Citation: Sheikhi MASOOME, Shahab SIYAMAK, Alhosseini Almodarresiyeh HORA, Khaleghian MEHRNOOSH, Kumar RAKESH, Strogova ALEKSANDRA. Theoretical Study of Adsorption Behavior of Vemurafenib Drug over BNNT(5,5-9) as a Factor of Drug Delivery: a DFT Study[J]. Chinese Journal of Structural Chemistry, ;2020, 39(8): 1422-1436. doi: 10.14102/j.cnki.0254–5861.2011–2473 shu

Theoretical Study of Adsorption Behavior of Vemurafenib Drug over BNNT(5,5-9) as a Factor of Drug Delivery: a DFT Study

Figures(7)

  • In this research, a density functional theory (DFT) calculation was performed for investigation adsorption behavior of the anticancer drug Vemurafenib on BNNT(5,5-9) by using the M06-2X/6-31G* level of theory in the solvent water. The electronic spectra of the Vemurafenib drug, BNNT(5,5-9) and complex BNNT(5,5-9)/Vemurafenib in solvent water were calculated by Time Dependent Density Functional Theory (TD-DFT) for the study of adsorption effect. The non-bonded interaction effects of the Vemurafenib drug with BNNT(5,5-9) on the electronic properties, natural charges and chemical shift tensors have been also detected. The results display the change in title parameters after process adsorption. According to the natural bond orbital (NBO) results, the molecule Vemurafenib and BNNT(5,5-9) play as both electron donor and acceptor at the complex BNNT(5,5-9)/Vemurafenib. On the other hand, the charge transfer occurs between the bonding, antibonding or nonbonding orbitals in two molecules drug and BNNT. As a consequence, BNNT(5,5-9) can be considered as a drug delivery system for the transportation of Vemurafenib as anticancer drug within the biological systems.
  • 加载中
    1. [1]

      Bertrand, N.; Leroux, J. C. The journey of a drug-carrier in the body: an anatomo-physiological perspective. J. Control. Release 2012, 161, 152–163.  doi: 10.1016/j.jconrel.2011.09.098

    2. [2]

      Kumar, B.; Jalodia, K.; Kumar, P.; Gautam, H. K. Recent advances in nanoparticle-mediated drug delivery. J. Drug Deliv. Sci. Technol. 2017, 41, 260–268.  doi: 10.1016/j.jddst.2017.07.019

    3. [3]

      Wang, Y.; Wang, F.; Shen, Y.; He, Q.; Guo, S. Tumor-specific disintegratable nanohybrids containing ultrasmall inorganic nanoparticles: from design and improved properties to cancer applications. Mater. Horiz. 2018, 5, 184–205.  doi: 10.1039/C7MH01071K

    4. [4]

      Padma, V. D.; Jain, S. ed. Targeted Drug Delivery: Concepts and Design Advances in Delivery Science and Technology. Springer 2014.

    5. [5]

      Bae, Y. H.; Mrsny, R. J.; Park, K. ed. Cancer Targeted Drug Delivery: An Elusive Dream. Springer Science & Business Media 2013.

    6. [6]

      Dai, L.; Liu, J.; Luo, Z.; Li, M.; Cai, K. Tumor therapy: targeted drug delivery systems. J. Mater. Chem. B 2016, 4, 6758–6772.  doi: 10.1039/C6TB01743F

    7. [7]

      Bhirde, A. A.; Patel, V.; Gavard, J.; Zhang, G.; Sousa, A. A.; Masedunskas, A.; Leapman, R. D.; Weigert, R.; Gutkind, J. S.; Rusling, J. F. Targeted killing of cancer cells in vivo and in vitro with EGF-directed carbon nanotubebased drug delivery. ACS Nano 2009, 3, 307–316.  doi: 10.1021/nn800551s

    8. [8]

      Heister, E.; Neves, V.; Tîlmaciu, C.; Lipert, K.; Beltrán, V. S.; Coley, H. M.; Silva, S. R. P.; McFadden, J. Triplefunctionalisation of single-walled carbon nanotubes with doxorubicin, a monoclonal antibody, and a fluorescentmarker for targeted cancer therapy. Carbon 2009, 47, 2152–2160.  doi: 10.1016/j.carbon.2009.03.057

    9. [9]

      Raju, H. B.; Goldberg, J. L. Nanotechnology for ocular therapeutics and tissue repair. Expert Rev. Ophthalom. 2008, 3, 431–436.  doi: 10.1586/17469899.3.4.431

    10. [10]

      (a) https://www.curemelanoma.org (b)https://www.cancerresearchuk.org.

    11. [11]

      Zhi, C.; Bando, Y.; Tang, C.; Golberg, D. Boron nitride nanotubes. Mater. Sci. Eng. R Rep. 2010, 70, 92–111.  doi: 10.1016/j.mser.2010.06.004

    12. [12]

      Chen, X.; Wu, P.; Rousseas, M.; Okawa, D.; Gartner, Z.; Zettl, A.; Bertozzi, C. R. Boron nitride nanotubesarenoncytotoxic and can be functionalized for interaction with proteins and cells. J. Am. Chem. Soc. 2009, 131, 890–891.  doi: 10.1021/ja807334b

    13. [13]

      Chen, J.; Chen, S.; Zhao, X.; Kuznetsova, L. V.; Wong, S. S.; Ojima, I. Functionalized single-walled carbonnanotubes as rationally designed vehicles for tumor-targeted drug delivery. J. American Chem. Soc. 2008, 130, 16778–16785.  doi: 10.1021/ja805570f

    14. [14]

      Han, W.; Bando, Y.; Kurashima, K.; Sato, T. Synthesis of boron nitride nanotubes from carbon nanotubes by a substitution reaction. Appl. Phys. Lett. 1998, 73, 3085–3087.  doi: 10.1063/1.122680

    15. [15]

      Terrones, M.; Romo-Herrera, J.; Cruz-Silva, E.; López-Urías, F.; Munoz-Sandoval, E.; Velázquez-Salazar, J.; Terrones, H.; Bando, Y.; Golberg, D. Pure and doped boron nitride nanotubes. Mater. Today 2007, 10, 30–38.

    16. [16]

      Yang, C. K. Exploring the interaction between the boron nitride nanotube and biological molecules. Comput. Phys. Commun. 2011, 182, 39–42.  doi: 10.1016/j.cpc.2010.07.040

    17. [17]

      Zhao, J. X.; Ding, Y. H. Theoretical investigation of the divacancies in boron nitride nanotubes: propertiesand surface reactivity toward various adsorbates. J. Chem. Phys. 2009, 131, 014706–014712.  doi: 10.1063/1.3167409

    18. [18]

      (a) Chen, Y.; Zhou, J.; Campbell, S. J.; Caer, G. L. Boron nitride nanotubes: pronounced resistance to oxidation. Appl. Phys. Lett. 2004, 84, 2430–2432. (b) Cohen, M. L.; Zettl, A. The physics of boron nitride nanotubes. Phys. Today 2010, 63, 34–38.

    19. [19]

      Kalay, S.; Yilmaz, Z.; Sen, O.; Emanet, M.; Kazanc, E.; Çulha, M. Synthesis of boron nitride nanotubes and their applications. Beilstein. J. Nanotech. 2015, 6, 84–102.  doi: 10.3762/bjnano.6.9

    20. [20]

      Mukhopadhyay, S.; Scheicher, R. H.; Pandey, R.; Karna, S. P. Sensitivity of boron nitride nanotubes toward biomolecules of different polarities. J. Phys. Chem. Lett. 2011, 2, 2442–2447.  doi: 10.1021/jz2010557

    21. [21]

      Sheikhi, M.; Shahab, S.; Filippovich, L.; Khaleghian, M.; Dikusar, E.; Mashayekhi, M. Interaction between new synthesized derivative of (E, E)-azomethines and BN(6, 6-7) nanotube for medical applications: Geometry optimization, molecular structure, spectroscopic (NMR, UV/Vis, excited state), FMO, MEP and HOMO-LUMO investigations. J. Mol. Struct. 2017, 1146, 881–888.  doi: 10.1016/j.molstruc.2017.06.017

    22. [22]

      Sheikhi, M.; Shahab, S.; Khaleghian, M.; Kumar, R. Interaction between new anti-cancer drug syndros and CNT(6, 6-6) nanotube for medical applications: geometry optimization, molecular structure, spectroscopic (NMR, UV/Vis, excited state), FMO, MEP and HOMO-LUMO investigation. Appl. Surf. Sci. 2018, 434, 504–513.  doi: 10.1016/j.apsusc.2017.10.154

    23. [23]

      Sheikhi, M.; Shahab, S.; Khaleghian, M.; Haji Hajikolaee, F.; Balakhanava, I.; Alnajjar, R. Adsorption properties of the molecule resveratrol on CNT(8, 0-10) nanotube: Geometry optimization, molecular structure, spectroscopic (NMR, UV/Vis, excited state), FMO, MEP and HOMO-LUMO investigations. J. Mol. Struct. 2018, 1160, 479–487.  doi: 10.1016/j.molstruc.2018.01.005

    24. [24]

      Sheikhi, M.; Shahab, S.; Alnajjar, R.; Ahmadianarog, M. Adsorption properties of the new anti-cancer drug alectinib on CNT(6, 6-6) nanotube: Geometry optimization, molecular structure, spectroscopic (NMR, UV/Vis, Excited State), FMO, MEP and HOMO-LUMO investigations. J. Clust. Sci. 2019, 30, 83–96.  doi: 10.1007/s10876-018-1460-9

    25. [25]

      Shahab, S.; Filippovich, L.; Sheikhi, M.; Kumar, R.; Dikusar, E.; Yahyaei, H.; Muravsky, A. Polarization, excited states, trans-cis properties and anisotropy of thermal and electrical conductivity of the 4-(phenyldiazenyl)aniline in PVA matrix. J. Mol. Struct. 2017, 1141, 703–709.  doi: 10.1016/j.molstruc.2017.04.014

    26. [26]

      Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09 Revision A02, Gaussian, Inc., Wallingford CT 2009.

    27. [27]

      Frisch, A.; Nielsen, A. B.; Holder, A. J. Gauss View Users Manual, Gaussian Inc. 2000.

    28. [28]

      Sheikhi, M.; Shahab, S.; Filippovich, L.; Yahyaei, H.; Dikusar, E.; Khaleghian, M. New derivatives of (E, E)-azomethines: design, quantum chemical modeling, spectroscopic (FT-IR, UV/Vis, polarization) studies, synthesis and their applications: experimental and theoretical investigations. J. Mol. Struct. 2018, 1152, 368–385.  doi: 10.1016/j.molstruc.2017.09.108

    29. [29]

      Shahab, S.; Sheikhi, M.; Filippovich, L.; DikusarAnatol'evich, E.; Yahyaei, H. Quantum chemical modeling of new derivatives of (E, E)-azomethines: synthesis, spectroscopic (FT-IR, UV/Vis, polarization) and thermophysical investigations. J. Mol. Struct. 2017, 1137, 335–348.  doi: 10.1016/j.molstruc.2017.02.056

    30. [30]

      Weinhold, F.; Landis, C. R. Neutral bond orbitals and extensions of localized. Chem. Educ. Res. Pract. Eur. 2001, 2, 91–104.  doi: 10.1039/B1RP90011K

    31. [31]

      Shahab, S.; Sheikhi, M.; Filippovich, L.; Khaleghian, M.; Dikusar, E.; Yahyaei, H.; Yousefzadeh Borzehandani, M. Spectroscopic studies (Geometry optimization, E → Z isomerization, UV/Vis, excited states, FT-IR, HOMO-LUMO, FMO, MEP, NBO, polarization) and anisotropy of thermal and electrical conductivityof new azomethine dyes in stretched polymer matrix. Silicon 2018, 10, 2361–2385.  doi: 10.1007/s12633-018-9773-8

    32. [32]

      Sheikhi, M.; Shahab, S.; Filippovich, L.; Dikusar E.; Khaleghian, M. DFT investigations (Geometry optimization, UV/Vis, FT-IR, NMR, HOMO-LUMO, FMO, MEP, NBO, excited states) and the syntheses of new pyrimidine dyes. Chin. J. Struct. Chem. 2018, 37, 1201–1222.

    33. [33]

      Shahab, S.; Sheikhi, M.; Filippovich, L.; Dikusar, E.; Yahyaei, H.; Kumar, R.; Khaleghian, M. Design of geometry, synthesis, spectroscopic (FT-IR, UV/Vis, excited state, polarization) and anisotropy (thermal conductivity and electrical) properties of new synthesized derivatives of (E, E)-azomethines in colored stretched poly (vinyl alcohol) matrix. J. Mol. Struct. 2018, 1157, 536–550.  doi: 10.1016/j.molstruc.2017.12.094

  • 加载中
    1. [1]

      Tsegaye Tadesse Tsega Jiantao Zai Chin Wei Lai Xin-Hao Li Xuefeng Qian . Earth-abundant CuFeS2 nanocrystals@graphite felt electrode for high performance aqueous polysulfide/iodide redox flow batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100192-100192. doi: 10.1016/j.cjsc.2023.100192

    2. [2]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    3. [3]

      Run-Han LiTian-Yi DangWei GuanJiang LiuYa-Qian LanZhong-Min Su . Evolution exploration and structure prediction of Keggin-type group IVB metal-oxo clusters. Chinese Chemical Letters, 2024, 35(5): 108805-. doi: 10.1016/j.cclet.2023.108805

    4. [4]

      Chaozheng HeJia WangLing FuWei Wei . Nitric oxide assists nitrogen reduction reaction on 2D MBene: A theoretical study. Chinese Chemical Letters, 2024, 35(5): 109037-. doi: 10.1016/j.cclet.2023.109037

    5. [5]

      Ting-Ting HuangJin-Fa ChenJuan LiuTai-Bao WeiHong YaoBingbing ShiQi Lin . A novel fused bi-macrocyclic host for sensitive detection of Cr2O72− based on enrichment effect. Chinese Chemical Letters, 2024, 35(7): 109281-. doi: 10.1016/j.cclet.2023.109281

    6. [6]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    7. [7]

      Dan-Ying XingXiao-Dan ZhaoChuan-Shu HeBo Lai . Kinetic study and DFT calculation on the tetracycline abatement by peracetic acid. Chinese Chemical Letters, 2024, 35(9): 109436-. doi: 10.1016/j.cclet.2023.109436

    8. [8]

      Dexuan XiaoTianyu ChenTianxu ZhangSirong ShiMei ZhangXin QinYunkun LiuLongjiang LiYunfeng Lin . Transdermal treatment for malignant melanoma by aptamer-modified tetrahedral framework nucleic acid delivery of vemurafenib. Chinese Chemical Letters, 2024, 35(4): 108602-. doi: 10.1016/j.cclet.2023.108602

    9. [9]

      Jieqiong XuWenbin ChenShengkai LiQian ChenTao WangYadong ShiShengyong DengMingde LiPeifa WeiZhuo Chen . Organic stoichiometric cocrystals with a subtle balance of charge-transfer degree and molecular stacking towards high-efficiency NIR photothermal conversion. Chinese Chemical Letters, 2024, 35(10): 109808-. doi: 10.1016/j.cclet.2024.109808

    10. [10]

      Xin-Tong ZhaoJin-Zhi GuoWen-Liang LiJing-Ping ZhangXing-Long Wu . Two-dimensional conjugated coordination polymer monolayer as anode material for lithium-ion batteries: A DFT study. Chinese Chemical Letters, 2024, 35(6): 108715-. doi: 10.1016/j.cclet.2023.108715

    11. [11]

      Huizhong WuRuiheng LiangGe SongZhongzheng HuXuyang ZhangMinghua Zhou . Enhanced interfacial charge transfer on Bi metal@defective Bi2Sn2O7 quantum dots towards improved full-spectrum photocatalysis: A combined experimental and theoretical investigation. Chinese Chemical Letters, 2024, 35(6): 109131-. doi: 10.1016/j.cclet.2023.109131

    12. [12]

      Ying HouZhen LiuXiaoyan LiuZhiwei SunZenan WangHong LiuWeijia Zhou . Laser constructed vacancy-rich TiO2-x/Ti microfiber via enhanced interfacial charge transfer for operando extraction-SERS sensing. Chinese Chemical Letters, 2024, 35(9): 109634-. doi: 10.1016/j.cclet.2024.109634

    13. [13]

      Hui LiuXiangyang TangZhuang ChengYin HuYan YanYangze XuZihan SuFutong LiuPing Lu . Constructing multifunctional deep-blue emitters with weak charge transfer excited state for high-performance non-doped blue OLEDs and single-emissive-layer hybrid white OLEDs. Chinese Chemical Letters, 2024, 35(10): 109809-. doi: 10.1016/j.cclet.2024.109809

    14. [14]

      Xin JiangHan JiangYimin TangHuizhu ZhangLibin YangXiuwen WangBing Zhao . g-C3N4/TiO2-X heterojunction with high-efficiency carrier separation and multiple charge transfer paths for ultrasensitive SERS sensing. Chinese Chemical Letters, 2024, 35(10): 109415-. doi: 10.1016/j.cclet.2023.109415

    15. [15]

      Tao BanXi-Yang YuHai-Kuo TianZheng-Qing HuangChun-Ran Chang . One-step conversion of methane and formaldehyde to ethanol over SA-FLP dual-active-site catalysts: A DFT study. Chinese Chemical Letters, 2024, 35(4): 108549-. doi: 10.1016/j.cclet.2023.108549

    16. [16]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    17. [17]

      Mei PengWei-Min He . Photochemical synthesis and group transfer reactions of azoxy compounds. Chinese Chemical Letters, 2024, 35(8): 109899-. doi: 10.1016/j.cclet.2024.109899

    18. [18]

      Ming HuangXiuju CaiYan LiuZhuofeng Ke . Base-controlled NHC-Ru-catalyzed transfer hydrogenation and α-methylation/transfer hydrogenation of ketones using methanol. Chinese Chemical Letters, 2024, 35(7): 109323-. doi: 10.1016/j.cclet.2023.109323

    19. [19]

      Minghao HuTianci XieYuqiang HuLongjie LiTing WangTongbo Wu . Allosteric DNAzyme-based encoder for molecular information transfer. Chinese Chemical Letters, 2024, 35(7): 109232-. doi: 10.1016/j.cclet.2023.109232

    20. [20]

      Chenghao GePeng WangPei YuanTai WuRongjun ZhaoRong HuangLin XieYong Hua . Tuning hot carrier transfer dynamics by perovskite surface modification. Chinese Chemical Letters, 2024, 35(10): 109352-. doi: 10.1016/j.cclet.2023.109352

Metrics
  • PDF Downloads(1)
  • Abstract views(177)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return