Citation: Xin CHE, Tao SONG, Yong LIU, Zhao-Ping HU, Jun GAO. Theoretical Study on the Effects of Spatial Structure of P Complexation Sites on the Soil Phosphorus Activation in Leonardite Humic Acid Complexes[J]. Chinese Journal of Structural Chemistry, ;2020, 39(2): 229-242. doi: 10.14102/j.cnki.0254–5861.2011–2439 shu

Theoretical Study on the Effects of Spatial Structure of P Complexation Sites on the Soil Phosphorus Activation in Leonardite Humic Acid Complexes

  • Corresponding author: Zhao-Ping HU, amengyuping@126.com
  • Received Date: 5 May 2019
    Accepted Date: 8 November 2019

    Fund Project: the Key R&D project of Shandong Province 2016ZDJQ0701Huazhong Agricultural University Scientific and Technological Self-innovation Foundation 2015RC008

Figures(8)

  • Humic acid is an important active component in soil environment. The spatial structures of P complexation sites in humic acid complexes play an important role in soil phosphorus activation and fertilizer efficiency. To explore the effects of spatial structure, the three different coordination modes of iron-carboxyl in models were calculated by the ONIOM method available in the Gaussian09 package. The (U)B3LYP hybrid density functional was employed to optimize the configuration for the QM region, and the UFF force field was used to calculate for the MM region. The results show that the different spatial structures influence the soil phosphorus activation by affecting the electronic structure, Gibbs free energy and interaction energy of the models. And the effects are as follows: the unidentate structure model 6P-Fe-MHA-UD, the bidentate chelating structure model 6P-Fe-MHA-BD > the bidentate bridging structure model 5P-Fe-MHA-BD-BG. It can be known that, the fertilizer efficiency can be improved through increasing the proportion of the unidentate structure and the bidentate chelating structure in production engineering. The research provides a theoretical basis for further optimization of the production of humic acid phosphate fertilizer.
  • 加载中
    1. [1]

      Wang, R. X.; Li, C. X. Environmental Friendly Humic Acid Phosphate Fertilizer. Chemistry Industry Press, Beijing 2009, p1−155.

    2. [2]

      Wang, H. T.; Zhu, K.; Wei, X.; Liang, Y.; Lu, X. Y. Desorption enhancement of diesel by humic sodium and surfactants in loess soil. J. Saf. Environ. 2004, 4, 522−551.

    3. [3]

      Thurman, E. M. Organic Geochemistry of Natural Waters. The Netherlands: Martinus Nijlof/Dr. W. Junk Publishers, Dordrecht 1985, p425−440.

    4. [4]

      Orlov, D. S. Soil Humic Acids and General Theory of Humification. University Publishing House, Moscow 1990, p1−323.

    5. [5]

      Tan, L. Q.; Wang, X. X.; Tan, X. L.; Mei, H. Y.; Chen, C. L.; Hayat, T.; Alsaedi, A.; Wen, T.; Lu, S. S.; Wang, X. K. Bonding properties of humic acid with attapulgite and its influence on U(Ⅵ) sorption. Chem. Geol. 2017, 464, 91−100.  doi: 10.1016/j.chemgeo.2017.01.024

    6. [6]

      Tan, L. Q.; Tan, X. L.; Mei, H. Y.; Ai, Y. J.; Sun, L.; Zhao, G. X.; Hayat, T.; Alsaedi, A.; Chen, C. L.; Wang, X. K. Coagulation behavior of humic acid in aqueous solutions containing Cs+, Sr2+ and Eu3+: DLS, EEM and MD simulations. Environ. Pollut. 2018, 236, 835−843.  doi: 10.1016/j.envpol.2018.02.019

    7. [7]

      Gerke, J. Orthophosphate and organic phosphate in the soil solution of four sandy soils in relation to pH: evidence for humic Fe(Al)-phosphate complexes. Commun. Soil Sci. Plant Anal. 1992, 23, 601−612.  doi: 10.1080/00103629209368612

    8. [8]

      Gerke, J.; Meyer, U.; Römer, W. Phosphate, Fe and Mn uptake of N2 fixing red clover and ryegrass from oxisol as affected by P and model humic substances application. 1. Plant parameters and soil solution composition. Z. Pflanzenernaehr. Bodenkd. 1995, 158, 261−268.  doi: 10.1002/jpln.19951580309

    9. [9]

      Lu, R. K. Research progress on phosphorus transformation in soils. Processes in Soil Sci. 1990, 6, 1−5.

    10. [10]

      Yang, L. L.; Li, J. H. Study on the transformation of applied P and the effect of manure on it in cinnamon soil. J. Agric. Univ. Hebei. 2001, 1, 21−23.

    11. [11]

      Li, G. X.; Zhang, F. S. Solid Waste Composting and Organic Compound Fertilizer Production. Chemistry Industry Press, Beijing 2000, 47−55.

    12. [12]

      Cheng, Y. L. Studies on Fertilizer-residue Effect after the Continuous Application of Organia Fertilizer and Phosphorus Fertilizer for 15 Years. Master Thesis, Shen Yang Agricultural University 2000, p1−37.

    13. [13]

      Guo, D. C. Discussion on phosphate hydrolysis by humic acid. Scientia Agricultura Sinica 1978, 4, 55−61.

    14. [14]

      Sinha, M. K. Organic-metallic phosphates. I. Interaction of phosphorus compounds with humic substances. Plant. Soil. 1971, 35, 471−484.

    15. [15]

      Levesque, M. Contribution De l'acide fulvique et des complexes fulvo-métalliques a la nutrition minerale des plants. Can. J. Soil Sci. 1970, 50, 385−395.  doi: 10.4141/cjss70-051

    16. [16]

      Lobartini, J. C.; Tan, K. H. The nature of humic acid-apatite interaction products and their availability to plant growth. Commun. Soil Sci. Plant Anal. 1994, 25, 2355−2369.  doi: 10.1080/00103629409369193

    17. [17]

      Erro, J.; Baigorri, R.; Yvin, J. C.; Garcia-Mina, J. M. 31P NMR characterization and efficiency of new types of water-insoluble phosphate fertilizers to supply plant-available phosphorous in diverse soil types. J. Agric. Food Chem. 2011, 59, 1900−1908.  doi: 10.1021/jf103962k

    18. [18]

      Erro, J.; Urrutia, O.; Baigorri, R.; Aparicio-Tejo, P. M.; Ignacio, I.; Storino, F.; Mandado, M.; Yvin, J. C.; Garcia-Mina, J. M. Organic complexed superphosphates (CSP): physicochemical characterization and agronomical properties. J. Agric. Food Chem. 2012, 60, 2008−2017.  doi: 10.1021/jf204821j

    19. [19]

      Storino, F. Agronomical Characterization of Organo-metalphosphate Complexes. Master Thesis, Public University of Navarra 2010. p24−41.

    20. [20]

      Trinchera, A.; Rea, E.; Rivera, C. M.; Marcuci, A. Evaluation of Phosphorous Availability in Relation to Humo-phosphate Fertilizer Application to Corn. ECU Press, Spain 2009, p56−59.

    21. [21]

      Zabini, A. Development of CSP in Soya field trials in Paraguay-Brazil. Dongjin Press, Brazil 2011, p106−111.

    22. [22]

      Gerke, J.; Hermann, R. Adsorption of orthophosphate to humic-Fe-complexes and to amorphous Fe-oxide. Z. Pflanzenemahr. Bodenkd 1992, 155, 233−236.  doi: 10.1002/jpln.19921550313

    23. [23]

      Gerke, J.; Jungk, A. Separation of phosphorus bound to organic matrices from inorganis phosphorus in alkaline soil extracts by ultrafiltration. Commun. Soil Sci. Plant Anal. 1991, 22, 1621−1630.  doi: 10.1080/00103629109368523

    24. [24]

      Urrutia, O.; Guardado, I.; Erro, J.; Mandado, M.; Garcia-Mina, J. M. Theoretical chemical characterization of phosphate-metal-humic complexes and relationships with their effects on both phosphorus soil fixation and phosphorus availability for plants. J. Sci. Food Agric. 2013, 93, 293−303.  doi: 10.1002/jsfa.5756

    25. [25]

      Franco-Zorrilla, J. M.; González, E.; Bustos, R.; Scaglia, F.; Leyva, A.; Paz-Ares, J. The transcriptional control of plant responses to phosphate limitation. J. Exp. Bot. 2004, 55, 285−293.  doi: 10.1093/jxb/erh009

    26. [26]

      Franco-Zorrilla, J. M.; Martín, A. C.; Leyva, A.; Paz-Ares, J. Interaction between phosphate-starvation, sugar and cytokinin signalling in arabidopsis and the roles of cytokinin receptors CRE1/AHK4 and AHK3. Plant Physiol. 2005, 138, 847−857.  doi: 10.1104/pp.105.060517

    27. [27]

      Franco-Zorrilla, J. M.; Valli, A.; Todesco, M.; Mateos, I.; Puga, M. I.; Rubio-Somoza, I.; Leyva, A.; Weigel, D.; García, J. A.; Paz-Ares, J. Target mimicry provides a new mechanism for regulation of microRNA activity. Nat. Genet. 2008, 39, 1033−1037.

    28. [28]

      Guardado, I.; Urrutia, O.; Garcia-Mina, J. M. Some structural and electronic features of the interaction of phosphate with metalhumic complexes. J. Agric. Food Chem. 2008, 56, 1035−1042.  doi: 10.1021/jf072641k

    29. [29]

      Guardado, I.; Urrutia, O.; Garcia-Mina, J. M. A methodological approach for studying the chemical interaction between phosphorous and humic substances, in Martin-Neto, L; Milori, D. Lopes da Silva (eds. ): humic substances and soil and water environment. W. EMBRAPA Edit, S Carlos Brazil. 2004, 585−587.

    30. [30]

      Guardado, I.; Urrutia, O.; Garcia-Mina, J. M. Methodological approach to the study of the formation and physicochemical properties of phosphate-metal-humic complexes in solution. J. Agric. Food Chem. 2005, 53, 8673−8678.  doi: 10.1021/jf052031p

    31. [31]

      Guardado, I.; Urrutia, O.; Garcia-Mina, J. M. Size distribution, complexing capacity and stability of phosphate-metal-humic complexes. J. Agric. Food Chem. 2007, 55, 408−413.  doi: 10.1021/jf062894y

    32. [32]

      Niederer, C.; Goss, K. U. Quantum chemical modeling of humic acid/air equilibrium partitioning of organic vapors. Environ. Sci. Technol. 2007, 41, 3646−3652.  doi: 10.1021/es062501b

    33. [33]

      Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A. Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc., Pittsburgh PA 2009, Gaussian 09, Revision D. 01.

    34. [34]

      Dapprich, S.; Komáromi, I.; Byun, K. S.; Frisch, M. J. A new ONIOM implementation in Gaussian98. Part Ⅰ. The calculation of energies, gradients, vibrational frequencies and electric field derivatives. J. Mol. Struct. (Theochem. ) 1999, 462, 1−21.

    35. [35]

      Becke, A. D. Density-functional thermochemistry. Ⅲ. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648−5652.  doi: 10.1063/1.464913

    36. [36]

      Che, X.; Gao, J.; Zhang, D. J.; Liu, C. B. How do the thiolate ligand and its relative position control the oxygen activation in the cysteine dioxygenase model. J. Phys. Chem. A 2012, 116, 5510−5517.  doi: 10.1021/jp3001515

    37. [37]

      Che, X.; Gao, J.; Liu, Y. J.; Liu, C. B. Metal vs. chalcogen competition in the catalytic mechanism of cysteine dioxygenase. J. Inorg. Biochem. 2013, 122, 1−7.  doi: 10.1016/j.jinorgbio.2013.01.008

    38. [38]

      Miertuš, S.; Scrocco, E.; Tomasi, J. Electrostatic interaction of a solute with a continuum – a direct utilization of abinitio molecular potentials for the prevision of solvent effects. Chem. Phys. 1981, 55, 117−129.  doi: 10.1016/0301-0104(81)85090-2

    39. [39]

      Hay, P. J.; Wadt, W. R. Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals. J. Chem. Phys. 1985, 82, 299−310.  doi: 10.1063/1.448975

    40. [40]

      Schafer, A.; Huber, C.; Ahlrichs, R. Fully optimized contracted Gaussian basis sets of triple zeta valence quality for atoms Li to Kr. J. Chem. Phys. 1994, 100, 5829−5835.  doi: 10.1063/1.467146

    41. [41]

      Boys, S. F.; Bernardi, F. Calculation of the intensities of the vibrational components of the ammonia ultra-violet absorption bands. Mol. Phys. 1970, 19, 553−566.  doi: 10.1080/00268977000101561

    42. [42]

      Fukui, K. Role of frontier orbitalsin chemical reactions. Science 1982, 218, 747−754.  doi: 10.1126/science.218.4574.747

    43. [43]

      Rappe, A. K.; Casewit, C. J.; Colwell, K. S.; Goddard, W. A.; Skiff, W. M. J. UFF, a full periodic-table force-field for molecular mechanics and molecular-dynamics simulations. J. Am. Chem. Soc. 1992, 114, 10024−10035.  doi: 10.1021/ja00051a040

  • 加载中
    1. [1]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    2. [2]

      Luyan ShiKe ZhuYuting YangQinrui LiangQimin PengShuqing ZhouTayirjan Taylor IsimjanXiulin Yang . Phytic acid-derivative Co2B-CoPOx coralloidal structure with delicate boron vacancy for enhanced hydrogen generation from sodium borohydride. Chinese Chemical Letters, 2024, 35(4): 109222-. doi: 10.1016/j.cclet.2023.109222

    3. [3]

      Bei Li Zhaoke Zheng . In situ monitoring of the spatial distribution of oxygen vacancies at the single-particle level. Chinese Journal of Structural Chemistry, 2024, 43(10): 100331-100331. doi: 10.1016/j.cjsc.2024.100331

    4. [4]

      Zhiwei ZhongYanbin HuangWantai Yang . A simple photochemical method for surface fluorination using perfluoroketones. Chinese Chemical Letters, 2024, 35(5): 109339-. doi: 10.1016/j.cclet.2023.109339

    5. [5]

      Qiang Zhang Weiran Gong Huinan Che Bin Liu Yanhui Ao . S doping induces to promoted spatial separation of charge carriers on carbon nitride for efficiently photocatalytic degradation of atrazine. Chinese Journal of Structural Chemistry, 2023, 42(12): 100205-100205. doi: 10.1016/j.cjsc.2023.100205

    6. [6]

      Erzhuo ChengYunyi LiWei YuanWei GongYanjun CaiYuan GuYong JiangYu ChenJingxi ZhangGuangquan MoBin Yang . Galvanostatic method assembled ZIFs nanostructure as novel nanozyme for the glucose oxidation and biosensing. Chinese Chemical Letters, 2024, 35(9): 109386-. doi: 10.1016/j.cclet.2023.109386

    7. [7]

      Keyang LiYanan WangYatao XuGuohua ShiSixian WeiXue ZhangBaomei ZhangQiang JiaHuanhua XuLiangmin YuJun WuZhiyu He . Flash nanocomplexation (FNC): A new microvolume mixing method for nanomedicine formulation. Chinese Chemical Letters, 2024, 35(10): 109511-. doi: 10.1016/j.cclet.2024.109511

    8. [8]

      Abiduweili Sikandaier Yukun Zhu Dongjiang Yang . In-situ decorated cobalt phosphide cocatalyst on Hittorf's phosphorus triggering efficient photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(2): 100242-100242. doi: 10.1016/j.cjsc.2024.100242

    9. [9]

      Mei-Chen LiuQing-Song LiuYi-Zhou QuanJia-Ling YuGang WuXiu-Li WangYu-Zhong Wang . Phosphorus-silicon-integrated electrolyte additive boosts cycling performance and safety of high-voltage lithium-ion batteries. Chinese Chemical Letters, 2024, 35(8): 109123-. doi: 10.1016/j.cclet.2023.109123

    10. [10]

      Yuhao MaYufei ZhouMingchuan YuCheng FangShaoxia YangJunfeng Niu . Covalently bonded ternary photocatalyst comprising MoSe2/black phosphorus nanosheet/graphitic carbon nitride for efficient moxifloxacin degradation. Chinese Chemical Letters, 2024, 35(9): 109453-. doi: 10.1016/j.cclet.2023.109453

    11. [11]

      Zixuan GuoXiaoshuai HanChunmei ZhangShuijian HeKunming LiuJiapeng HuWeisen YangShaoju JianShaohua JiangGaigai Duan . Activation of biomass-derived porous carbon for supercapacitors: A review. Chinese Chemical Letters, 2024, 35(7): 109007-. doi: 10.1016/j.cclet.2023.109007

    12. [12]

      Cunjun LiWencong LiuXianlei ChenLiang LiShenyu LanMingshan Zhu . Adsorption and activation of peroxymonosulfate on BiOCl for carbamazepine degradation: The role of piezoelectric effect. Chinese Chemical Letters, 2024, 35(10): 109652-. doi: 10.1016/j.cclet.2024.109652

    13. [13]

      Ying LiLong-Jie WangYong-Kang ZhouJun LiangBin XiaoJi-Shen Zheng . An improved installation of 2-hydroxy-4-methoxybenzyl (iHmb) method for chemical protein synthesis. Chinese Chemical Letters, 2024, 35(5): 109033-. doi: 10.1016/j.cclet.2023.109033

    14. [14]

      Peng ZhouZiang JiangYang LiPeng XiaoFeixiang Wu . Sulphur-template method for facile manufacturing porous silicon electrodes with enhanced electrochemical performance. Chinese Chemical Letters, 2024, 35(8): 109467-. doi: 10.1016/j.cclet.2023.109467

    15. [15]

      Haoyang WangRonghao ZhangYanlun RenLi Zhang . A convenient method for measuring gas-liquid volumetric mass transfer coefficient in micro reactors. Chinese Chemical Letters, 2024, 35(4): 108833-. doi: 10.1016/j.cclet.2023.108833

    16. [16]

      Ting LiXinxin ZhengLejing QuYuanyuan OuSai QiaoXue ZhaoYajun ZhangXinfeng ZhaoQian Li . A chromatographic method for pursuing potential GPCR ligands with the capacity to characterize their intrinsic activities of regulating downstream signaling pathway. Chinese Chemical Letters, 2024, 35(10): 109792-. doi: 10.1016/j.cclet.2024.109792

    17. [17]

      Qijun Tang Wenguang Tu Yong Zhou Zhigang Zou . High efficiency and selectivity catalyst for photocatalytic oxidative coupling of methane. Chinese Journal of Structural Chemistry, 2023, 42(12): 100170-100170. doi: 10.1016/j.cjsc.2023.100170

    18. [18]

      Tao LIUYuting TIANKe GAOXuwei HANRu'nan MINWenjing ZHAOXueyi SUNCaixia YIN . A photothermal agent with high photothermal conversion efficiency and high stability for tumor therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1622-1632. doi: 10.11862/CJIC.20240107

    19. [19]

      Changzhu HuangWei DaiShimao DengYixin TianXiaolin LiuJia LinHong Chen . A self-cleaning window for high-efficiency photodegradation of indoor formaldehyde. Chinese Chemical Letters, 2024, 35(9): 109429-. doi: 10.1016/j.cclet.2023.109429

    20. [20]

      Jing ZhangCharles WangYaoyao ZhangHaining XiaYujuan WangKun MaJunfeng Wang . Application of magnetotactic bacteria as engineering microrobots: Higher delivery efficiency of antitumor medicine. Chinese Chemical Letters, 2024, 35(10): 109420-. doi: 10.1016/j.cclet.2023.109420

Metrics
  • PDF Downloads(1)
  • Abstract views(183)
  • HTML views(3)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return