M.; Hemmati, A. Equilibrium, kinetic, and thermodynamic studies for biosorption of cadmium and nickel on grapefruit peel. J. Taiwan Inst. Chem. Eng. 2013, 44, 295–302.

    14. [14]

      Yang, L. Z.; He, L.; He, X.; Peng, S. H.; Wang, R.; Chen, C. Q.; Yang, X. H.; Liu, X. Biosorption of lead, copper, cadmium, zinc and chromium ions from aqueous solutions by tartary buckwheat tea particles. Spectrosc. Spect. Anal. 2019, 39, 269–277.

    15. [15]

      Langmuir I. The constitution and fundamental properties of solids and liquids. J. Am. Chem. Soc. 1916, 38, 2221–2295.

    16. [16]

      Zhang, S.; Zhang, R.; Xue, H. L.; Ma, Y. Y.; Bi, Y.; Zong, Y. Y. Study on the adsorption of patulin by attapulgite form pear juice. Food Sci. 2018, 1–10.

    17. [17]

      Chen, L. H.; Wang, X.; Cheng, J. Y. Preparation of crude polysaccharide biological agent from diatom and its adsorption of cadmium ions. Res. Environ. Sci. 2018, 31, 1439–1449.

    18. [18]

      Pan, Y. M.; Yan, S.; Tang, X. Y.; Wang, Q. G.; Wang, X. H.; Yang, J. L. Preparation of coal gangue microspheres and its adsorption properties of methyl violet and malachite green in waste water. J. Func. Mater. 2018, 49, 6001–6008.

    19. [19]

      Xiang, W. Y.; Xie, B. B.; Hu, J. T.; Zhang, Q. Reduction and adsorption of Cr(Ⅵ) in wastewater by Tieguanyin tea stalk. J. Chongqing Univer. 2018, 41, 103–116.

    20. [20]

      Muthusamy, S.; Venkatachalam, S.; Jeevamani, P. M.; Rajarathinam, N. Biosorption of Cr(Ⅵ) and Zn(Ⅱ) ions from aqueous solution onto the solid biodiesel waste residue: mechanistic, kinetic and thermodynamic studies. Environ Sci. Pollution Res. 2014, 21, 593–608.

    21. [21]

      Mane, V. S.; Mall, D. I.; Srivastava, C. V. Kinetic and equilibrium isotherm studies for the adsorptive removal of brilliant green dye from aqueous solution by rice husk ash. J. Environ Manage. 2007, 84, 390.

    22. [22]

      Zhang, J. L.; Sun, D. H.; Jing, X. L.; Huang, J. L.; Zheng, Y. M.; Li, Q. B. Thermoodynamic and kinetic characteristics of Au(Ⅲ) biosorption onto Aspergillus niger. CIESC J. 2013, 64, 1283–1292.

    23. [23]

      Liang, S. Study on preparation of chemically modified biosorbents and their adsorption behaviors for heavy metal ions. Central South Univer. 2012.

    24. [24]

      Jiang, F. H.; Yuan, Y. H.; Ren, T. T.; Meng, D. Q.; Yue, T. L. Adsorption kinetics and thermodynamics characters of organic acids from apple juice by magnetic chitosan microspheres. Trans. Chin. Soc. Agric. Eng. 2017, 33, 307–314.

    25. [25]

      Zhen, Z. L.; Qiang, T.; Takeshi, K. Leaf char: an alternative adsorbent for Cd(Ⅲ). Desalination 2010, 1, 70–77.

    26. [26]

      Guo, Z. W.; Ma, P.; Diao, J. J.; Li, Z. Y.; Quan, Z. G.; Man, Y. G.; Zhang, L. P. Physicochemical and adsorption properties of ultramicro insoluble dietary fiber from soybean hull. Food Sci. 2018, 39, 106–112.

    27. [27]

      Chen, L.; Si, H.; Jin, F.; Cui, Q. Q.; Zhou, L. Characterization of adsorptive capacity and mechanisms on adsorption of methylene blue by modified sweet potato. Chin. J. Environ. Eng. 2016, 10, 4277–4283.
       

    28. [28]

      Liu, X. M.; Ma, C.; Tao, J. X.; Tian, B. R. Research progress of adsorption of Cr(Ⅵ) by biosorbent materials. App. Chem. Indus. 2018, 47, 1509–1512+1517.

    29. [29]

      Wang, S. N. Preparation of sugarcane bagasse biosorbent and its adsorption performance of heavy metals in water. South China Univer. Tech. 2018.

  • 加载中
    1. [1]

      Shuanglin TIANTinghong GAOYutao LIUQian CHENQuan XIEQingquan XIAOYongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482

    2. [2]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    3. [3]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    4. [4]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    5. [5]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    6. [6]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    7. [7]

      Zixuan ZhuXianjin ShiYongfang RaoYu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954

    8. [8]

      Cunjun LiWencong LiuXianlei ChenLiang LiShenyu LanMingshan Zhu . Adsorption and activation of peroxymonosulfate on BiOCl for carbamazepine degradation: The role of piezoelectric effect. Chinese Chemical Letters, 2024, 35(10): 109652-. doi: 10.1016/j.cclet.2024.109652

    9. [9]

      Chao Ma Cong Lin Jian Li . MicroED as a powerful technique for the structure determination of complex porous materials. Chinese Journal of Structural Chemistry, 2024, 43(3): 100209-100209. doi: 10.1016/j.cjsc.2023.100209

    10. [10]

      Yuhang Li Yang Ling Yanhang Ma . Application of three-dimensional electron diffraction in structure determination of zeolites. Chinese Journal of Structural Chemistry, 2024, 43(4): 100237-100237. doi: 10.1016/j.cjsc.2024.100237

    11. [11]

      Hai-Ling Wang Zhong-Hong Zhu Hua-Hong Zou . Structure and assembly mechanism of high-nuclear lanthanide-oxo clusters. Chinese Journal of Structural Chemistry, 2024, 43(9): 100372-100372. doi: 10.1016/j.cjsc.2024.100372

    12. [12]

      Shuqi YuYu YangKeisuke KurodaJian PuRui GuoLi-An Hou . Selective removal of Cr(Ⅵ) using polyvinylpyrrolidone and polyacrylamide co-modified MoS2 composites by adsorption combined with reduction. Chinese Chemical Letters, 2024, 35(6): 109130-. doi: 10.1016/j.cclet.2023.109130

    13. [13]

      Xiao LiWanqiang YuYujie WangRuiying LiuQingquan YuRiming HuXuchuan JiangQingsheng GaoHong LiuJiayuan YuWeijia Zhou . Metal-encapsulated nitrogen-doped carbon nanotube arrays electrode for enhancing sulfion oxidation reaction and hydrogen evolution reaction by regulating of intermediate adsorption. Chinese Chemical Letters, 2024, 35(8): 109166-. doi: 10.1016/j.cclet.2023.109166

    14. [14]

      Xue ZhaoMengshan ChenDan WangHaoran ZhangGuangzhi HuYingtang Zhou . Ultrafine nano-copper derived from dopamine polymerization & synchronous adsorption achieve electrochemical purification of nitrate to ammonia in complex water environments. Chinese Chemical Letters, 2024, 35(8): 109327-. doi: 10.1016/j.cclet.2023.109327

    15. [15]

      Yu-Hang LiShuai GaoLu ZhangHanchun ChenChong-Chen WangHaodong Ji . Insights on selective Pb adsorption via O 2p orbit in UiO-66 containing rich-zirconium vacancies. Chinese Chemical Letters, 2024, 35(8): 109894-. doi: 10.1016/j.cclet.2024.109894

    16. [16]

      Yan WangHuixin ChenFuda YuShanyue WeiJinhui SongQianfeng HeYiming XieMiaoliang HuangCanzhong Lu . Oxygen self-doping pyrolyzed polyacrylic acid as sulfur host with physical/chemical adsorption dual function for lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(7): 109001-. doi: 10.1016/j.cclet.2023.109001

    17. [17]

      Linhui LiuWuwan XiongMingli FuJunliang WuZhenguo LiDaiqi YePeirong Chen . Efficient NOx abatement by passive adsorption over a Pd-SAPO-34 catalyst prepared by solid-state ion exchange. Chinese Chemical Letters, 2024, 35(4): 108870-. doi: 10.1016/j.cclet.2023.108870

    18. [18]

      Qiang LiJiangbo FanHongkai MuLin ChenYongzhen YangShiping Yu . Nucleus-targeting orange-emissive carbon dots delivery adriamycin for enhanced anti-liver cancer therapy. Chinese Chemical Letters, 2024, 35(6): 108947-. doi: 10.1016/j.cclet.2023.108947

    19. [19]

      Run-Han LiTian-Yi DangWei GuanJiang LiuYa-Qian LanZhong-Min Su . Evolution exploration and structure prediction of Keggin-type group IVB metal-oxo clusters. Chinese Chemical Letters, 2024, 35(5): 108805-. doi: 10.1016/j.cclet.2023.108805

    20. [20]

      Zhengzheng LIUPengyun ZHANGChengri WANGShengli HUANGGuoyu YANG . Synthesis, structure, and electrochemical properties of a sandwich-type {Co6}-cluster-added germanotungstate. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1173-1179. doi: 10.11862/CJIC.20240039

Metrics
  • PDF Downloads(3)
  • Abstract views(184)
  • HTML views(7)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return