Citation: Geng XUE, Xin CHEN, Chuan-Xin ZHENG, Guo-Qiang WANG, Ling-Yun LI. Color-tunable Upconversion Properties of Tb3+/Er3+/Yb3+ Tri-doped Na5Gd(WO4)4 Crystals[J]. Chinese Journal of Structural Chemistry, ;2020, 39(2): 301-309. doi: 10.14102/j.cnki.0254–5861.2011–2422 shu

Color-tunable Upconversion Properties of Tb3+/Er3+/Yb3+ Tri-doped Na5Gd(WO4)4 Crystals

  • Corresponding author: Guo-Qiang WANG, gqwang@fzu.edu.cn Ling-Yun LI, lilingyun@fzu.edu.cn
  • Received Date: 22 April 2019
    Accepted Date: 22 July 2019

    Fund Project: the Natural Science Foundation of Fujian Province 2017J01746

Figures(9)

  • In this work, novel phosphors Na5Gd(WO4)4: Tb3+/Yb3+ and Na5Gd(WO4)4: Tb3+/Er3+/Yb3+ phosphors were synthesized by the solid state reaction method. The photoluminescence properties were investigated. The introduction of Er3+ to NGW: Tb3+/Yb3+ was used to modify the chromaticity coordinates, then providing a good color tunable property. The change in the chromaticity coordinates induces the shift of emission color from yellow-green to blue-green for NGW: Tb3+/Er3+/Yb3+ as the temperature increases. All the results indicate that the NGW: Er3+/Tb3+/Yb3+ phosphors may be used as optical temperature sensing materials.
  • 加载中
    1. [1]

      Dong, B.; Cao, B. S.; He, Y. Y.; Liu, Z.; Li, Z. P.; Feng, Z. Q. Temperature sensing and in vivo imaging by molybdenum sensitized visible upconversion luminescence of rare-earth oxides. Adv. Mater. 2012, 24, 1987-1993.  doi: 10.1002/adma.201200431

    2. [2]

      Wang, X. D.; Wolfbeis, O. S.; Meier, R. J. Luminescent probes and sensors for temperature. Chem. Soc. Rev. 2013, 42, 7834-7869.  doi: 10.1039/c3cs60102a

    3. [3]

      McLaurin, E. J.; Bradshaw, L. R.; Gamelin, D. R. Dual-emitting nanoscale temperature sensors. Chem. Mater. 2013, 25, 1283-1292.  doi: 10.1021/cm304034s

    4. [4]

      Alencar, M. A. R. C.; Maciel, G. S.; de Araújo, C. B.; Patra, A. Er3+-doped BaTiO3 nanocrystals for thermometry: influence of nanoenvironment on the sensitivity of a fluorescence based temperature sensor. Appl. Phys. Lett. 2004, 84, 4753-4755.  doi: 10.1063/1.1760882

    5. [5]

      Xu, W.; Gao, X. Y.; Zheng, L. J.; Zhang, Z. G.; Cao, W. W. Shortwavelength upconversion emissions in Ho3+/Yb3+ codoped glass ceramic and the optical thermometry behavior. Opt. Express 2012, 20, 18127-18137.  doi: 10.1364/OE.20.018127

    6. [6]

      Xing, L. L.; Yang, W. Q.; Ma, D. C.; Wang, R. Effect of crystallinity on the optical thermometry sensitivity of Tm3+/Yb3+ codoped LiNbO3 crystal. Sens. Actuators B 2015, 221, 458-462.  doi: 10.1016/j.snb.2015.06.132

    7. [7]

      Mahata, M. K.; Koppe, T.; Mondal, T.; Brusewitz, C.; Kumar, K.; Rai, V. K.; Hofsäss, H.; Vetter, U. Incorporation of Zn2+ Ions into BaTiO3: Er3+/Yb3+ nanophosphor: an effective way to enhance upconversion, defect luminescence and temperature sensing. Phys. Chem. Chem. Phys. 2015, 17, 20741-20753.  doi: 10.1039/C5CP01874A

    8. [8]

      Liu, S.; Ming, H.; Cui, J.; Liu, S.; You, W.; Ye, X.; Yang, Y.; Nie, H.; Wang, R. Color-tunable upconversion luminescence and multiple temperature sensing and optical heating properties of Ba3Y4O9: Er3+/Yb3+ phosphors. J. Phys. Chem. C 2018, 122, 16289-16303.  doi: 10.1021/acs.jpcc.8b04180

    9. [9]

      Grzyb, T.; Gruszeczka, A.; Wigluszb, R. J.; Lis, S. The effects of down- and up-conversion on dual-mode green luminescence from Yb3+- and Tb3+-doped LaPO4 nanocrystals. J. Mater. Chem. C 2013, 1, 5410-5418.  doi: 10.1039/c3tc31100g

    10. [10]

      Wang, G. Q.; Li, L. Y.; Feng, Y. N.; Yu, H.; Zheng, X. H. Tb3+- and Yb3+-doped novel KBaLu(MoO4)3 crystals with disordered chained structure showing down- and up-conversion luminescence. CrystEngComm. 2018, 20, 3657-3665.  doi: 10.1039/C8CE00461G

    11. [11]

      Geng, D.; Li, G.; Shang, M.; Yang, D.; Zhang, Y.; Cheng, Z.; Lin, J. Color tuning via energy transfer in Sr3In(PO4)3: Ce3+/Tb3+/Mn2+ phosphors. J. Mater. Chem. C 2012, 22, 14262-14271.  doi: 10.1039/c2jm32392c

    12. [12]

      Sun, J.; Lai, J.; Xia, Z.; Zhang, X.; Liu, H.; Du, H. Luminescence properties and energy transfer in Ba2Y(BO3)2Cl: Ce3+, Tb3+ phosphors. Appl. Phys. B 2012, 107, 827-831.  doi: 10.1007/s00340-012-4961-5

    13. [13]

      Sillén, L. G.; Sundvall, H. Double molybdates and tungstates of alkali metals with lanthanum or bismuth. Ark. Kemi Mineral Geol. 1943, A17, 1-18.

    14. [14]

      Hong, H. Y. P.; Dwight, K. Crystal structure and fluorescence lifetime of a laser material NdNa5(WO4)4. Mat. Res. Bull. 1974, 9, 775-780.  doi: 10.1016/0025-5408(74)90112-3

    15. [15]

      Pan, J.; Yau, L.; Chen, L.; Zhao, G.; Zhou, G.; Guo, C. Studies on spectra properties of Na5Eu(WO4)4 luminescent crystal. J. Lumin. 1988, 40, 856-857.

    16. [16]

      Huang, D.; Zhou, Y.; Xu, W.; Yang, Z.; Liu, Z.; Hong, M.; Lin, Y.; Yu, J. Photoluminescence properties of M3+ (M3+ = Bi3+, Sm3+) activated Na5Eu(WO4)4 red-emitting phosphors for white LEDs. J. Alloys Compd. 2013, 554, 312-318.  doi: 10.1016/j.jallcom.2012.11.172

    17. [17]

      Wang, G. Q.; Lin, Y. P.; Ye, R.; Feng, Y. N.; Li, L. Y. Pr3+ and Tb3+ coactivated Na5Gd(WO4)4 showing tunable luminescence with high thermostability via modulation of excitation and temperature. J. Alloys Compd. 2019, 779, 41-48.  doi: 10.1016/j.jallcom.2018.11.223

    18. [18]

      Perets, S.; Tseitlin, M.; Shneck, R. Z.; Mogilyanski, D.; Kimmel, G.; Burshtein, Z. Sodium gadolinium tungstate NaGd(WO4)2: growth, crystallography, and some physical properties. J. Cryst. Growth 2007, 305, 257-264.  doi: 10.1016/j.jcrysgro.2007.03.058

    19. [19]

      Shannon, R. D. T.; Prewitt, C. T. Effective ionic radii in oxides and fluorides. Acta Crystallogr. B 1969, 25, 925-946.  doi: 10.1107/S0567740869003220

    20. [20]

      Cavalli, E.; Boutinaud, P.; Mahiou, R.; Bettinelli, M.; Dorenbos, P. Luminescence dynamics in Tb3+-doped CaWO4 and CaMoO4 crystals. Inorg. Chem. 2010, 49, 4916-4921.  doi: 10.1021/ic902445c

    21. [21]

      Annadurai, G.; Jayachandiran, M.; Kennedy, S. M. M.; Sivakumar, V. Synthesis and photoluminescence properties of Ba2CaZn2Si6O17: Tb3+ green phosphor. Mat. Sci. Eng. B 2016, 208, 47-52.  doi: 10.1016/j.mseb.2016.02.008

    22. [22]

      Auzel, F. Upconversion processes in coupled ion systems. J. Lumin. 1990, 45, 341-345.  doi: 10.1016/0022-2313(90)90189-I

    23. [23]

      Salley, G. M.; Valiente, R.; Guedel, H. U. Luminescence upconversion mechanisms in Yb3+–Tb3+ systems. J. Lumin. 2001, s94-95, 305-309.

    24. [24]

      Gao, Y.; Huang, F.; Lin, H.; Zhou, J.; Xu, J.; Wang, Y. A novel optical thermometry strategy based on diverse thermal response from two intervalence charge transfer states. Adv. Funct. Mater. 2016, 26, 3139-3145.  doi: 10.1002/adfm.201505332

  • 加载中
    1. [1]

      Jiahui YUJixian DONGYutong ZHAOFuping ZHAOBo GEXipeng PUDafeng ZHANG . The morphology control and full-spectrum photodegradation tetracycline performance of microwave-hydrothermal synthesized BiVO4:Yb3+,Er3+ photocatalyst. Journal of Fuel Chemistry and Technology, 2025, 53(3): 348-359. doi: 10.1016/S1872-5813(24)60514-1

    2. [2]

      Yan ChengHua-Peng RuanYan PengLonghe LiZhenqiang XieLang LiuShiyong ZhangHengyun YeZhao-Bo Hu . Magnetic, dielectric and luminescence synergetic switchable effects in molecular material [Et3NCH2Cl]2[MnBr4]. Chinese Chemical Letters, 2024, 35(4): 108554-. doi: 10.1016/j.cclet.2023.108554

    3. [3]

      Junying ZhangRuochen LiHaihua WangWenbing KangXing-Dong Xu . Photo-induced tunable luminescence from an aggregated amphiphilic ethylene-pyrene derivative in aqueous media. Chinese Chemical Letters, 2024, 35(6): 109216-. doi: 10.1016/j.cclet.2023.109216

    4. [4]

      Jun-Ting MoZheng Wang . Achieving tunable long persistent luminescence in metal organic halides based on pyridine solvent. Chinese Chemical Letters, 2024, 35(9): 109360-. doi: 10.1016/j.cclet.2023.109360

    5. [5]

      Yongjing DengFeiyang LiZijian ZhouMengzhu WangYongkang ZhuJianwei ZhaoShujuan LiuQiang Zhao . Chiral induction and Sb3+ doping in indium halides to trigger second harmonic generation and circularly polarized luminescence. Chinese Chemical Letters, 2024, 35(8): 109085-. doi: 10.1016/j.cclet.2023.109085

    6. [6]

      Husitu LinShuangkun ZhangDianfa ZhaoYongkang WangWei LiuFan YangJianjun LiuDongpeng YanZhanpeng Wu . Flexible polyphosphazene nanocomposite films: Enhancing stability and luminescence of CsPbBr3 perovskite nanocrystals. Chinese Chemical Letters, 2025, 36(4): 109795-. doi: 10.1016/j.cclet.2024.109795

    7. [7]

      Gregorio F. Ortiz . Some facets of the Mg/Na3VCr0.5Fe0.5(PO4)3 battery. Chinese Chemical Letters, 2024, 35(10): 109391-. doi: 10.1016/j.cclet.2023.109391

    8. [8]

      Ruofan YinZhaoxin GuoRui LiuXian-Sen Tao . Ultrafast synthesis of Na3V2(PO4)3 cathode for high performance sodium-ion batteries. Chinese Chemical Letters, 2025, 36(2): 109643-. doi: 10.1016/j.cclet.2024.109643

    9. [9]

      Peiyan ZhuYanyan YangHui LiJinhua WangShiqing Li . Rh(Ⅲ)‐Catalyzed sequential ring‐retentive/‐opening [4 + 2] annulations of 2H‐imidazoles towards full‐color emissive imidazo[5,1‐a]isoquinolinium salts and AIE‐active non‐symmetric 1,1′‐biisoquinolines. Chinese Chemical Letters, 2024, 35(10): 109533-. doi: 10.1016/j.cclet.2024.109533

    10. [10]

      Gaofeng WANGShuwen SUNYanfei ZHAOLixin MENGBohui WEI . Structural diversity and luminescence properties of three zinc coordination polymers based on bis(4-(1H-imidazol-1-yl)phenyl)methanone. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 849-856. doi: 10.11862/CJIC.20230479

    11. [11]

      Tao ZhouJing ZhouYunyun LiuJie-Ping WanFen-Er Chen . Transition metal-free tunable synthesis of 3-(trifluoromethylthio) and 3-trifluoromethylsulfinyl chromones via domino C–H functionalization and chromone annulation of enaminones. Chinese Chemical Letters, 2024, 35(11): 109683-. doi: 10.1016/j.cclet.2024.109683

    12. [12]

      Hui PengXiao WangWeiguo HuangShuiyue YuLinghang KongQilin WeiJialong ZhaoBingsuo Zou . Efficient tunable visible and near-infrared emission in Sb3+/Sm3+-codoped Cs2NaLuCl6 for near-infrared light-emitting diode, triple-mode fluorescence anti-counterfeiting and information encryption. Chinese Chemical Letters, 2024, 35(11): 109462-. doi: 10.1016/j.cclet.2023.109462

    13. [13]

      Jianbao Mei Bei Li Shu Zhang Dongdong Xiao Pu Hu Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023

    14. [14]

      Shihong WuRonghui ZhouHang ZhaoPeng Wu . Sonoafterglow luminescence for in vivo deep-tissue imaging. Chinese Chemical Letters, 2024, 35(10): 110026-. doi: 10.1016/j.cclet.2024.110026

    15. [15]

      Tao LongPeng ChenBin FengCaili YangKairong WangYulei WangCan ChenYaping WangRuotong LiMeng WuMinhuan LanWei Kong PangJian-Fang WuYuan-Li Ding . Reinforced concrete-like Na3.5V1.5Mn0.5(PO4)3@graphene hybrids with hierarchical porosity as durable and high-rate sodium-ion battery cathode. Chinese Chemical Letters, 2024, 35(4): 109267-. doi: 10.1016/j.cclet.2023.109267

    16. [16]

      Dong-Xue Jiao Hui-Li Zhang Chao He Si-Yu Chen Ke Wang Xiao-Han Zhang Li Wei Qi Wei . Layered (C5H6ON)2[Sb2O(C2O4)3] with a large birefringence derived from the uniform arrangement of π-conjugated units. Chinese Journal of Structural Chemistry, 2024, 43(6): 100304-100304. doi: 10.1016/j.cjsc.2024.100304

    17. [17]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    18. [18]

      Entian CuiYulian LuZhaoxia LiZhilei ChenChengyan GeJizhou Jiang . Interfacial B-O bonding modulated S-scheme B-doped N-deficient C3N4/O-doped-C3N5 for efficient photocatalytic overall water splitting. Chinese Chemical Letters, 2025, 36(1): 110288-. doi: 10.1016/j.cclet.2024.110288

    19. [19]

      Shiyi WANGChaolong CHENXiangjian KONGLansun ZHENGLasheng LONG . Polynuclear lanthanide compound [Ce4Ce6(μ3-O)4(μ4-O)4(acac)14(CH3O)6]·2CH3OH for the hydroboration of amides to amine. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 88-96. doi: 10.11862/CJIC.20240342

    20. [20]

      Yan ZHAOJiaxu WANGZhonghu LIChangli LIUXingsheng ZHAOHengwei ZHOUXiaokang JIANG . Gd3+-doped Sc2W3O12: Eu3+ red phosphor: Preparation and luminescence performance. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 461-468. doi: 10.11862/CJIC.20240316

Metrics
  • PDF Downloads(3)
  • Abstract views(342)
  • HTML views(17)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return