Citation: Bing-Qian WANG, Hui-Lin TAO, Ji-Lin TANG, Yi LI, Wei LIN, Yong-Fan ZHANG. Methane Oxidation on the Surfaces of Manganese Oxides: a First Principles Study[J]. Chinese Journal of Structural Chemistry, ;2020, 39(8): 1405-1421. doi: 10.14102/j.cnki.0254–5861.2011–2449 shu

Methane Oxidation on the Surfaces of Manganese Oxides: a First Principles Study

  • Corresponding author: Yong-Fan ZHANG, zhangyf@fzu.edu.cn
  • Received Date: 8 May 2019
    Accepted Date: 11 June 2020

    Fund Project: the National Natural Science Foundation of China 21773030Natural Science Foundation of Fujian Province 2017J01409

Figures(14)

  • A comprehensive density functional theory calculation was employed to investigate the possible reaction pathways and mechanisms of methane complete oxidation (CH4 + 2O2 → CO2 + 2H2O) on different manganese oxides including α-MnO2(100) and β-MnO2(111) surfaces. According to a coupling of the Mars-van Krevelen and Langmuir-Hinshelwood mechanism, the activation energy barrier and the reaction energy of each elementary surface reaction were determined. Our calculated results show that the detailed processes for methane oxidation on two surfaces are different due to the differences in the surface structure. The breaking of the last C–H bond of CH4 molecule is the rate-determining step with an activation barrier of 0.85 eV for α-MnO2(100) surface. By contrast, the overall reaction rate on β-MnO2(111) surface is limited by the dissociation of the second O2 molecule adsorbed on the vacancy site, and re-oxidation of the reduced β-MnO2(111) surface by the gaseous oxygen requires a much higher energy barrier of 1.44 eV. As a result, the α-MnO2(100) exhibits superior activity and durability in the methane oxidation reaction than β-MnO2(111) surface. The present study provides insight into understanding the structure-catalytic activity relationship of the catalysts based on manganese oxides towards the methane oxidation reaction.
  • 加载中
    1. [1]

      Li, J. H.; Liang, X.; Xu, S. C.; Hao, J. M. Catalytic performance of manganese cobalt oxides on methane combustion at low temperature. Appl. Catal. B-Environ. 2009, 90, 307–312.  doi: 10.1016/j.apcatb.2009.03.027

    2. [2]

      Matthiesen, J.; Smith, R. S.; Kay, B. D. Measuring diffusivity in supercooled liquid nanoscale films using inert gas permeation. II. Diffusion of Ar, Kr, Xe, and CH4 through methanol. J. Chem. Phys. 2010, 133, 174505–11.  doi: 10.1063/1.3497648

    3. [3]

      Wada, A.; Mochizuki, N.; Hiraoka, K. Methanol formation from electron-irradiated mixed H2O/CH4 ice at 10 K. Astrophys. J. 2006, 644, 300–306.  doi: 10.1086/503380

    4. [4]

      Wu, J. J.; Qin, S.; Hu, C. W. Na2WO4/Co-Mn/SiO2 catalyst for the simultaneous production of ethylene and syngas from CH4. Catal. Lett. 2007, 118, 285–289.  doi: 10.1007/s10562-007-9192-8

    5. [5]

      Ercolino, G.; Grzybek, G.; Stelmachowski, P.; Specchia, S.; Kotarba, A.; Specchia, V. Pd/Co3O4-based catalysts prepared by solution combustion synthesis for residual methane oxidation in lean conditions. Catal. Today 2015, 257, 66–71.  doi: 10.1016/j.cattod.2015.03.006

    6. [6]

      Lashof, D. A.; Ahuja, D. R. Relative contributions of greenhouse gas emissions to global warming. Nature 1990, 344, 529–531.  doi: 10.1038/344529a0

    7. [7]

      Rubin, E. S.; Cooper, R. N.; Frosch, R. A.; Lee, T. H.; Marland, G.; Rosenfeld, A. H.; Stine, D. D. Realistic mitigation options for global warming. Science 1992, 257, 148–266.  doi: 10.1126/science.257.5067.148

    8. [8]

      Alvarez, R. A.; Pacala, S. W.; Winebrake, J. J.; Chameides, W. L.; Hamburg, S. P. Greater focus needed on methane leakage from natural gas infrastructure. Proc. Natl. Acad. Sci. USA 2012, 109, 6435–6440.  doi: 10.1073/pnas.1202407109

    9. [9]

      Schmale, J.; Shindell, D.; von Schneidemesser, E.; Chabay, I.; Lawrence, M. Clean up our skies. Nature 2014, 515, 335–337.  doi: 10.1038/515335a

    10. [10]

      Gelin, P.; Primet, M. Complete oxidation of methane at low temperature over noble metal based catalysts: a review. Appl. Catal. B-Environ. 2002, 39, 1–37.  doi: 10.1016/S0926-3373(02)00076-0

    11. [11]

      Zarur, A. J.; Ying, J. Y. Reverse microemulsion synthesis of nanostructured complex oxides for catalytic combustion. Nature 2000, 403, 65–67.  doi: 10.1038/47450

    12. [12]

      Zou, X. L.; Rui, Z. B.; Ji, H. B. Core-shell NiO@PdO nanoparticles supported on alumina as an advanced catalyst for methane oxidation. Acs. Catal. 2017, 7, 1615–1625.  doi: 10.1021/acscatal.6b03105

    13. [13]

      Beck, I. E.; Bukhtiyarov, V. I.; Pakharukov, I. Y.; Zaikovsky, V. I.; Kriventsov, V. V.; Parmon, V. N. Platinum nanoparticles on Al2O3: correlation between the particle size and activity in total methane oxidation. J. Catal. 2009, 268, 60–67.  doi: 10.1016/j.jcat.2009.09.001

    14. [14]

      Xie, S. H.; Liu, Y. X.; Deng, J. G.; Zhao, X. T.; Yang, J.; Zhang, K. F.; Han, Z.; Arandiyan, H.; Dai, H. X. Effect of transition metal doping on the catalytic performance of Au-Pd/3DOM Mn2O3 for the oxidation of methane and o-xylene. Appl. Catal. B-Environ. 2017, 206, 221–232.  doi: 10.1016/j.apcatb.2017.01.030

    15. [15]

      Willis, J. J.; Goodman, E. D.; Wu, L.; Riscoe, A. R.; Martins, P.; Tassone, C. J.; Cargnello, M. Systematic identification of promoters for methane oxidation catalysts using size and composition-controlled Pd-based bimetallic nanocrystals. J. Am. Chem. Soc. 2017, 139, 11989–11997.  doi: 10.1021/jacs.7b06260

    16. [16]

      Tao, F. F.; Shan, J. J.; Nguyen, L.; Wang, Z.; Zhang, S.; Zhang, L.; Wu, Z.; Huang, W.; Zeng, S.; Hu, P. Understanding complete oxidation of methane on spinel oxides at a molecular level. Nat. Commun. 2015, 6, 7798–10.  doi: 10.1038/ncomms8798

    17. [17]

      Chin, Y. H.; Buda, C.; Neurock, M.; Iglesia, E. Consequences of metal-oxide interconversion for C–H bond activation during CH4 reactions on Pd catalysts. J. Am. Chem. Soc. 2013, 135, 15425–15442.  doi: 10.1021/ja405004m

    18. [18]

      Weng, X. F.; Ren, H. J.; Chen, M. S.; Wan, H. L. Effect of surface oxygen on the activation of methane on palladium and platinum surfaces. Acs. Catal. 2014, 4, 2598–2604.  doi: 10.1021/cs500510x

    19. [19]

      Mahara, Y.; Ohyama, J.; Tojo, T.; Murata, K.; Ishikawa, H.; Satsuma, A. Enhanced activity for methane combustion over a Pd/Co/Al2O3 catalyst prepared by a galvanic deposition method. Catal. Sci. Technol. 2016, 6, 4773–4776.  doi: 10.1039/C6CY00650G

    20. [20]

      Abbasi, R.; Huang, G. Y.; Istratescu, G. M.; Wu, L.; Hayes, R. E. Methane oxidation over Pt, Pt: Pd, and Pd based catalysts: effects of pre-treatment. Can. J. Chem. Eng. 2015, 93, 1474–1482.  doi: 10.1002/cjce.22229

    21. [21]

      Zhang, Z. S.; Li, J. W.; Yi, T.; Sun, L. W.; Zhang, Y. B.; Hu, X. F.; Cui, W. H.; Yang, X. G. Surface density of synthetically tuned spinel oxides of Co3+ and Ni3+ with enhanced catalytic activity for methane oxidation. Chin. J. Catal. 2018, 39, 1228–1239.  doi: 10.1016/S1872-2067(18)63055-4

    22. [22]

      Zhao, C. C.; Zhao, Y. H.; Li, S. G.; Sun, Y. H. Effect of Pd doping on CH4 reactivity over Co3O4 catalysts from density-functional theory calculations. Chin. J. Catal. 2017, 38, 813–820.  doi: 10.1016/S1872-2067(17)62817-1

    23. [23]

      Liu, R. Y.; Yang, M. H.; Huang, C. J.; Weng, W. Z.; Wan, H. L. Partial oxidation of methane to syngas over mesoporous Co-Al2O3 catalysts. Chin. J. Catal. 2013, 34, 146–151.  doi: 10.1016/S1872-2067(11)60481-6

    24. [24]

      Wang, F.; Dai, H.; Deng, J.; Bai, G.; Ji, K.; Liu, Y. Manganese oxides with rod-, wire-, tube-, and flower-like morphologies: highly effective catalysts for the removal of toluene. Environ. Sci. Technol. 2012, 46, 4034–4041.  doi: 10.1021/es204038j

    25. [25]

      Robinson, D. M.; Go, Y. B.; Mui, M.; Gardner, G.; Zhang, Z.; Mastrogiovanni, D.; Garfunkel, E.; Li, J.; Greenblatt, M.; Dismukes, G. C. Photochemical water oxidation by crystalline polymorphs of manganese oxides: structural requirements for catalysis. J. Am. Chem. Soc. 2013, 135, 3494–3501.  doi: 10.1021/ja310286h

    26. [26]

      Meng, Y.; Song, W.; Huang, H.; Ren, Z.; Chen, S. Y.; Suib, S. L. Structure-property relationship of bifunctional MnO2 nanostructures: highly efficient, ultra-stable electrochemical water oxidation and oxygen reduction reaction catalysts identified in alkaline media. J. Am. Chem. Soc. 2014, 136, 11452–11464.  doi: 10.1021/ja505186m

    27. [27]

      Hu, W. D.; Lan, J. G.; Guo, Y.; Cao, X. M.; Hu, P. Origin of efficient catalytic combustion of methane over Co3O4(110): active low-coordination lattice oxygen and cooperation of multiple active sites. Acs Catal. 2016, 6, 5508–5519.  doi: 10.1021/acscatal.6b01080

    28. [28]

      Zasada, F.; Piskorz, W.; Janas, J.; Grybos, J.; Indyka, P.; Sojka, Z. Reactive oxygen species on the (100) facet of cobalt spinel nanocatalyst and their relevance in 16O2/ 18O2 isotopic exchange, deN2O, and deCH4 processes-a theoretical and experimental account. Acs. Catal. 2015, 5, 6879–6892.  doi: 10.1021/acscatal.5b01900

    29. [29]

      Zasada, F.; Piskorz, W.; Sojka, Z. Cobalt spinel at various redox conditions: DFT plus U investigations into the structure and surface thermodynamics of the (100) facet. J. Phys. Chem. C 2015, 119, 19180–19191.  doi: 10.1021/acs.jpcc.5b05136

    30. [30]

      Liotta, L. F.; Wu, H. J.; Pantaleo, G.; Venezia, A. M. Co3O4 nanocrystals and Co3O4-MOx binary oxides for CO, CH4 and VOC oxidation at low temperatures: a review. Catal. Sci. Technol. 2013, 3, 3085–3102.  doi: 10.1039/c3cy00193h

    31. [31]

      Kresse, G.; Hafner, J. Ab initio molecular dynamics for open-shell transition metals. Phys. Rev. B 1993, 48, 13115–13118.  doi: 10.1103/PhysRevB.48.13115

    32. [32]

      Kresse, G.; Furthmuller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.  doi: 10.1103/PhysRevB.54.11169

    33. [33]

      Kresse, G.; Furthmuller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp. Mater. Sci. 1996, 6, 15–50.  doi: 10.1016/0927-0256(96)00008-0

    34. [34]

      Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.  doi: 10.1103/PhysRevLett.77.3865

    35. [35]

      Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006, 27, 1787–1799.  doi: 10.1002/jcc.20495

    36. [36]

      Krcha, M. D.; Janik, M. J. Examination of oxygen vacancy formation in Mn-doped CeO2(111) using DFT plus U and the hybrid functional HSE06. Langmuir 2013, 29, 10120–10131.  doi: 10.1021/la401747n

    37. [37]

      Sheppard, D.; Xiao, P.; Chemelewski, W.; Johnson, D. D.; Henkelman, G. A generalized solid-state nudged elastic band method. J. Chem. Phys. 2012, 136, 074103–8.  doi: 10.1063/1.3684549

    38. [38]

      Sheppard, D.; Terrell, R.; Henkelman, G. Optimization methods for finding minimum energy paths. J. Chem. Phys. 2008, 128, 134106–10.  doi: 10.1063/1.2841941

    39. [39]

      Wang, J. F.; Deng, L. J.; Zhu, G.; Kang, L. P.; Lei, Z. B.; Liu, Z. H. Fluoride anions-assisted hydrothermal preparation and growth process of beta-MnO2 with bipyramid prism morphology. Crystengcomm 2013, 15, 6682–6689.  doi: 10.1039/c3ce40608c

    40. [40]

      Yao, W. T.; Odegard, G. M.; Huang, Z. N.; Yuan, Y. F.; Asayesh-Ardakani, H.; Sharifi-Asl, S.; Cheng, M.; Song, B.; Deivanayagam, R.; Long, F.; Friedrich, C. R.; Amine, K.; Lu, J.; Shahbazian-Yassar, R. Cations controlled growth of beta-MnO2 crystals with tunable facets for electrochemical energy storage. Nano Energy 2018, 48, 301–311.  doi: 10.1016/j.nanoen.2018.03.057

    41. [41]

      Su, D. W.; Ahn, H. J.; Wang, G. X. β-MnO2 nanorods with exposed tunnel structures as high-performance cathode materials for sodium-ion batteries. Npg Asia Mater. 2013, 5, e70–7.  doi: 10.1038/am.2013.56

  • 加载中
    1. [1]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    2. [2]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    3. [3]

      Naihong Wang Longkang Zhang Yejun Guan Peng Wu Hao Xu . Pt confined in Sn-ECNU-46 zeolite for efficient alkane dehydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(4): 100248-100248. doi: 10.1016/j.cjsc.2024.100248

    4. [4]

      Xin LiWanting FuRuiqing GuanYue YuanQinmei ZhongGang YaoSheng-Tao YangLiandong JingSong Bai . Nucleophiles promotes the decomposition of electrophilic functional groups of tetracycline in ZVI/H2O2 system: Efficiency and mechanism. Chinese Chemical Letters, 2024, 35(10): 109625-. doi: 10.1016/j.cclet.2024.109625

    5. [5]

      Yi Herng ChanZhe Phak ChanSerene Sow Mun LockChung Loong YiinShin Ying FoongMee Kee WongMuhammad Anwar IshakVen Chian QuekShengbo GeSu Shiung Lam . Thermal pyrolysis conversion of methane to hydrogen (H2): A review on process parameters, reaction kinetics and techno-economic analysis. Chinese Chemical Letters, 2024, 35(8): 109329-. doi: 10.1016/j.cclet.2023.109329

    6. [6]

      Yiyue DingQiuxiang ZhangLei ZhangQilu YaoGang FengZhang-Hui Lu . Exceptional activity of amino-modified rGO-immobilized PdAu nanoclusters for visible light-promoted dehydrogenation of formic acid. Chinese Chemical Letters, 2024, 35(7): 109593-. doi: 10.1016/j.cclet.2024.109593

    7. [7]

      Yuhan Wu Qing Zhao Zhijie Wang . Layered vanadium oxides: Promising cathode materials for calcium-ion batteries. Chinese Journal of Structural Chemistry, 2024, 43(5): 100271-100271. doi: 10.1016/j.cjsc.2024.100271

    8. [8]

      Dong ChengYouyou FengBingxi FengKe WangGuoxin SongGen WangXiaoli ChengYonghui DengJing Wei . Polyphenol-mediated interfacial deposition strategy for supported manganese oxide catalysts with excellent pollutant degradation performance. Chinese Chemical Letters, 2024, 35(5): 108623-. doi: 10.1016/j.cclet.2023.108623

    9. [9]

      Yinyin XuYuanyuan LiJingbo FengChen WangYan ZhangYukun WangXiuwen Cheng . Covalent organic frameworks doped with manganese-metal organic framework for peroxymonosulfate activation. Chinese Chemical Letters, 2024, 35(4): 108838-. doi: 10.1016/j.cclet.2023.108838

    10. [10]

      Jiayu BaiSongjie HuLirong FengXinhui JinDong WangKai ZhangXiaohui Guo . Manganese vanadium oxide composite as a cathode for high-performance aqueous zinc-ion batteries. Chinese Chemical Letters, 2024, 35(9): 109326-. doi: 10.1016/j.cclet.2023.109326

    11. [11]

      Bharathi Natarajan Palanisamy Kannan Longhua Guo . Metallic nanoparticles for visual sensing: Design, mechanism, and application. Chinese Journal of Structural Chemistry, 2024, 43(9): 100349-100349. doi: 10.1016/j.cjsc.2024.100349

    12. [12]

      Qijun Tang Wenguang Tu Yong Zhou Zhigang Zou . High efficiency and selectivity catalyst for photocatalytic oxidative coupling of methane. Chinese Journal of Structural Chemistry, 2023, 42(12): 100170-100170. doi: 10.1016/j.cjsc.2023.100170

    13. [13]

      Fanxin Kong Hongzhi Wang Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287

    14. [14]

      Junchuan Sun Lu Wang . Carbon exchange enabled supra-photothermal methane dry reforming. Chinese Journal of Structural Chemistry, 2024, 43(10): 100330-100330. doi: 10.1016/j.cjsc.2024.100330

    15. [15]

      Zhiqiang LiuQiang GaoWei ShenMeifeng XuYunxin LiWeilin HouHai-Wei ShiYaozuo YuanErwin AdamsHian Kee LeeSheng Tang . Removal and fluorescence detection of antibiotics from wastewater by layered double oxides/metal-organic frameworks with different topological configurations. Chinese Chemical Letters, 2024, 35(8): 109338-. doi: 10.1016/j.cclet.2023.109338

    16. [16]

      Yu DengYan LiuYonghui DengJinsheng ChengYidong ZouWei LuoIn situ sulfur-doped mesoporous tungsten oxides for gas sensing toward benzene series. Chinese Chemical Letters, 2024, 35(7): 108898-. doi: 10.1016/j.cclet.2023.108898

    17. [17]

      Ling FangSha WangShun LuFengjun YinYujie DaiLin ChangHong Liu . Efficient electroreduction of nitrate via enriched active phases on copper-cobalt oxides. Chinese Chemical Letters, 2024, 35(4): 108864-. doi: 10.1016/j.cclet.2023.108864

    18. [18]

      Ji ChenYifan ZhaoShuwen ZhaoHua ZhangYouyu LongLingfeng YangMin XiZitao NiYao ZhouAnran Chen . Heterogeneous bimetallic oxides/phosphides nanorod with upshifted d band center for efficient overall water splitting. Chinese Chemical Letters, 2024, 35(9): 109268-. doi: 10.1016/j.cclet.2023.109268

    19. [19]

      Mengjun Zhao Yuhao Guo Na Li Tingjiang Yan . Deciphering the structural evolution and real active ingredients of iron oxides in photocatalytic CO2 hydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100348-100348. doi: 10.1016/j.cjsc.2024.100348

    20. [20]

      Yuan DongMutian MaZhenyang JiaoSheng HanLikun XiongZhao DengYang Peng . Effect of electrolyte cation-mediated mechanism on electrocatalytic carbon dioxide reduction. Chinese Chemical Letters, 2024, 35(7): 109049-. doi: 10.1016/j.cclet.2023.109049

Metrics
  • PDF Downloads(3)
  • Abstract views(166)
  • HTML views(3)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return