Citation: Yan-Ning CHEN, Jing-Jun LI, Wei-Guang YANG, Shui-Ying GAO. Fabrication and Catalytic Properties of Films Based on Metal Ion-ligand Interaction between K2PdCl4 and 3-Amino-3-(4-pyridinyl)-propionitrile[J]. Chinese Journal of Structural Chemistry, ;2020, 39(3): 526-534. doi: 10.14102/j.cnki.0254–5861.2011–2427 shu

Fabrication and Catalytic Properties of Films Based on Metal Ion-ligand Interaction between K2PdCl4 and 3-Amino-3-(4-pyridinyl)-propionitrile

  • Corresponding author: Shui-Ying GAO, gaosy@fjirsm.ac.cn
  • Received Date: 24 April 2019
    Accepted Date: 4 September 2019

    Fund Project: National Key Research and Development Program of China 2017YFA0700100the NSFC 21520102001the NSFC 51572260the NSFC 21571177Strategic Priority Research Program of the Chinese Academy of Sciences XDB20000000Key Research Program of the Chinese Academy of Sciences QYZDJ-SSW-SLH045

Figures(8)

  • This work presents a highly active and reusable heterogeneous film catalytic assembly for hydrogenation reduction of aromatic nitro compounds. The multilayer structures of PEI-(K2PdCl4-P1)n-film (PEI = polyethylenmine, P1 = 3-amino-3-(4-pyridinyl)-propionitrile) bound to quartz slides were fabricated by layer-by-layer (LbL) self-assembly method. Various characterization techniques including X-ray photoelectron spectroscopy (XPS), inductively coupled plasma OES spectrometer (ICP), UV-vis spectroscopy and atomic force microscopy (AFM) were employed to reveal the growth process of the resulting LbL multilayers in detail. Subsequent in situ reduction by H2 produced Pd nanoparticles embedded in such films were used as catalyst for the hydrogenation of nitroarenes. The catalytic performance test shows that the thin film catalyst can be applied to the hydrogenation reaction of various substituted nitroaromatics, and exhibits good catalytic activity and good catalyst stability. It is worth mentioning that our catalytic films can be easily removed from the reaction system in any time during the reaction, and the catalytic activity could be fully recovered when reused directly in another catalytic cycle for five times.
  • 加载中
    1. [1]

      Fernández, C.; Lujano, E.; Macias, U.; Marcano, J.; Baricelli, P. J.; Longo, C.; Moya, S. A.; Solórzano, M. G.; Ortega, M. C.; Pardey, A. J. Catalytic reduction of 4-nitrobenzoic acid by cis-[Rh(CO)2(Amine)2](PF6) complexes under water-gas shift reaction conditions: kinetics study. Catal. Lett. 2004, 95, 143-150.  doi: 10.1023/B:CATL.0000027287.78214.bf

    2. [2]

      Dekamin, M. G.; Moghaddam, F. M.; Saeidian, H.; Mallakpour, S. The performance of phthalimide-n-oxyl anion. Monatsh. Chem. 2006, 137, 1591-1595.  doi: 10.1007/s00706-006-0553-6

    3. [3]

      Arul Dhas, N.; Cohen, H.; Gedanken, A. In situ preparation of amorphous carbon-activated palladium nanoparticles. J. Phys. Chem. B 1997, 101, 6834-6838.  doi: 10.1021/jp971308o

    4. [4]

      Jagadeesh, R. V.; Surkus, A. E.; Junge, H.; Pohl, M. M.; Radnik, J.; Rabeah, J.; Huan, H.; Schunemann, V.; Bruckner, A.; Beller, M. Nanoscale Fe2O3-based catalysts for selective hydrogenation of nitroarenes to anilines. Science 2013, 342, 1073-6.  doi: 10.1126/science.1242005

    5. [5]

      Nie, R.; Wang, J.; Wang, L.; Qin, Y.; Chen, P.; Hou, Z. Platinum supported on reduced graphene oxide as a catalyst for hydrogenation of nitroarenes. Carbon 2012, 50, 586-596.  doi: 10.1016/j.carbon.2011.09.017

    6. [6]

      Wienhofer, G.; Sorribes, I.; Boddien, A.; Westerhaus, F.; Junge, K.; Junge, H.; Llusar, R.; Beller, M. General and selective iron-catalyzed transfer hydrogenation of nitroarenes without base. J. Am. Chem. Soc. 2011, 133, 12875-12879.  doi: 10.1021/ja2061038

    7. [7]

      Yang, X.; Zhao, H.; Gao, S. Layer-by-layer self-assembly of Pd films and their catalytic properties toward nitroarenes hydrogenation. Ind. Eng. Chem. Res. 2017, 56, 3429-3435.  doi: 10.1021/acs.iecr.6b04985

    8. [8]

      Zapf, A.; Beller, M. Fine chemical synthesis with homogeneous palladium catalysts: examples, status and trends. Top. Catal. 2002, 19, 101-109.  doi: 10.1023/A:1013889401432

    9. [9]

      Cole-Hamilton, D. J. Homogeneous catalysis--new approaches to catalyst separation, recovery, and recycling. Science 2003, 299, 1702-6.  doi: 10.1126/science.1081881

    10. [10]

      Jessop, P. G.; Ikariya, T.; Noyori, R. Homogeneous catalysis in supercritical fluids. Chem. Rev. 1999, 99, 475-494.  doi: 10.1021/cr970037a

    11. [11]

      Larhed, M.; Moberg, C.; Hallberg, A. Microwave-accelerated homogeneous catalysis in organic chemistry. Accounts Chem. Res. 2002, 35, 717-727.  doi: 10.1021/ar010074v

    12. [12]

      Liu, T. T.; Lin, Z. J.; Shi, P. C.; Ma, T.; Huang, Y. B.; Cao, R. A metallosalen-based porous organic polymer for olefin epoxidation. ChemCatChem. 2015, 7, 2340-2345.  doi: 10.1002/cctc.201500374

    13. [13]

      Chen, Y.; Kanan, M. W. Tin oxide dependence of the CO2 reduction efficiency on tin electrodes and enhanced activity for tin/tin oxide thin-film catalysts. J. Am. Chem. Soc. 2012, 134, 1986-9.  doi: 10.1021/ja2108799

    14. [14]

      van der Vliet, D.; Wang, C.; Debe, M.; Atanasoski, R.; Markovic, N. M.; Stamenkovic, V. R. Platinum-alloy nanostructured thin film catalysts for the oxygen reduction reaction. Electrochimica Acta 2011, 56, 8695-8699.  doi: 10.1016/j.electacta.2011.07.063

    15. [15]

      Patel, N.; Patton, B.; Zanchetta, C.; Fernandes, R.; Guella, G.; Kale, A.; Miotello, A. Pd-C powder and thin film catalysts for hydrogen production by hydrolysis of sodium borohydride. Int. J. Hydrogen Energy 2008, 33, 287-292.  doi: 10.1016/j.ijhydene.2007.07.018

    16. [16]

      Cao, G.; Hong, H. G.; Mallouk, T. E. Layered metal phosphates and phosphonates: from crystals to monolayers. Accounts Chem. Res. 2002, 25, 420-427.

    17. [17]

      Luthra, S. Homogeneous phase transfer catalyst recovery and re-use using solvent resistant membranes. J Membrane. Sci. 2002, 201, 65-75.  doi: 10.1016/S0376-7388(01)00704-9

    18. [18]

      Li, J.; Srivastava, S.; Ok, J. G.; Zhang, Y.; Bedewy, M.; Kotov, N. A.; Hart, A. J. Multidirectional hierarchical nanocomposites made by carbon nanotube growth within layer-by-layer-assembled films. Chem. Mater. 2011, 23, 1023-1031.  doi: 10.1021/cm1030443

    19. [19]

      Ansell, M. A.; Cogan, E. B.; Page, C. J. Coordinate covalent cobalt-diisocyanide multilayer thin films grown one molecular layer at a time. Langmuir 2000, 16, 1172-1179.  doi: 10.1021/la990180u

    20. [20]

      Song, I. K.; Lee, W. Y. Heteropolyacid (HPA)-polymer composite films as heterogeneous catalysts and catalytic membranes. Appl. Catal. A-Gen. 2003, 256, 77-98.  doi: 10.1016/S0926-860X(03)00390-9

    21. [21]

      Hod, I.; Sampson, M. D.; Deria, P.; Kubiak, C. P.; Farha, O. K.; Hupp, J. T. Fe-porphyrin-based metal-organic framework films as high-surface concentration, heterogeneous catalysts for electrochemical reduction of CO2. ACS Catal. 2015, 5, 6302-6309.  doi: 10.1021/acscatal.5b01767

    22. [22]

      Ren, Z.; Wang, H. L.; Cai, Y. Q.; Chen, M.; Qian, D. J. Construction of Pd(Ⅱ)-poly(4-vinylpyridine) multilayers on quartz substrate surface as heterogeneous catalyst for selective hydrogenation of aromatic conjugated alkenes. Mater. Chem. Phys. 2011, 127, 310-315.  doi: 10.1016/j.matchemphys.2011.02.011

    23. [23]

      Crespo-Biel, O.; Dordi, B.; Reinhoudt, D. N.; Huskens, J. Supramolecular layer-by-layer assembly: alternating adsorptions of guest-and host-functionalized molecules and particles using multivalent supramolecular interactions. J. Am. Chem. Soc. 2005, 127, 7594-600.  doi: 10.1021/ja051093t

    24. [24]

      Panella, B.; Vargas, A.; Baiker, A. Magnetically separable Pt catalyst for asymmetric hydrogenation. Journal of Catalysis 2009, 261, 88-93.  doi: 10.1016/j.jcat.2008.11.002

    25. [25]

      Zhao, M.; Crooks, R. M. Homogeneous hydrogenation catalysis with monodisperse, dendrimer-encapsulated Pd and Pt nanoparticles. Angew. Chem. Int. Edit. 1999, 38, 364-366.  doi: 10.1002/(SICI)1521-3773(19990201)38:3<364::AID-ANIE364>3.0.CO;2-L

    26. [26]

      Mandal, S.; Roy, D.; Chaudhari, R. V.; Sastry, M. Pt and Pd nanoparticles immobilized on amine-functionalized zeolite: excellent catalysts for hydrogenation and heck reactions. Chem. Mater. 2004, 16, 3714-3724.  doi: 10.1021/cm0352504

    27. [27]

      Guin, D.; Baruwati, B.; Manorama, S. V. Pd on amine-terminated ferrite nanoparticles: a complete magnetically recoverable facile catalyst for hydrogenation reactions. Org. Lett. 2007, 9, 1419-21.  doi: 10.1021/ol070290p

    28. [28]

      Wang, Y.; Yao, J.; Li, H.; Su, D.; Antonietti, M. Highly selective hydrogenation of phenol and derivatives over a Pd@carbon nitride catalyst in aqueous media. J. Am. Chem. Soc. 2011, 133, 2362-5.  doi: 10.1021/ja109856y

    29. [29]

      Gao, S.; Cao, M.; Li, W.; Cao, R. Palladium nanoparticles in situ generated in metal-organic films for catalytic applications. J. Mater. Chem. A 2014, 2, 12185-12193.  doi: 10.1039/C4TA01592D

    30. [30]

      Chhiba, V.; Bode, M. L.; Mathiba, K.; Kwezi, W.; Brady, D. Enantioselective biocatalytic hydrolysis of β-aminonitriles to β-amino-amides using Rhodococcus rhodochrous ATCC BAA-870. J. Mol. Catal. B: Enzym. 2012, 76, 68-74.  doi: 10.1016/j.molcatb.2011.12.005

    31. [31]

      Lakshmi, K. M.; Parsharamulu, T.; Manorama, S. V.; Lakshmi, K. M.; Parsharamulu, T.; Manorama, S. V. Layered double hydroxides supported nano palladium: an efficient catalyst for the chemoselective hydrogenation of olefinic bonds. J. Mol. Catal. A: Chem. 2012, 365, 115-119.  doi: 10.1016/j.molcata.2012.08.017

    32. [32]

      Park, J.; Won, S. W.; Mao, J.; Kwak, I. S.; Yun, Y. S. Recovery of Pd(Ⅱ) from hydrochloric solution using polyallylamine hydrochloride-modified Escherichia coli biomass. J. Hazard. Mater. 2010, 181, 794-800.  doi: 10.1016/j.jhazmat.2010.05.083

    33. [33]

      Shams-nateri, A. Scattering behavior of nonabsorbing metallic nanoparticles. Opt. Laser Technol. 2012, 44, 1670-1674.  doi: 10.1016/j.optlastec.2012.01.013

    34. [34]

      Son, S. U.; Jang, Y.; Yoon, K. Y.; Kang, E.; Hyeon, T. Facile synthesis of various phosphine-stabilized monodisperse palladium nanoparticles through the understanding of coordination chemistry of the nanoparticles. Nano. Lett. 2004, 4, 1147-1151.  doi: 10.1021/nl049519+

  • 加载中
    1. [1]

      Rui HUANGShengjie LIUQingyuan WUNanfeng ZHENG . Enhanced selectivity of catalytic hydrogenation of halogenated nitroaromatics by interfacial effects. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 201-212. doi: 10.11862/CJIC.20240356

    2. [2]

      Hao ZhangHaonan QuEhsan Bahojb NoruziHaibing LiFeng Liang . A nanocomposite film with layer-by-layer self-assembled gold nanospheres driven by cucurbit[7]uril for the selective transport of L-tryptophan and lysozyme. Chinese Chemical Letters, 2025, 36(1): 109731-. doi: 10.1016/j.cclet.2024.109731

    3. [3]

      Yue LiMinghao FanConghui WangYanxun LiXiang YuJun DingLei YanLele QiuYongcai ZhangLonglu Wang . 3D layer-by-layer amorphous MoSx assembled from [Mo3S13]2- clusters for efficient removal of tetracycline: Synergy of adsorption and photo-assisted PMS activation. Chinese Chemical Letters, 2024, 35(9): 109764-. doi: 10.1016/j.cclet.2024.109764

    4. [4]

      Wen-Jing LiJun-Bo WangYu-Heng LiuMo ZhangZhan-Hui Zhang . Molybdenum-doped carbon nitride as an efficient heterogeneous catalyst for direct amination of nitroarenes with arylboronic acids. Chinese Chemical Letters, 2025, 36(3): 110001-. doi: 10.1016/j.cclet.2024.110001

    5. [5]

      Ming HuangXiuju CaiYan LiuZhuofeng Ke . Base-controlled NHC-Ru-catalyzed transfer hydrogenation and α-methylation/transfer hydrogenation of ketones using methanol. Chinese Chemical Letters, 2024, 35(7): 109323-. doi: 10.1016/j.cclet.2023.109323

    6. [6]

      Hailong HeWenbing WangWenmin PangChen ZouDan Peng . Double stimulus-responsive palladium catalysts for ethylene polymerization and copolymerization. Chinese Chemical Letters, 2024, 35(7): 109534-. doi: 10.1016/j.cclet.2024.109534

    7. [7]

      Gongcheng MaQihang DingYuding ZhangYue WangJingjing XiangMingle LiQi ZhaoSaipeng HuangPing GongJong Seung Kim . Palladium-free chemoselective probe for in vivo fluorescence imaging of carbon monoxide. Chinese Chemical Letters, 2024, 35(9): 109293-. doi: 10.1016/j.cclet.2023.109293

    8. [8]

      Minghui ZhangNa ZhangQian ZhaoChao WangAlexander SteinerJianliang XiaoWeijun Tang . Cobalt pincer complex-catalyzed highly enantioselective hydrogenation of quinoxalines. Chinese Chemical Letters, 2025, 36(4): 110081-. doi: 10.1016/j.cclet.2024.110081

    9. [9]

      Shuai ZhuMingjie ChenHaichao ShenHanming DingWenbo LiJunliang Zhang . Palladium/Xu-Phos-catalyzed enantioselective arylalkoxylation reaction of γ-hydroxyalkenes at room temperature. Chinese Chemical Letters, 2024, 35(11): 109879-. doi: 10.1016/j.cclet.2024.109879

    10. [10]

      Yunqiang LiYongxian HuangSinuo LiHe HuangZhiwei Jiao . Elaborating azaaryl alkanes enabled by photoredox/palladium dual catalyzed dialkylation of azaaryl alkenes. Chinese Chemical Letters, 2025, 36(4): 110051-. doi: 10.1016/j.cclet.2024.110051

    11. [11]

      Min ChenBoyu PengXuyun GuoYe ZhuHanying Li . Polyethylene interfacial dielectric layer for organic semiconductor single crystal based field-effect transistors. Chinese Chemical Letters, 2024, 35(4): 109051-. doi: 10.1016/j.cclet.2023.109051

    12. [12]

      Xinxiu YanXizhe HuangYangyang LiuWeishang JiaHualin ChenQi YaoTao Chen . Hyperbranched polyamidoamine protective layer with phosphate and carboxyl groups for dendrite-free Zn metal anodes. Chinese Chemical Letters, 2024, 35(10): 109426-. doi: 10.1016/j.cclet.2023.109426

    13. [13]

      Yanrui Liu Paramaguru Ganesan Peng Gao . Harnessing d-f transition rare earth complexes for single layer white organic light emitting diodes. Chinese Journal of Structural Chemistry, 2024, 43(9): 100369-100369. doi: 10.1016/j.cjsc.2024.100369

    14. [14]

      Mengjun Zhao Yuhao Guo Na Li Tingjiang Yan . Deciphering the structural evolution and real active ingredients of iron oxides in photocatalytic CO2 hydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100348-100348. doi: 10.1016/j.cjsc.2024.100348

    15. [15]

      Shaoming DongYiming NiuYinghui PuYongzhao WangBingsen Zhang . Subsurface carbon modification of Ni-Ga for improved selectivity in acetylene hydrogenation reaction. Chinese Chemical Letters, 2024, 35(12): 109525-. doi: 10.1016/j.cclet.2024.109525

    16. [16]

      Jinyuan Cui Tingting Yang Teng Xu Jin Lin Kunlong Liu Pengxin Liu . Hydrogen spillover enhances the selective hydrogenation of α,β-unsaturated aldehydes on the Cu-O-Ce interface. Chinese Journal of Structural Chemistry, 2025, 44(1): 100438-100438. doi: 10.1016/j.cjsc.2024.100438

    17. [17]

      Sanmei WangDengxin YanWenhua ZhangLiangbing Wang . Graphene-supported isolated platinum atoms and platinum dimers for CO2 hydrogenation: Catalytic activity and selectivity variations. Chinese Chemical Letters, 2025, 36(4): 110611-. doi: 10.1016/j.cclet.2024.110611

    18. [18]

      Jing Wang Zhongliao Wang Jinfeng Zhang Kai Dai . Single-layer crystalline triazine-based organic framework photocatalysts with different linking groups for H2O2 production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100202-100202. doi: 10.1016/j.cjsc.2023.100202

    19. [19]

      Shuo ZhangHaitao LiaoZhi-Qun LiuChong YanJia-Qi Huang . Re-evaluating the nano-sized inorganic protective layer on Cu current collector for anode free lithium metal batteries. Chinese Chemical Letters, 2024, 35(7): 109284-. doi: 10.1016/j.cclet.2023.109284

    20. [20]

      Yuhuan MengLong ZhangLequan WangJunming KangHongbin Lu . 20 nm-ultra-thin fluorosiloxane interphase layer enables dendrite-free, fast-charging, and flexible aqueous zinc metal batteries. Chinese Chemical Letters, 2024, 35(12): 110025-. doi: 10.1016/j.cclet.2024.110025

Metrics
  • PDF Downloads(1)
  • Abstract views(295)
  • HTML views(6)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return