Citation: Yan-Ning CHEN, Jing-Jun LI, Wei-Guang YANG, Shui-Ying GAO. Fabrication and Catalytic Properties of Films Based on Metal Ion-ligand Interaction between K2PdCl4 and 3-Amino-3-(4-pyridinyl)-propionitrile[J]. Chinese Journal of Structural Chemistry, ;2020, 39(3): 526-534. doi: 10.14102/j.cnki.0254–5861.2011–2427 shu

Fabrication and Catalytic Properties of Films Based on Metal Ion-ligand Interaction between K2PdCl4 and 3-Amino-3-(4-pyridinyl)-propionitrile

  • Corresponding author: Shui-Ying GAO, gaosy@fjirsm.ac.cn
  • Received Date: 24 April 2019
    Accepted Date: 4 September 2019

    Fund Project: National Key Research and Development Program of China 2017YFA0700100the NSFC 21520102001the NSFC 51572260the NSFC 21571177Strategic Priority Research Program of the Chinese Academy of Sciences XDB20000000Key Research Program of the Chinese Academy of Sciences QYZDJ-SSW-SLH045

Figures(8)

  • This work presents a highly active and reusable heterogeneous film catalytic assembly for hydrogenation reduction of aromatic nitro compounds. The multilayer structures of PEI-(K2PdCl4-P1)n-film (PEI = polyethylenmine, P1 = 3-amino-3-(4-pyridinyl)-propionitrile) bound to quartz slides were fabricated by layer-by-layer (LbL) self-assembly method. Various characterization techniques including X-ray photoelectron spectroscopy (XPS), inductively coupled plasma OES spectrometer (ICP), UV-vis spectroscopy and atomic force microscopy (AFM) were employed to reveal the growth process of the resulting LbL multilayers in detail. Subsequent in situ reduction by H2 produced Pd nanoparticles embedded in such films were used as catalyst for the hydrogenation of nitroarenes. The catalytic performance test shows that the thin film catalyst can be applied to the hydrogenation reaction of various substituted nitroaromatics, and exhibits good catalytic activity and good catalyst stability. It is worth mentioning that our catalytic films can be easily removed from the reaction system in any time during the reaction, and the catalytic activity could be fully recovered when reused directly in another catalytic cycle for five times.
  • 加载中
    1. [1]

      Fernández, C.; Lujano, E.; Macias, U.; Marcano, J.; Baricelli, P. J.; Longo, C.; Moya, S. A.; Solórzano, M. G.; Ortega, M. C.; Pardey, A. J. Catalytic reduction of 4-nitrobenzoic acid by cis-[Rh(CO)2(Amine)2](PF6) complexes under water-gas shift reaction conditions: kinetics study. Catal. Lett. 2004, 95, 143-150.  doi: 10.1023/B:CATL.0000027287.78214.bf

    2. [2]

      Dekamin, M. G.; Moghaddam, F. M.; Saeidian, H.; Mallakpour, S. The performance of phthalimide-n-oxyl anion. Monatsh. Chem. 2006, 137, 1591-1595.  doi: 10.1007/s00706-006-0553-6

    3. [3]

      Arul Dhas, N.; Cohen, H.; Gedanken, A. In situ preparation of amorphous carbon-activated palladium nanoparticles. J. Phys. Chem. B 1997, 101, 6834-6838.  doi: 10.1021/jp971308o

    4. [4]

      Jagadeesh, R. V.; Surkus, A. E.; Junge, H.; Pohl, M. M.; Radnik, J.; Rabeah, J.; Huan, H.; Schunemann, V.; Bruckner, A.; Beller, M. Nanoscale Fe2O3-based catalysts for selective hydrogenation of nitroarenes to anilines. Science 2013, 342, 1073-6.  doi: 10.1126/science.1242005

    5. [5]

      Nie, R.; Wang, J.; Wang, L.; Qin, Y.; Chen, P.; Hou, Z. Platinum supported on reduced graphene oxide as a catalyst for hydrogenation of nitroarenes. Carbon 2012, 50, 586-596.  doi: 10.1016/j.carbon.2011.09.017

    6. [6]

      Wienhofer, G.; Sorribes, I.; Boddien, A.; Westerhaus, F.; Junge, K.; Junge, H.; Llusar, R.; Beller, M. General and selective iron-catalyzed transfer hydrogenation of nitroarenes without base. J. Am. Chem. Soc. 2011, 133, 12875-12879.  doi: 10.1021/ja2061038

    7. [7]

      Yang, X.; Zhao, H.; Gao, S. Layer-by-layer self-assembly of Pd films and their catalytic properties toward nitroarenes hydrogenation. Ind. Eng. Chem. Res. 2017, 56, 3429-3435.  doi: 10.1021/acs.iecr.6b04985

    8. [8]

      Zapf, A.; Beller, M. Fine chemical synthesis with homogeneous palladium catalysts: examples, status and trends. Top. Catal. 2002, 19, 101-109.  doi: 10.1023/A:1013889401432

    9. [9]

      Cole-Hamilton, D. J. Homogeneous catalysis--new approaches to catalyst separation, recovery, and recycling. Science 2003, 299, 1702-6.  doi: 10.1126/science.1081881

    10. [10]

      Jessop, P. G.; Ikariya, T.; Noyori, R. Homogeneous catalysis in supercritical fluids. Chem. Rev. 1999, 99, 475-494.  doi: 10.1021/cr970037a

    11. [11]

      Larhed, M.; Moberg, C.; Hallberg, A. Microwave-accelerated homogeneous catalysis in organic chemistry. Accounts Chem. Res. 2002, 35, 717-727.  doi: 10.1021/ar010074v

    12. [12]

      Liu, T. T.; Lin, Z. J.; Shi, P. C.; Ma, T.; Huang, Y. B.; Cao, R. A metallosalen-based porous organic polymer for olefin epoxidation. ChemCatChem. 2015, 7, 2340-2345.  doi: 10.1002/cctc.201500374

    13. [13]

      Chen, Y.; Kanan, M. W. Tin oxide dependence of the CO2 reduction efficiency on tin electrodes and enhanced activity for tin/tin oxide thin-film catalysts. J. Am. Chem. Soc. 2012, 134, 1986-9.  doi: 10.1021/ja2108799

    14. [14]

      van der Vliet, D.; Wang, C.; Debe, M.; Atanasoski, R.; Markovic, N. M.; Stamenkovic, V. R. Platinum-alloy nanostructured thin film catalysts for the oxygen reduction reaction. Electrochimica Acta 2011, 56, 8695-8699.  doi: 10.1016/j.electacta.2011.07.063

    15. [15]

      Patel, N.; Patton, B.; Zanchetta, C.; Fernandes, R.; Guella, G.; Kale, A.; Miotello, A. Pd-C powder and thin film catalysts for hydrogen production by hydrolysis of sodium borohydride. Int. J. Hydrogen Energy 2008, 33, 287-292.  doi: 10.1016/j.ijhydene.2007.07.018

    16. [16]

      Cao, G.; Hong, H. G.; Mallouk, T. E. Layered metal phosphates and phosphonates: from crystals to monolayers. Accounts Chem. Res. 2002, 25, 420-427.

    17. [17]

      Luthra, S. Homogeneous phase transfer catalyst recovery and re-use using solvent resistant membranes. J Membrane. Sci. 2002, 201, 65-75.  doi: 10.1016/S0376-7388(01)00704-9

    18. [18]

      Li, J.; Srivastava, S.; Ok, J. G.; Zhang, Y.; Bedewy, M.; Kotov, N. A.; Hart, A. J. Multidirectional hierarchical nanocomposites made by carbon nanotube growth within layer-by-layer-assembled films. Chem. Mater. 2011, 23, 1023-1031.  doi: 10.1021/cm1030443

    19. [19]

      Ansell, M. A.; Cogan, E. B.; Page, C. J. Coordinate covalent cobalt-diisocyanide multilayer thin films grown one molecular layer at a time. Langmuir 2000, 16, 1172-1179.  doi: 10.1021/la990180u

    20. [20]

      Song, I. K.; Lee, W. Y. Heteropolyacid (HPA)-polymer composite films as heterogeneous catalysts and catalytic membranes. Appl. Catal. A-Gen. 2003, 256, 77-98.  doi: 10.1016/S0926-860X(03)00390-9

    21. [21]

      Hod, I.; Sampson, M. D.; Deria, P.; Kubiak, C. P.; Farha, O. K.; Hupp, J. T. Fe-porphyrin-based metal-organic framework films as high-surface concentration, heterogeneous catalysts for electrochemical reduction of CO2. ACS Catal. 2015, 5, 6302-6309.  doi: 10.1021/acscatal.5b01767

    22. [22]

      Ren, Z.; Wang, H. L.; Cai, Y. Q.; Chen, M.; Qian, D. J. Construction of Pd(Ⅱ)-poly(4-vinylpyridine) multilayers on quartz substrate surface as heterogeneous catalyst for selective hydrogenation of aromatic conjugated alkenes. Mater. Chem. Phys. 2011, 127, 310-315.  doi: 10.1016/j.matchemphys.2011.02.011

    23. [23]

      Crespo-Biel, O.; Dordi, B.; Reinhoudt, D. N.; Huskens, J. Supramolecular layer-by-layer assembly: alternating adsorptions of guest-and host-functionalized molecules and particles using multivalent supramolecular interactions. J. Am. Chem. Soc. 2005, 127, 7594-600.  doi: 10.1021/ja051093t

    24. [24]

      Panella, B.; Vargas, A.; Baiker, A. Magnetically separable Pt catalyst for asymmetric hydrogenation. Journal of Catalysis 2009, 261, 88-93.  doi: 10.1016/j.jcat.2008.11.002

    25. [25]

      Zhao, M.; Crooks, R. M. Homogeneous hydrogenation catalysis with monodisperse, dendrimer-encapsulated Pd and Pt nanoparticles. Angew. Chem. Int. Edit. 1999, 38, 364-366.  doi: 10.1002/(SICI)1521-3773(19990201)38:3<364::AID-ANIE364>3.0.CO;2-L

    26. [26]

      Mandal, S.; Roy, D.; Chaudhari, R. V.; Sastry, M. Pt and Pd nanoparticles immobilized on amine-functionalized zeolite: excellent catalysts for hydrogenation and heck reactions. Chem. Mater. 2004, 16, 3714-3724.  doi: 10.1021/cm0352504

    27. [27]

      Guin, D.; Baruwati, B.; Manorama, S. V. Pd on amine-terminated ferrite nanoparticles: a complete magnetically recoverable facile catalyst for hydrogenation reactions. Org. Lett. 2007, 9, 1419-21.  doi: 10.1021/ol070290p

    28. [28]

      Wang, Y.; Yao, J.; Li, H.; Su, D.; Antonietti, M. Highly selective hydrogenation of phenol and derivatives over a Pd@carbon nitride catalyst in aqueous media. J. Am. Chem. Soc. 2011, 133, 2362-5.  doi: 10.1021/ja109856y

    29. [29]

      Gao, S.; Cao, M.; Li, W.; Cao, R. Palladium nanoparticles in situ generated in metal-organic films for catalytic applications. J. Mater. Chem. A 2014, 2, 12185-12193.  doi: 10.1039/C4TA01592D

    30. [30]

      Chhiba, V.; Bode, M. L.; Mathiba, K.; Kwezi, W.; Brady, D. Enantioselective biocatalytic hydrolysis of β-aminonitriles to β-amino-amides using Rhodococcus rhodochrous ATCC BAA-870. J. Mol. Catal. B: Enzym. 2012, 76, 68-74.  doi: 10.1016/j.molcatb.2011.12.005

    31. [31]

      Lakshmi, K. M.; Parsharamulu, T.; Manorama, S. V.; Lakshmi, K. M.; Parsharamulu, T.; Manorama, S. V. Layered double hydroxides supported nano palladium: an efficient catalyst for the chemoselective hydrogenation of olefinic bonds. J. Mol. Catal. A: Chem. 2012, 365, 115-119.  doi: 10.1016/j.molcata.2012.08.017

    32. [32]

      Park, J.; Won, S. W.; Mao, J.; Kwak, I. S.; Yun, Y. S. Recovery of Pd(Ⅱ) from hydrochloric solution using polyallylamine hydrochloride-modified Escherichia coli biomass. J. Hazard. Mater. 2010, 181, 794-800.  doi: 10.1016/j.jhazmat.2010.05.083

    33. [33]

      Shams-nateri, A. Scattering behavior of nonabsorbing metallic nanoparticles. Opt. Laser Technol. 2012, 44, 1670-1674.  doi: 10.1016/j.optlastec.2012.01.013

    34. [34]

      Son, S. U.; Jang, Y.; Yoon, K. Y.; Kang, E.; Hyeon, T. Facile synthesis of various phosphine-stabilized monodisperse palladium nanoparticles through the understanding of coordination chemistry of the nanoparticles. Nano. Lett. 2004, 4, 1147-1151.  doi: 10.1021/nl049519+

  • 加载中
    1. [1]

      Yue LiMinghao FanConghui WangYanxun LiXiang YuJun DingLei YanLele QiuYongcai ZhangLonglu Wang . 3D layer-by-layer amorphous MoSx assembled from [Mo3S13]2- clusters for efficient removal of tetracycline: Synergy of adsorption and photo-assisted PMS activation. Chinese Chemical Letters, 2024, 35(9): 109764-. doi: 10.1016/j.cclet.2024.109764

    2. [2]

      Ming HuangXiuju CaiYan LiuZhuofeng Ke . Base-controlled NHC-Ru-catalyzed transfer hydrogenation and α-methylation/transfer hydrogenation of ketones using methanol. Chinese Chemical Letters, 2024, 35(7): 109323-. doi: 10.1016/j.cclet.2023.109323

    3. [3]

      Hailong HeWenbing WangWenmin PangChen ZouDan Peng . Double stimulus-responsive palladium catalysts for ethylene polymerization and copolymerization. Chinese Chemical Letters, 2024, 35(7): 109534-. doi: 10.1016/j.cclet.2024.109534

    4. [4]

      Gongcheng MaQihang DingYuding ZhangYue WangJingjing XiangMingle LiQi ZhaoSaipeng HuangPing GongJong Seung Kim . Palladium-free chemoselective probe for in vivo fluorescence imaging of carbon monoxide. Chinese Chemical Letters, 2024, 35(9): 109293-. doi: 10.1016/j.cclet.2023.109293

    5. [5]

      Mengjun Zhao Yuhao Guo Na Li Tingjiang Yan . Deciphering the structural evolution and real active ingredients of iron oxides in photocatalytic CO2 hydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100348-100348. doi: 10.1016/j.cjsc.2024.100348

    6. [6]

      Zixuan ZhuXianjin ShiYongfang RaoYu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954

    7. [7]

      Min ChenBoyu PengXuyun GuoYe ZhuHanying Li . Polyethylene interfacial dielectric layer for organic semiconductor single crystal based field-effect transistors. Chinese Chemical Letters, 2024, 35(4): 109051-. doi: 10.1016/j.cclet.2023.109051

    8. [8]

      Xinxiu YanXizhe HuangYangyang LiuWeishang JiaHualin ChenQi YaoTao Chen . Hyperbranched polyamidoamine protective layer with phosphate and carboxyl groups for dendrite-free Zn metal anodes. Chinese Chemical Letters, 2024, 35(10): 109426-. doi: 10.1016/j.cclet.2023.109426

    9. [9]

      Yanrui Liu Paramaguru Ganesan Peng Gao . Harnessing d-f transition rare earth complexes for single layer white organic light emitting diodes. Chinese Journal of Structural Chemistry, 2024, 43(9): 100369-100369. doi: 10.1016/j.cjsc.2024.100369

    10. [10]

      Jing Wang Zhongliao Wang Jinfeng Zhang Kai Dai . Single-layer crystalline triazine-based organic framework photocatalysts with different linking groups for H2O2 production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100202-100202. doi: 10.1016/j.cjsc.2023.100202

    11. [11]

      Shuo ZhangHaitao LiaoZhi-Qun LiuChong YanJia-Qi Huang . Re-evaluating the nano-sized inorganic protective layer on Cu current collector for anode free lithium metal batteries. Chinese Chemical Letters, 2024, 35(7): 109284-. doi: 10.1016/j.cclet.2023.109284

    12. [12]

      Ke ZhangSheng ZuoPengyuan YouTong RuFen-Er Chen . Palladium-catalyzed stereoselective decarboxylative [4 + 2] cyclization of 2-methylidenetrimethylene carbonates with pyrrolidone-derived enones: Straightforward access to chiral tetrahydropyran-fused spiro-pyrrolidine-2,3-diones. Chinese Chemical Letters, 2024, 35(6): 109157-. doi: 10.1016/j.cclet.2023.109157

    13. [13]

      Fei Jin Bolin Yang Xuanpu Wang Teng Li Noritatsu Tsubaki Zhiliang Jin . Facilitating efficient photocatalytic hydrogen evolution via enhanced carrier migration at MOF-on-MOF S-scheme heterojunction interfaces through a graphdiyne (CnH2n-2) electron transport layer. Chinese Journal of Structural Chemistry, 2023, 42(12): 100198-100198. doi: 10.1016/j.cjsc.2023.100198

    14. [14]

      Mingjiao LuZhixing WangGui LuoHuajun GuoXinhai LiGuochun YanQihou LiXianglin LiDing WangJiexi Wang . Boosting the performance of LiNi0.90Co0.06Mn0.04O2 electrode by uniform Li3PO4 coating via atomic layer deposition. Chinese Chemical Letters, 2024, 35(5): 108638-. doi: 10.1016/j.cclet.2023.108638

    15. [15]

      Boyuan HuJian ZhangYulin YangYayu DongJiaqi WangWei WangKaifeng LinDebin Xia . Dual-functional POM@IL complex modulate hole transport layer properties and interfacial charge dynamics for highly efficient and stable perovskite solar cells. Chinese Chemical Letters, 2024, 35(7): 108933-. doi: 10.1016/j.cclet.2023.108933

    16. [16]

      Ziling JiangShaoqing ChenChaochao WeiZiqi ZhangZhongkai WuQiyue LuoLiang MingLong ZhangChuang Yu . Enabling superior electrochemical performance of NCA cathode in Li5.5PS4.5Cl1.5-based solid-state batteries with a dual-electrolyte layer. Chinese Chemical Letters, 2024, 35(4): 108561-. doi: 10.1016/j.cclet.2023.108561

    17. [17]

      Kunyao PengXianbin WangXingbin Yan . Converting LiNO3 additive to single nitrogenous component Li2N2O2 SEI layer on Li metal anode in carbonate-based electrolyte. Chinese Chemical Letters, 2024, 35(9): 109274-. doi: 10.1016/j.cclet.2023.109274

    18. [18]

      Hui LiuXiangyang TangZhuang ChengYin HuYan YanYangze XuZihan SuFutong LiuPing Lu . Constructing multifunctional deep-blue emitters with weak charge transfer excited state for high-performance non-doped blue OLEDs and single-emissive-layer hybrid white OLEDs. Chinese Chemical Letters, 2024, 35(10): 109809-. doi: 10.1016/j.cclet.2024.109809

    19. [19]

      Yu PangMin WangNing-Hua YangMin XueYong Yang . One-pot synthesis of a giant twisted double-layer chiral macrocycle via [4 + 8] imine condensation and its X-ray structure. Chinese Chemical Letters, 2024, 35(10): 109575-. doi: 10.1016/j.cclet.2024.109575

    20. [20]

      Yaping WangPengcheng YuanZeyuan XuXiong-Xiong LiuShengfa FengMufan CaoChen CaoXiaoqiang WangLong PanZheng-Ming Sun . Ti3C2Tx MXene in-situ transformed Li2TiO3 interface layer enabling 4.5 V-LiCoO2/sulfide all-solid-state lithium batteries with superior rate capability and cyclability. Chinese Chemical Letters, 2024, 35(6): 108776-. doi: 10.1016/j.cclet.2023.108776

Metrics
  • PDF Downloads(1)
  • Abstract views(182)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return