Citation: Hui-Xue LI, Xiao-Feng WANG, Yuan-Cheng ZHU, Kun YUAN, Ling-Ling LV, Zhi-Feng LI. Theoretical Insights into the Substituent Effects on the Fluorescence of Boron Complexes of 2-(Benzothiazol-2-yl)phenols: a Quantum Mechanics Study[J]. Chinese Journal of Structural Chemistry, ;2020, 39(2): 243-254. doi: 10.14102/j.cnki.0254–5861.2011–2448 shu

Theoretical Insights into the Substituent Effects on the Fluorescence of Boron Complexes of 2-(Benzothiazol-2-yl)phenols: a Quantum Mechanics Study

  • Corresponding author: Zhi-Feng LI, li_hx2001@126.com
  • Received Date: 8 May 2019
    Accepted Date: 5 September 2019

    Fund Project: the Natural Science Foundation of China 21463023the Project of the Beijing National Laboratory for Molecular Sciences BNLMS20160155the Research Funding of Gansu Provincial Department of Education 2016B-072the Key Project of Tianshui Normal University TSA1501

Figures(4)

  • The performance of organic fluorescent materials can be improved by chemical substitutions with auxochrome groups such as amino to increase solubility, alter emitting color, or modify film quality. The complex 6, 6-difluoro-6-bora-5-oxa-11-thia-6a-aza-benzo[a]fluorine (BOBTP) and its derivatives, which possess excellent luminescent property at room temperature, were theoretically simulated by density functional theory. The geometries of the ground state and the first excited state of BOBTPs complexes were investigated and their bond parameters were obtained. Further, these bond parameters are compared with each other, and the computational wavelengths of maximum absorption and emission of studied complexes match up with the experimental values. It was found that amino substituent bonding to appropriate positions of BOBTP can reduce the reorganization energy significantly, which is ascribed to electron-donating effect of the amino group. The reorganization energy also plays an important role in the fluorescence quantum yield of all the BOBTPs. In particular, the radiative decay of complexes 3 and 4 is dominant due to the smaller reorganization energies, so their fluorescence quantum yield is almost 1, on the contrary the non-radiative decay and intersystem crossing rate of both the 1 and 2 can not be ignored for the larger reorganization energies, and the corresponding fluorescence quantum yields were calculated when the radiative decay rate (kr) and nonradiative decay rate (knr) were taken into account.
  • 加载中
    1. [1]

      Doi, H.; Kinoshita, M.; Kenji Okumoto, A; Shirota, Y. A novel class of emitting amorphous molecular materials with bipolar character for electroluminescence. Chem. Mater. 2016, 15, 1080−1089.

    2. [2]

      Kamkaew, A.; Lim, S. H.; Lee, H. B.; Kiew, L. V.; Chung, L. Y.; Burgess, K. BODIPY dyes in photodynamic therapy. Chem. Soc. Rev. 2013, 42, 77−88.  doi: 10.1039/C2CS35216H

    3. [3]

      Frein, S. Zhang, Y.; Song, K. H.; Tang, S.; Ravelo, L.; Cusido, J.; Sun, C.; Zhang, H. F.; Raymo, F. M. Far-red photoactivatable bodipys for the super-resolution imaging of live cells. J. Am. Chem. Soc. 2018, 140, 12741−12745.  doi: 10.1021/jacs.8b09099

    4. [4]

      Tang, S.; Zhang, Y.; Dhakal, P.; Ravelo, L.; Anderson, C. L.; Collins, K. M. Raymo, F. M. Photochemical brcodes. J. Am. Chem. Soc. 2018, 140, 4485−4488.  doi: 10.1021/jacs.8b00887

    5. [5]

      Wang, L.; Li, B.; Jiang, C.; Sun, R.; Hu, P.; Chen, S. A BODIPY based fluorescent probe for the rapid detection of hypochlorite. J. Fluoresc. 2018, 28, 933−941.  doi: 10.1007/s10895-018-2255-y

    6. [6]

      Ulrich, G.; Barsella, A.; Boeglin, A.; Niu, S.; Ziessel, R. BODIPY-bridged push–pull chromophores for nonlinear optical applications. ChemPhysChem 2014, 15, 2693−2700.  doi: 10.1002/cphc.201402123

    7. [7]

      Poirel, A.; De Nicola, A.; Ziessel, R. Oligothienyl-BODIPYs: red and near-infrared emitters. Org. Lett. 2012, 14, 5696−5699.  doi: 10.1021/ol302710z

    8. [8]

      Gao, L.; Deligonul, N.; Gray, T. G. Gold(Ⅰ) complexes of brominated azadipyrromethene ligands. Inorg. Chem. 2012, 51, 7682−7688.  doi: 10.1021/ic300709n

    9. [9]

      Kubota, Y.; Tsuzuki, T.; Funabiki, K.; Ebihara, M.; Matsui, M. Synthesis and fluorescence properties of a pyridomethene−BF2 complex. Org. Lett. 2010, 12, 4010−4013.  doi: 10.1021/ol101612z

    10. [10]

      Li, H. J.; Fu, W. F.; Li, L.; Gan, X.; Mu, W. H.; Chen, W. Q.; Duan, X. M.; Song, H. B. Intense one-and two-photon excited fluorescent bis (BF2) core complex containing a 1, 8-naphthyridine derivative. Org. Lett. 2010, 12, 2924−2927.  doi: 10.1021/ol1003725

    11. [11]

      Chibani, S.; Le Guennic, B.; Charaf-Eddin, A.; Maury, O.; Andraud, C.; Jacquemin, D. On the computation of adiabatic energies in Aza-Boron-dipyrromethene dyes. J. Chem. Theory Comp. 2012, 8, 3303−3313.  doi: 10.1021/ct300618j

    12. [12]

      Wang, D.; Liu, R.; Chen, C.; Wang, S.; Chang, J.; Wu, C.; Zhu, H.; Waclawik, E. R. Photophysical and electrochemical properties of aza-boron-diquinomethene complexes. Dyes Pigments 2013, 99, 240−249.  doi: 10.1016/j.dyepig.2013.05.009

    13. [13]

      Loudet, A.; Burgess, K. BODIPY dyes and their derivatives: syntheses and spectroscopic properties. Chem. Rev. 2007, 107, 4891−4932.  doi: 10.1021/cr078381n

    14. [14]

      Le Guennic, B.; Chibani, S.; Charaf-Eddin, A.; Massue, J.; Ziessel, R.; Ulrich, G.; Jacquemin, D. The NBO pattern in luminescent chromophores: unravelling excited-state features using Td-DFT. Phys. Chem. Chem. Phys. 2013, 15, 7534−7540.  doi: 10.1039/c3cp50669j

    15. [15]

      Santra, M.; Moon, H.; Park, M. H.; Lee, T. W.; Kim, Y. K.; Ahn, K. H. Dramatic substituent effects on the photoluminescence of boron complexes of 2-(benzothiazol-2-yl) phenols. Chem. Eur. J. 2012, 18, 9886−9893.  doi: 10.1002/chem.201200726

    16. [16]

      Niu, Y. L.; Peng, Q.; Deng, C. M.; Gao, X.; Shuai, Z. Theory of excited state decays and optical spectra: application to polyatomic molecules. J. Phys. Chem. A 2010, 114, 7817−7831.

    17. [17]

      Santoro, F.; Lami, A. Improta, R.; Bloino, J.; Barone, V. Effective method for the computation of optical spectra of large molecules at finite temperature including the Duschinsky and Herzberg–Teller effect: The Q[sub x] band of porphyrin as a case study. J. Chem. Phys. 2008, 128, 224311−18.  doi: 10.1063/1.2929846

    18. [18]

      Jankowiak, H. C.; Stuber, J.; Berger, R. Vibronic transitions in large molecular systems: rigorous prescreening conditions for Franck-Condon factors. J. Chem. Phys. 2007, 127, 234101−24.  doi: 10.1063/1.2805398

    19. [19]

      Dierksen, M.; Grimme, S. An efficient approach for the calculation of Franck-Condon integrals of large molecules. J. Chem. Phys. 2005, 122, 244101−10.  doi: 10.1063/1.1924389

    20. [20]

      Scholz, R.; Kobitski, A. Y.; Kampen, T. U.; Schreiber, M.; Zahn, D. T.; Jungnickel, G.; Elstner, M.; Sternberg, M. F. T. Resonant Raman spectroscopy of 3, 4, 9, 10-perylene-tetracarboxylic-dianhydride epitaxial films. Phys. Rev. B. 2000, 61, 13659−13669.  doi: 10.1103/PhysRevB.61.13659

    21. [21]

      Reimers, J. R. A practical method for the use of curvilinear coordinates in calculations of normal-mode-projected displacements and Duschinsky rotation matrices for large molecules. J. Chem. Phys. 2001, 115, 9103−9109.  doi: 10.1063/1.1412875

    22. [22]

      Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A. Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, N. J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc., Wallingford CT 2010, Gaussian 09, Revision C. 01.

    23. [23]

      Grabarz, A. M.; Laurent, A. D.; Jedrzejewska, B.; Zakrzewska, A.; Jacquemin, D.; Osmialowski, B., The influence of the pi-conjugated spacer on photophysical properties of difluoroboranyls derived from amides carrying a donor group. J. Org. Chem. 2016, 81, 2280−2292.  doi: 10.1021/acs.joc.5b02691

    24. [24]

      Peng, Q.; Yi, Y.; Shuai, Z.; Shao, J. Toward quantitative prediction of molecular fluorescence quantum efficiency : role of duschinsky rotation. J. Am. Chem. Soc. 2007, 129, 9333−9339.  doi: 10.1021/ja067946e

    25. [25]

      Niu, Y.; Li, W.; Peng, Q.; Geng, H.; Yi, Y.; Wang, L.; Nan, G.; Wang, D.; Shuai, Z. Molecular materials property prediction package (momap) 1.0: A software package for predicting the luminescent properties and mobility of organic functional materials. Mol. Phys. 2018, 116, 1078−1090.  doi: 10.1080/00268976.2017.1402966

    26. [26]

      Wu, Q.; Peng, Q.; Niu, Y.; Gao, X.; Shuai, Z. Theoretical insights into the aggregation-induced emission by hydrogen bonding: a Qm/Mm study. J. Phys. Chem. A 2012, 116, 3881−3888.  doi: 10.1021/jp3002367

    27. [27]

      Li, J.; Tian, G.; Luo, Y.; Cao, Z. Theoretical studies on the vibrationally-resolved absorption and fluorescence spectra of H-pyrene+ and H-coronene+. Chem. Phys. Lett. 2015, 641, 57−61.  doi: 10.1016/j.cplett.2015.10.034

  • 加载中
    1. [1]

      Fangwen Peng Zhen Luo Yingjin Ma Haibo Ma . Theoretical study of aromaticity reversal in dimethyldihydropyrene derivatives. Chinese Journal of Structural Chemistry, 2024, 43(5): 100273-100273. doi: 10.1016/j.cjsc.2024.100273

    2. [2]

      Huizhong WuRuiheng LiangGe SongZhongzheng HuXuyang ZhangMinghua Zhou . Enhanced interfacial charge transfer on Bi metal@defective Bi2Sn2O7 quantum dots towards improved full-spectrum photocatalysis: A combined experimental and theoretical investigation. Chinese Chemical Letters, 2024, 35(6): 109131-. doi: 10.1016/j.cclet.2023.109131

    3. [3]

      Chaozheng HeJia WangLing FuWei Wei . Nitric oxide assists nitrogen reduction reaction on 2D MBene: A theoretical study. Chinese Chemical Letters, 2024, 35(5): 109037-. doi: 10.1016/j.cclet.2023.109037

    4. [4]

      Longlong GengHuiling LiuWenfeng ZhouYong-Zheng ZhangHongliang HuangDa-Shuai ZhangHui HuChao LvXiuling ZhangSuijun Liu . Construction of metal-organic frameworks with unsaturated Cu sites for efficient and fast reduction of nitroaromatics: A combined experimental and theoretical study. Chinese Chemical Letters, 2024, 35(8): 109120-. doi: 10.1016/j.cclet.2023.109120

    5. [5]

      Shaohua ZhangLiyao LiuYingqiao MaChong-an Di . Advances in theoretical calculations of organic thermoelectric materials. Chinese Chemical Letters, 2024, 35(8): 109749-. doi: 10.1016/j.cclet.2024.109749

    6. [6]

      Lingling SuQunyan WuCongzhi WangJianhui LanWeiqun Shi . Theoretical design of polyazole based ligands for the separation of Am(Ⅲ)/Eu(Ⅲ). Chinese Chemical Letters, 2024, 35(8): 109402-. doi: 10.1016/j.cclet.2023.109402

    7. [7]

      Kongchuan WuDandan LuJianbin LinTing-Bin WenWei HaoKai TanHui-Jun Zhang . Elucidating ligand effects in rhodium(Ⅲ)-catalyzed arene–alkene coupling reactions. Chinese Chemical Letters, 2024, 35(5): 108906-. doi: 10.1016/j.cclet.2023.108906

    8. [8]

      Xinzhi Ding Chong Liu Jing Niu Nan Chen Shutao Xu Yingxu Wei Zhongmin Liu . Solid-state NMR study of the stability of MOR framework aluminum. Chinese Journal of Structural Chemistry, 2024, 43(4): 100247-100247. doi: 10.1016/j.cjsc.2024.100247

    9. [9]

      Yue WANGZhizhi GUJingyi DONGJie ZHUCunguang LIUGuohan LIMeichen LUJian HANShengnan CAOWei WANG . Effects of kelp-derived carbon dots on embryonic development of zebrafish. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1209-1217. doi: 10.11862/CJIC.20230423

    10. [10]

      Qiang FuShouhong SunKangzhi LuNing LiZhanhua Dong . Boron-doped carbon dots: Doping strategies, performance effects, and applications. Chinese Chemical Letters, 2024, 35(7): 109136-. doi: 10.1016/j.cclet.2023.109136

    11. [11]

      Dan-Ying XingXiao-Dan ZhaoChuan-Shu HeBo Lai . Kinetic study and DFT calculation on the tetracycline abatement by peracetic acid. Chinese Chemical Letters, 2024, 35(9): 109436-. doi: 10.1016/j.cclet.2023.109436

    12. [12]

      Luyao Lu Chen Zhu Fei Li Pu Wang Xi Kang Yong Pei Manzhou Zhu . Ligand effects on geometric structures and catalytic activities of atomically precise copper nanoclusters. Chinese Journal of Structural Chemistry, 2024, 43(10): 100411-100411. doi: 10.1016/j.cjsc.2024.100411

    13. [13]

      Hongmei YuBaoxi ZhangMeiju LiuCheng XingGuorong HeLi ZhangNingbo GongYang LuGuanhua Du . Theoretical and experimental cocrystal screening of temozolomide with a series of phenolic acids, promising cocrystal coformers. Chinese Chemical Letters, 2024, 35(5): 109032-. doi: 10.1016/j.cclet.2023.109032

    14. [14]

      Xiaobo LiQunyan WuCongzhi WangJianhui LanMeng ZhangWeiqun Shi . Theoretical perspectives on the reduction of Pu(Ⅳ) and Np(Ⅵ) by methylhydrazine in HNO3 solution: Implications for Np/Pu separation. Chinese Chemical Letters, 2024, 35(7): 109359-. doi: 10.1016/j.cclet.2023.109359

    15. [15]

      Deshuai ZhenChunlin LiuQiuhui DengShaoqi ZhangNingman YuanLe LiYu Liu . A review of covalent organic frameworks for metal ion fluorescence sensing. Chinese Chemical Letters, 2024, 35(8): 109249-. doi: 10.1016/j.cclet.2023.109249

    16. [16]

      Gongcheng MaQihang DingYuding ZhangYue WangJingjing XiangMingle LiQi ZhaoSaipeng HuangPing GongJong Seung Kim . Palladium-free chemoselective probe for in vivo fluorescence imaging of carbon monoxide. Chinese Chemical Letters, 2024, 35(9): 109293-. doi: 10.1016/j.cclet.2023.109293

    17. [17]

      Ying XuChengying ShenHailong YuanWei Wu . Mapping multiple phases in curcumin binary solid dispersions by fluorescence contrasting. Chinese Chemical Letters, 2024, 35(9): 109324-. doi: 10.1016/j.cclet.2023.109324

    18. [18]

      Yuxin LiChengbin LiuQiuju LiShun Mao . Fluorescence analysis of antibiotics and antibiotic-resistance genes in the environment: A mini review. Chinese Chemical Letters, 2024, 35(10): 109541-. doi: 10.1016/j.cclet.2024.109541

    19. [19]

      Shuying LiWeiwei ZhuGeXuan SunChongzhen SunZhaojun LiuChenghe XiongMin XiaoGuofeng Gu . Convergent synthesis and immunological study of oligosaccharide derivatives related to galactomannan from Antrodia cinnamomea. Chinese Chemical Letters, 2024, 35(5): 109089-. doi: 10.1016/j.cclet.2023.109089

    20. [20]

      Chaozheng HePei ShiDonglin PangZhanying ZhangLong LinYingchun Ding . First-principles study of the relationship between the formation of single atom catalysts and lattice thermal conductivity. Chinese Chemical Letters, 2024, 35(6): 109116-. doi: 10.1016/j.cclet.2023.109116

Metrics
  • PDF Downloads(1)
  • Abstract views(170)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return