Citation: Hui-Liang WEN, Bo-Wen LAI, Hua-Long PENG, Zhi-Qiang XIONG, Chong-Bo LIU. Characterization and Infrared Stealthy Properties of Two Schiff-base Compounds Derived from 1-Amino-2-hydroxypropane and Their Complexes[J]. Chinese Journal of Structural Chemistry, ;2020, 39(2): 279-286. doi: 10.14102/j.cnki.0254–5861.2011–2420 shu

Characterization and Infrared Stealthy Properties of Two Schiff-base Compounds Derived from 1-Amino-2-hydroxypropane and Their Complexes

  • Corresponding author: Chong-Bo LIU, cbliu2002@163.com
  • Received Date: 19 April 2019
    Accepted Date: 19 September 2019

    Fund Project: the National Natural Science Foundation of China 21264011the National Natural Science Foundation of China 20961007the State Key Laboratory of Food Science and Technology of Nanchang University SKLF-ZZB-201519

Figures(5)

  • Single crystals of two Schiff base compounds 1 and 2 derived from 1-amino-2-hydroxypropane were obtained via condensation reaction of an amine and a reactive carbonyl group. The compounds were characterized by elemental analysis, IR and single-crystal X-ray diffraction. Compound 1 (C10H13NO2) crystallizes in the monoclinic system, space group P21 with a = 4.487(9), b = 10.913(2), c = 9.886(19) Å, β = 97.823(3)º, V = 479.59(16) Å3, Z = 2, Mr = 179.21, Dc = 1.241 g/cm3, F(000) = 192, GOOF = 1.005, μ = 0.087 mm-1, the final R = 0.0328 and wR = 0.0738 for 1721 observed reflections with I > 2σ(I). Compound 2 (C14H20N2O2) crystallizes in orthorhombic system, space group Pbca with a = 6.295(2), b = 7.290(3), c = 30.519(11) Å, V = 1400.5(9) Å3, Z = 8, Mr = 248.32, Dc = 1.178 g/cm3, F(000) = 536, GOOF = 1.125, μ = 0.079 mm-1, the final R = 0.0871 and wR = 0.1748 for 1307 observed reflections with I > 2σ(I). Compound 1 exhibits a 3D supramolecular structure and compound 2 show a 3D supramolecular structure under hydrogen bonding interactions. Furthermore, the infrared stealthy performance of two Schiff base compounds and their Fe(Ⅲ) complexes were studied. The results show that their Fe(Ⅲ) complexes show lower infrared emissivity than corresponding Schiff base compounds, and the lowest infrared emissivity reaches to 0.657.
  • 加载中
    1. [1]

      Macdonald, J. C.; Whitesides, G. M. Solid-state structures of hydrogen-bonded tapes based on cyclic secondary diamides. Chem. Rev. 1994, 94, 2383–2420.  doi: 10.1021/cr00032a007

    2. [2]

      Wang, L.; Xu, L. Y.; Xue, R. F.; Lu, X. F.; Chen, R. X.; Tao, X. T. Cocrystallization of N-donor type compounds with 5-sulfosalicylic acid: the effect of hydrogen-bonding supramolecular architectures. Science China Chemistry 2012, 55, 138–144.  doi: 10.1007/s11426-011-4394-8

    3. [3]

      Shen, C. J.; Sheng, T. L.; Fu, R. B.; Hu, S. M.; Chen, J. S.; Zhu, Q. L.; Ma, X.; Wu, X. T. Dinuclear copper(Ⅱ) complex with a new polycarboxylate ligand: syntheses, characterization and crystal structure. Chin. J. Struct. Chem. 2012, 31, 11–18.

    4. [4]

      Benito, J. M.; Gomez-Garcia, M.; Mellet, C. O.; Baussanne, I.; Defaye, J.; Fernandez, J. M. Optimizing saccharide-directed molecular delivery to biological receptors: design, synthesis, and biological evaluation of glycodendrimer-cyclodextrin conjugates. J. Am. Chem. Soc. 2004, 126, 10355–10363.  doi: 10.1021/ja047864v

    5. [5]

      Shaheen, F.; Rehman, Z. U.; Ali, S.; Meetsma, A. Structural properties and antibacterial potency of new supramolecular organotin(Ⅳ) dithiocarboxylates. Polyhedron 2012, 31, 697–703.  doi: 10.1016/j.poly.2011.10.025

    6. [6]

      Ishow, E.; Bellaiche, C.; Bouteiller, L.; Nakatani, K.; Delaire, J. A. Versatile synthesis of small NLO-active molecules forming amorphous materials with spontaneous second-order NLO response. J. Am. Chem. Soc. 2003, 125, 15744–15745.  doi: 10.1021/ja038207q

    7. [7]

      Miyahira, T.; Hasegawa, H.; Takahashi, Y.; Inabe, T. Electrochemical crystallization of organic molecular conductors: electrode surface conditions for crystal growth. Cryst. Growth Des. 2013, 13, 1955–1960.  doi: 10.1021/cg301852k

    8. [8]

      Marchal, C.; Filinchuk, Y.; Imbert, D.; Bunzli, J. C. G.; Mazzanti, M. Toward the rational design of lanthanide coordination polymers: a new topological approach. Inorg. Chem. 2007, 46, 6242–6244.  doi: 10.1021/ic7009918

    9. [9]

      Liu, C. B.; Chen, Y.; Yan, L. S.; Huang, D. H.; Xiong, Z. Q. Syntheses, characterization, and antibacterial activities of four new Schiff base compounds derived from 1-phenyl-3-methyl-4-benzoyl-2-pyrazolin-5-one. J. Heterocycl. Chem. 2012, 49, 839–844.  doi: 10.1002/jhet.874

    10. [10]

      Hadjoudis, E.; Vittorakis, M.; Moustakali-Mavridis, I. Photochromism and thermochromism of Schiff bases in the solid state and in rigid glasses. J. Tetrahedron 1987, 43, 1345–1360.  doi: 10.1016/S0040-4020(01)90255-8

    11. [11]

      Akitsu, T.; Einaga, Y. Synthesis, crystal structures and electronic properties of Schiff base nickel(Ⅱ) complexes: towards solvatochromism induced by a photochromic solute. Polyhedron 2005, 24, 1869–1877.  doi: 10.1016/j.poly.2005.06.019

    12. [12]

      Li, H. N.; Liu, C. B.; Dai, B.; Tang, X. H.; Zhang, Z. J.; Xiong, Z. Q.; Liu, X. M. Synthesis, conductivity and electromagnetic wave absorption properties of chiral poly Schiff bases and their silver complexes. J. Appl. Polym. Sci. 2015, 132, 10815(1-8).

    13. [13]

      Liu, C. B.; Li, L.; Zhang, X.; Chen, W. Y.; Zhang, Z. J.; Qin, Y. C.; Chen, D. Z. Synthesis, characterization of chiral poly(ferrocenyl-Schiff base) iron(Ⅱ) complexes/RGO composites with enhanced microwave absorption properties. Polymer. 2018, 150, 301–310.  doi: 10.1016/j.polymer.2018.07.049

    14. [14]

      Kundua, B. K.; Chhabraa, V.; Malviyaa, N.; Gangulyb, R.; Mishrac, G. S.; Mukhopadhyay, S. Zeolite encapsulated host-guest Cu(Ⅱ) Schiff base complexes: superior activity towards oxidation reactions over homogenous catalytic systems. Micropor. Mesopor. Mater. 2018, 271, 100–117.  doi: 10.1016/j.micromeso.2018.05.046

    15. [15]

      Gupta, K. C.; Sutara, A. K.; Lin, C. C. Polymer-supported Schiff base complexes in oxidation reactions. Coord. Chem. Rev. 2009, 253, 1926–1946.  doi: 10.1016/j.ccr.2009.03.019

    16. [16]

      Gupta, K. C.; Sutar, A. K. Catalytic activities of Schiff base transition metal complexes. J. Coord. Chem. Rev. 2008, 252, 1420–1450.  doi: 10.1016/j.ccr.2007.09.005

    17. [17]

      Kaczmarek, M. T.; Zabiszak, M.; Nowak, M.; Jastrzab, R. Lanthanides: Schiff base complexes, applications in cancer diagnosis, therapy, and antibacterial activity. Coord. Chem. Rev. 2018, 370, 42–54.  doi: 10.1016/j.ccr.2018.05.012

    18. [18]

      Wen, H. L.; Du, X. L.; Liu, C. B. Research advance of flavonoids carboxylic acid compounds and their rare earth complexes. Chin. Rare Earths 2009, 30, 69–75.

    19. [19]

      Dhahagani, K.; Kesavan, M. P.; Kumar, G. G. V.; Ravi, L.; Rajagopal, G.; Rajesh, J. Crystal structure, optical properties, DFT analysis of new morpholine based Schiff base ligands and their copper(Ⅱ) complexes: DNA, protein docking analyses, antibacterial study and anticancer evaluation. Mater. Sci. Eng. C 2018, 90, 119–130.  doi: 10.1016/j.msec.2018.04.032

    20. [20]

      Gryboś, R.; Szklarzewicz, J.; Jurowska, A.; Hodorowicz, M. Properties, structure and stability of V(Ⅳ) hydrazide Schiff base ligand complex. J. Mol. Struct. 2018, 1171, 880–887.  doi: 10.1016/j.molstruc.2018.06.077

    21. [21]

      Kaczmarek, M. T.; Kubicki, M.; Hnatejko, Z. Two types of lanthanide Schiff base complexes: synthesis, structure and spectroscopic studies. Polyhedron 2015, 102, 224–232.  doi: 10.1016/j.poly.2015.09.063

    22. [22]

      Kaczmarek, M. T.; Jastrząb, R.; Kubicki, M.; Gierszewski, M.; Sikorski, M. Suplamolecular polymer of Schiff base gadolinium complex: synthesis, crystal structure and spectroscopic properties. Inorg. Chim. Acta 2015, 430, 108–113.  doi: 10.1016/j.ica.2015.02.026

    23. [23]

      Storr, T.; Thompson, K. H.; Orvig, C. Design of targeting ligands in medicinal inorganic chemistry. Chem. Soc. Rev. 2006, 35, 534–544.  doi: 10.1039/b514859f

    24. [24]

      Kumar, K.; Tweedle, M. F. Macrocyclic polyaminocarboxylate complexes of lanthanides as magnetic resonance imaging contrast agents. Pure Appl. Chem. 1993, 65, 515–520.  doi: 10.1351/pac199365030515

    25. [25]

      Gao, F.; Zhang, Y. Q.; Wang, S.; Liu, H.; Chen, X. Y. Syntheses, structures and magnetic properties of macrocyclic Schiff base-supported homodinuclear lanthanide complexes. Dalton Trans. 2018, 47, 11696–11704.  doi: 10.1039/C8DT02243G

    26. [26]

      Tessa ten Cate, A.; Kooijman, H.; Spek, A. L.; Sijbesma, R. P.; Meijer, E. W. Conformational control in the cyclization of hydrogen-bonded supramolecular polymers. J. Am. Chem. Soc. 2004, 126, 3801–3808.  doi: 10.1021/ja039408x

    27. [27]

      Tzeli, D.; Petsalakis, I. D.; Theodorakopoulos, G.; Ajami, D.; Rebek, J. J. Theoretical study of free and encapsulated carboxylic acid and amide dimers. Int. J. Quantum Chem. 2013, 113, 734–739.  doi: 10.1002/qua.24062

    28. [28]

      Wen, H. L.; Chen, Y. H.; Liu, C. B.; Chen, D. D.; Hu, X. B. Crystal structure of 3-Hydroxy-3΄, 4΄-methylenedioxy flavone-6-carboxylic acid dimethylformamide solvate. J. Chem. Crystallogr. 2010, 40, 731–734.  doi: 10.1007/s10870-010-9727-5

    29. [29]

      Shattock, T. R.; Vishweshwar, P.; Wang, Z. Q.; Zaworotko, M. J. 18-Fold interpenetration and concomitant polymorphism in the 2: 3 co-crystal of trimesic acid and 1, 2-bis(4-pyridyl)ethane. Cryst. Growth Des. 2005, 5, 2046–2049.  doi: 10.1021/cg0501985

    30. [30]

      Rajput, L.; Biradha, K. Design of cocrystals via new and robust supramolecular synthon between carboxylic acid and secondary amide: honeycomb network with jailed aromatics. Cryst. Growth Des. 2009, 9, 40–42.  doi: 10.1021/cg801132r

    31. [31]

      Varughese, S.; Pedireddi, V. R. A competitive molecular recognition study: syntheses and analysis of supramolecular assemblies of 3, 5-dihydroxybenzoic acid and its bromo derivative with some N-donor compounds. Chem. Eur. J. 2006, 12, 1597–1609.  doi: 10.1002/chem.200500570

    32. [32]

      Zhao, Y.; Li, Z.; Li, H.; Wang, S.; Niu, M. Synthesis, crystal structure, DNA binding and in vitro cytotoxicity studies of Zn(Ⅱ) complexes derived from amino-alcohol Schiff-bases. Inorg. Chim Acta 2018, 482, 136–143.  doi: 10.1016/j.ica.2018.06.008

    33. [33]

      Shankar, M.; Dennis, R. A.; Jeeva, M.; Purusothaman, R.; Vimalan, M.; Vetha, P. I. Synthesis, crystal growth, thermal and laser damage threshold properties of new Schiff base NLO material 4-nitro-benzoic acid (3-ethoxy-2-hydroxy-benzylidene)-hydrazide. Mate. Lett. 2018, 232, 113–117.  doi: 10.1016/j.matlet.2018.08.090

    34. [34]

      Hu, Y. X. The synthesis of different structure Schiff bases and their complexes for infrared emissivity property. Nanjing University of Aeronautics and Astronautics 2016.

    35. [35]

      Fu, W. Electro-optic stealthy technology of aircraft. Electronics Optics & Control 2002, 01, 7–10.

    36. [36]

      Hu, Y. X.; Zhuang, H. Y.; Xu, G. Y.; Yan, L. J. The synthesis and infrared stealth performance of Schiff-bases of different structures and their iron compounds. Develop Appl. Materi. 2016, 31, 55–60.

    37. [37]

      Lv, X. L.; Xu, W. D.; Cui, C. A.; Chen, Y. H.; Ge, Q, L. The Synthesis of Schiff bases and their application in the low emissivity coating. J. PLA Univ. of Sci. Technol. 2000, 54–57.

    38. [38]

      Sheldrick, G. M. SADABS. Program for Empirical Absorption Correction of the Area Detector Data. University of Gottingen, Germany 1997.

    39. [39]

      Sheldrick, G. M. SHELXS-97. Program for Crystal Structure Solution. University of Gottingen, Germany 1997.

    40. [40]

      Sheldrick, G. M. SHELXL-97. Program for Crystal Structure Refinement. University of Gottingen, Germany 1997.

  • 加载中
    1. [1]

      Chao LIUJiang WUZhaolei JIN . Synthesis, crystal structures, and antibacterial activities of two zinc(Ⅱ) complexes bearing 5-phenyl-1H-pyrazole group. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1986-1994. doi: 10.11862/CJIC.20240153

    2. [2]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    3. [3]

      Yao HUANGYingshu WUZhichun BAOYue HUANGShangfeng TANGRuixue LIUYancheng LIUHong LIANG . Copper complexes of anthrahydrazone bearing pyridyl side chain: Synthesis, crystal structure, anticancer activity, and DNA binding. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 213-224. doi: 10.11862/CJIC.20240359

    4. [4]

      Xiumei LIYanju HUANGBo LIUYaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109

    5. [5]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    6. [6]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    7. [7]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    8. [8]

      Xiaoling WANGHongwu ZHANGDaofu LIU . Synthesis, structure, and magnetic property of a cobalt(Ⅱ) complex based on pyridyl-substituted imino nitroxide radical. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 407-412. doi: 10.11862/CJIC.20240214

    9. [9]

      Yan XUSuzhi LIYan LILushun FENGWentao SUNXinxing LI . Structure variation of cadmium naphthalene-diphosphonates with the changing rigidity of N-donor auxiliary ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 395-406. doi: 10.11862/CJIC.20240226

    10. [10]

      Xiaofen GUANYating LIUJia LIYiwen HUHaiyuan DINGYuanjing SHIZhiqiang WANGWenmin WANG . Synthesis, crystal structure, and DNA-binding of binuclear lanthanide complexes based on a multidentate Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2486-2496. doi: 10.11862/CJIC.20240122

    11. [11]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    12. [12]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    13. [13]

      Shuyan ZHAO . Field-induced Co single-ion magnet with pentagonal bipyramidal configuration. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1583-1591. doi: 10.11862/CJIC.20240231

    14. [14]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    15. [15]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    16. [16]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    17. [17]

      Tao YuVadim A. SoloshonokZhekai XiaoHong LiuJiang Wang . Probing the dynamic thermodynamic resolution and biological activity of Cu(Ⅱ) and Pd(Ⅱ) complexes with Schiff base ligand derived from proline. Chinese Chemical Letters, 2024, 35(4): 108901-. doi: 10.1016/j.cclet.2023.108901

    18. [18]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    19. [19]

      Yuan ZHUXiaoda ZHANGShasha WANGPeng WEITao YI . Conditionally restricted fluorescent probe for Fe3+ and Cu2+ based on the naphthalimide structure. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 183-192. doi: 10.11862/CJIC.20240232

    20. [20]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

Metrics
  • PDF Downloads(4)
  • Abstract views(336)
  • HTML views(7)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return