Citation: Wei-Long ZHANG, Zhen-Gang GUO, Da-Gui CHEN, Jian-Gang HE, Hao ZHANG, Xiao-Yan LI. A Mixed Metal Phosphate Containing Two Types of Phosphoric Anionic Groups: Cs2Ga4(P2O7)2(P4O13)[J]. Chinese Journal of Structural Chemistry, ;2020, 39(2): 329-339. doi: 10.14102/j.cnki.0254–5861.2011–2394 shu

A Mixed Metal Phosphate Containing Two Types of Phosphoric Anionic Groups: Cs2Ga4(P2O7)2(P4O13)

  • Corresponding author: Wei-Long ZHANG, zhangwlph@hotmail.com
  • Received Date: 4 April 2019
    Accepted Date: 25 June 2019

    Fund Project: the National Natural Science Foundation of China 21101156the State Key Laboratory of Structure Chemistry 20150016Fujian Province Natural Science Foundation for Youths 2016J05109Fujian Education Department JK2015056the founding from Fujian Jiangxia University JXZ2016002

Figures(6)

  • A new mixed metal phosphate of Cs2Ga4P8O27, which also can be written as Cs2Ga4(P2O7)2(P4O13), was synthesized by high temperature solid state syntheses and structurally characterized by X-ray single-crystal diffraction for the first time. The title compound crystallizes in monoclinic system with space group P21/c (No. 14), and features a 3D framework which can be considered as alternating layers of {Ga2(P4O13)}n and {Ga2(P2O7)2}n2n- parallel to the bc plane further connected by Ga−O−P linkages, where Cs+ cations are located in the free space between two adjacent layers to charge the valence. The Ga3+ cations in the compound contain two kinds of coordination models (4 and 6). Furthermore, the title compound coexists of two phospho-ric anionic groups which are non-condensed horseshoe-shaped (P4O13) and two (P2O7) with different symmetries. The density functional theory calculations indicate that Cs2Ga4P8O27 is a direct band gap insulator with flat valence and dispersive conduction bands and a band gap of 4.13 eV.
  • 加载中
    1. [1]

      Pan, Y.; Guo, S. P.; Liu, B. W.; Xue, H. G.; Guo, G. C. Second-order nonlinear optical crystals with mixed anions. Coord. Chem. Rev. 2018, 374, 464–496.  doi: 10.1016/j.ccr.2018.07.013

    2. [2]

      Bass, M.; Barrett, H. H. Laser-induced damage probability at 1.06 pim and 0.69 pim. Appl. Opt. 1973, 12, 690–699.  doi: 10.1364/AO.12.000690

    3. [3]

      Liu, Y. S.; Dentz, D.; Belt, R. High-average-power intracavity second-harmonic generation using KTiOPO4 in an acousto-optically Q-switched Nd: YAG laser oscillator at 5 kHz. Opt. Lett. 1983, 9, 76–78.

    4. [4]

      Yu, H.; Zhang, W.; Young, J.; Rondinelli, J. M.; Halasyamani, P. S. Bidenticity-enhanced second harmonic generation from Pb chelation in Pb3Mg3TeP2O14. J. Am. Chem. Soc. 2016, 138, 88–91.  doi: 10.1021/jacs.5b11712

    5. [5]

      Huang, Y. Z.; Wu, L. M.; Wu, X. T.; Li, L. H.; Chen, L.; Zhang, Y. F. Pb2B5O9I: an iodide borate with strong second harmonic generation. J. Am. Chem. Soc. 2010, 132, 12788–12789.  doi: 10.1021/ja106066k

    6. [6]

      Zhang, W. L.; Cheng, W. D.; Zhang, H.; Geng, L.; Lin, C. S.; He, Z. Z. A strong second-harmonic heneration material Cd4BiO(BO3)3 originating from 3-chromophore asymmetric structures. J. Am. Chem. Soc. 2010, 132, 1508–1509.  doi: 10.1021/ja9091209

    7. [7]

      Zhao, S. G.; Yang, Y.; Shen, Y. G.; Zhao, B. Q.; Li, L.; Ji, C. M.; Wu, Z. Y.; Yuan, D. Q.; Lin, Z. S.; Hong, M. C.; Luo, J. H. Cooperation of three chromophores generates the water-resistant nitrate nonlinear optical material Bi3TeO6OH(NO3)2. Angew. Chem., Int. Ed. 2017, 56, 540–544.  doi: 10.1002/anie.201609876

    8. [8]

      Zhao, S. G.; Zhang, J.; Zhang, S. Q.; Sun, Z. H.; Lin, Z. S.; Wu, Y. C.; Hong, M. C.; Luo, J. H. A new UV nonlinear optical material CsZn2B3O7: ZnO4 tetrahedra double the efficiency of second-harmonic generation. Inorg. Chem. 2014, 53, 2521–2527.  doi: 10.1021/ic402667m

    9. [9]

      Pachoud, E.; Zhang, W. G.; Tapp, J.; Liang, K. C.; Lorenz, B.; Chu, P. C. W.; Halasyamani, P. S. Top-seeded single-crystal growth, structure, and physical properties of polar LiCrP2O7. Cryst. Growth Des. 2013, 13, 5473–5480.  doi: 10.1021/cg401442r

    10. [10]

      Kim, M. K.; Kim, S. H.; Chang, H. Y.; Halasyamani, P. S.; Ok, K. M. New noncentrosymmetric tellurite phosphate material: synthesis, characterization, and calculations of Te2O(PO4)2. Inorg. Chem. 2010, 49, 7028–7034.  doi: 10.1021/ic100706n

    11. [11]

      Abudoureheman, M.; Han, S. J.; Lei, B. H.; Yang, Z. H.; Long, X. F.; Pan, S. L. KPb2(PO3)5: a novel nonlinear optical lead polyphosphate with a short deep-UV cutoff edge. J. Mater. Chem. C 2016, 4, 10630–10637.  doi: 10.1039/C6TC03424A

    12. [12]

      Yu, H. W.; Zhang, W. G.; Young, J.; Rondinelli, J. M.; Halasyamani, P. S. Design and synthesis of the beryllium-free deep-ultraviolet nonlinear optical material Ba3(ZnB5O10)PO4. Adv. Mater. 2015, 27, 7380–7385.  doi: 10.1002/adma.201503951

    13. [13]

      Shan, P.; Sun, T. Q.; Chen, H.; Liu, H. D.; Chen, S. L.; Liu, X. W.; Kong, Y. F.; Xu, J. J. Crystal growth and optical characteristics of beryllium-free polyphosphate, KLa(PO3)4, a possible deep-ultraviolet nonlinear optical crystal. Sci. Rep. 2016, 6, 25201–25211.  doi: 10.1038/srep25201

    14. [14]

      Yu, P.; Wu, L.; Zhou, L.; Chen, L. Deep-ultraviolet nonlinear optical crystals: Ba3P3O10X (X = Cl, Br). J. Am. Chem. Soc. 2014, 136, 480–487.  doi: 10.1021/ja411272y

    15. [15]

      Zhao, S.; Gong, P.; Luo, S.; Bai, L.; Lin, Z.; Tang, Y.; Zhou, Y.; Hong, M.; Luo, J. Tailored synthesis of a nonlinear optical phosphate with a short absorption edge. Angew. Chem., Int. Ed. 2015, 54, 4217–4221.  doi: 10.1002/anie.201411772

    16. [16]

      Li, L.; Wang, Y.; Lei, B.; Han, S.; Yang, Z.; Poeppelmeier, K. R.; Pan, S. A new deep-ultraviolet transparent orthophosphate LiCs2PO4 with large second harmonic generation response. J. Am. Chem. Soc. 2016, 138, 9101–9104.  doi: 10.1021/jacs.6b06053

    17. [17]

      Shen, Y.; Yang, Y.; Zhao, S.; Zhao, B.; Lin, Z.; Ji, C.; Li, L.; Fu, P.; Hong, M.; Luo, J. Deep-ultraviolet transparent Cs2LiPO4 exhibits an unprecedented second harmonic generation. Chem. Mater. 2016, 28, 7110–7116.  doi: 10.1021/acs.chemmater.6b03333

    18. [18]

      Zhao, S.; Gong, P.; Luo, S.; Bai, L.; Lin, Z.; Ji, C.; Chen, T.; Hong, M.; Luo, J. Deep-ultraviolet transparent phosphates RbBa2(PO3)5 and Rb2Ba3(P2O7)2 show nonlinear optical activity from condensation of [PO4]3– units. J. Am. Chem. Soc. 2014, 136, 8560–8563.  doi: 10.1021/ja504319x

    19. [19]

      Shen, Y.; Zhao, S.; Zhao, B.; Ji, C.; Li, L.; Sun, Z.; Hong, M.; Luo, J. Strong nonlinear-optical response in the pyrophosphate CsLiCdP2O7 with a short cutoff edge. Inorg. Chem. 2016, 55, 11626–11629.  doi: 10.1021/acs.inorgchem.6b02278

    20. [20]

      Yu, H.; Young, J.; Wu, H.; Zhang, W.; Rondinelli, J. M.; Halasyamani, P. S. M4Mg4(P2O7)3 (M = K, Rb): structural engineering of pyrophosphates for nonlinear optical applications. Chem. Mater. 2017, 29, 1845–1855.  doi: 10.1021/acs.chemmater.7b00167

    21. [21]

      Zhao, S.; Yang, X.; Yang, Y.; Kuang, X.; Lu, F.; Shan, P.; Sun, Z.; Lin, Z.; Hong, M.; Luo, J. Non-centrosymmetric RbNaMgP2O7 with unprecedented thermo-induced enhancement of second harmonic generation. J. Am. Chem. Soc. 2018, 140, 1592–1595.  doi: 10.1021/jacs.7b12518

    22. [22]

      Zhao, S.; Yang, Y.; Shen, Y.; Wang, X.; Ding, Q.; Li, X.; Li, Y.; Li, L.; Lin, Z.; Luo, J. A beryllium-free deep-UV nonlinear optical material CsNaMgP2O7 with honeycomb-like topological layers. J. Mater. Chem. C 2018, 6, 3910–3916.  doi: 10.1039/C8TC00415C

    23. [23]

      Zhao, S. G.; Gong, P. F.; Luo, S. Y.; Liu, S. J.; Li, L. N.; Asghar, M. A.; Khan, T.; Hong, M. C.; Lin, Z. S.; Luo, J. H. Beryllium-free Rb3Al3B3O10F with reinforced interlayer bonding as a deep-ultraviolet nonlinear optical crystal. J. Am. Chem. Soc. 2015, 137, 2207–2210.  doi: 10.1021/ja5128314

    24. [24]

      Lesage, J.; Guesdon, A.; Raveau, B. New gallium pentaphosphates: AGa2P5O16 (A = Rb, Cs). Solid State Sciences 2004, 6, 697–703.  doi: 10.1016/j.solidstatesciences.2004.03.020

    25. [25]

      Guesdon, A.; Daguts, E.; Raveau, B. A series of cesium triphosphates with a layer structure: Cs2MP3O10 (M = Ga, Al, Cr). J. Solid State Chem. 2002, 167, 258–264.  doi: 10.1006/jssc.2002.9657

    26. [26]

      Devi, N. R.; Vidyasagar, K. Synthesis and characterization of novel layered compounds, Cs2MP3O10 (M = Al or Ga), containing triphosphate groups. Dalton Trans. 2000, 1605–1608.

    27. [27]

      Grunze, I.; Palkina, K. K.; Chudinova, N. N.; Guzeeva, L. S.; Avaliani, M. A.; Maksimova, S. I. The structures and thermal transformations of cesium gallium double phosphates. Izvestiya Akademii Nauk SSSR, Neorganicheskie Materialy 1987, 23, 610–615.

    28. [28]

      Ra, H. S.; Ok, K. M.; Halasyamani, P. S. Combining second-order Jahn-Teller distorted cations to create highly efficient SHG materials:   synthesis, characterization, and NLO properties of BaTeM2O9 (M = Mo6+ or W6+). J. Am. Chem. Soc. 2003, 125, 7764–7765.  doi: 10.1021/ja035314b

    29. [29]

      Zhang, W. G.; Halasyamani, P. S.; Gao, Z. L.; Wang, S. P.; Wang, J.; Tao, X. T. Anisotropic thermal properties of the nonlinear optical and polar oxide material Na2TeW2O9. Cryst. Growth Des. 2011, 11, 3636–3641.  doi: 10.1021/cg200659z

    30. [30]

      Goodey, J.; Broussard, J.; Halasyamani, P. S. Synthesis, structure, and characterization of a new second-harmonic-generating tellurite:   Na2TeW2O9 Chem. Mater. 2002, 14, 3174–3180.  doi: 10.1021/cm020087i

    31. [31]

      Zhao, P.; Wu, Q.; Li, C. L.; Zhang, S. J.; Sun, Y. X.; Zhang, C. Q.; Xia, S. Q.; Gao, Z. L.; Tao, X. T. Second order nonlinear optical properties of Cs2TeW3O12 single crystal. Opt. Mater. Express 2016, 6, 451–458.

    32. [32]

      Feng, J. H.; Xu, X.; Mao, J. G. Crystal growth and anisotropic thermal properties of the nonlinear and polar oxide Cs2TeW3O12. J. Solid State Chem. 2015, 232, 144–149.  doi: 10.1016/j.jssc.2015.09.020

    33. [33]

      Goodey, J.; Ok, K. M.; Broussard, J.; Hofmann, C.; Escobedo, F. V.; Halasyamani, P. S. Syntheses, structures, and second-harmonic generating properties in new quaternary tellurites: A2TeW3O12 (A = K, Rb, or Cs). J. Solid State Chem. 2003, 175, 3–12.  doi: 10.1016/S0022-4596(03)00079-3

    34. [34]

      Chang, H. Y.; Kim, S. W.; Halasyamani, P. S. Polar hexagonal tungsten oxide (HTO) materials: (1) synthesis, characterization, functional properties, and structure-property relationships in A2(MoO3)3(SeO3) (A = Rb+ and Tl+) and (2) classification, structural distortions, and second-harmonic generating properties of known polar HTOs. Chem. Mater. 2010, 22, 3241–3250.  doi: 10.1021/cm100476m

    35. [35]

      CrystalClear Version 1.3. 5, Rigaku Corp. : The Woodlands, TX 1999.

    36. [36]

      Sheldrick, G. M. SHELXTL, Crystallographic Software Package, Version 5.1, Bruker-AXS: Madison, WI 1998.

    37. [37]

      Spek, A. L. PLATON, molecular geometry program. J. Appl. Crystallogr. 2003, 36, 7–13.  doi: 10.1107/S0021889802022112

    38. [38]

      Kresse, G.; Hafner, J. Ab initio molecular dynamics for open-shell transition metals. J. Phys. Rev. B 48 1993, 13115–13118.
       

    39. [39]

      Kresse, G.; Furthmüler, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. J. Comp. Mater. Sci. 1996, 6, 15-50.  doi: 10.1016/0927-0256(96)00008-0

    40. [40]

      Pauling, L. The principles determining the structure of complex ionic crystals. J. Am. Chem. Soc. 1929, 51, 1010–1026.  doi: 10.1021/ja01379a006

    41. [41]

      Sanz, F.; Parada, C.; Rojo, J. M.; Ruiz-Valero, C. Crystal structure, magnetic properties, and ionic conductivity of a new mixed-anion phosphate Na4Ni5(PO4)2(P2O7)2. Chem. Mater. 1999, 11, 2673–2679.  doi: 10.1021/cm981105s

    42. [42]

      Sanz, F.; Parada, C.; Rojo, J. M.; Ruiz-Valero, C. Synthesis, structural characterization, magnetic properties, and ionic conductivity of Na4M3(PO4)2(P2O7) (M = Mn, Co, Ni). Chem. Mater. 2001, 13, 1334–1340.  doi: 10.1021/cm001210d

    43. [43]

      Lim, S. Y.; Kim, H.; Chung, J.; Lee, J. H.; Kim, B. G.; Choi, J. J.; Chung, K. Y.; Cho, W.; Kim, S. J.; Goddard, W. A.; Jung, Y.; Choi, J. W. Role of intermediate phase for stable cycling of Na7V4(P2O7)4PO4 in sodium ion battery. Proc. Natl. Acad. Sci. USA. 2014, 111, 599–604.  doi: 10.1073/pnas.1316557110

    44. [44]

      Alekseev, E. V.; Krivovichev, S. V.; Depmeier, W. Rubidium uranyl phosphates and arsenates with polymeric tetrahedral anions: syntheses and structures of Rb4[(UO2)6(P2O7)4(H2O)], Rb2[(UO2)3(P2O7)(P4O12)] and Rb[(UO2)2(As3O10)]. J. Solid State Chem. 2009, 182, 2074–2080.  doi: 10.1016/j.jssc.2009.05.022

    45. [45]

      Abudoureheman, M.; Han, S. J.; Wang, Y.; Lei, B. H.; Yang, Z. H.; Pan, S. L. A3Sr2P7O21 (A = Rb, Cs): two polyphosphates based on different types of P–O chains and ring structures. Inorg. Chem. 2017, 56, 3939–3945.  doi: 10.1021/acs.inorgchem.6b03032

    46. [46]

      Averbuchpouchot, M. T. Crystal structure of a tetrapoly-dipolyphosphate: CaNb2O(P4O13)(P2O7). Z. Anorg. Allg. Chem. 1987, 645, 118–124.

    47. [47]

      Zhang, X. Y.; Wu, H. P.; Wang, Y.; Dong, X. Y.; Han, S. J.; Pan, S. L. Application of the dimensional reduction formalism to Pb12[Li2(P2O7)2(P4O13)2](P4O13): a phosphate containing three types of isolated P–O groups. Inorg. Chem. 2016, 55, 7329–7331.  doi: 10.1021/acs.inorgchem.6b01273

    48. [48]

      Zhang X.; Wu, H.; Liu, Q.; Dong, X.; Chen, Y.; Yang, Z.; Wen, X. D.; Pan, S. Application of the dimensional reduction formalism to Pb9−xBax[Li2(P2O7)2(P4O13)2] (x = 0, 2, 6, 7): a series of phosphates with two types of isolated polyphosphate groups. Dalton Trans. 2017, 46, 4678–4684.  doi: 10.1039/C7DT00509A

    49. [49]

      Benhamada, L.; Grandin, G.; Borel, M. M.; Leclaire, A.; Raveau B. A vanadium (Ⅲ) phosphate with V2O10 octahedral units: KV4P7O24. J. Solid State Chem. 1993, 104, 193–201.  doi: 10.1006/jssc.1993.1153

    50. [50]

      Borel, M. M.; Leclaire, A.; Chardon, J.; Provost, J.; Rebbah, H.; Raveau, B. AV (Ⅳ) tetraphosphate with a tunnel structure K2(VO)2P4O13. J. Solid State Chem. 1997, 132, 41–46.  doi: 10.1006/jssc.1997.7404

    51. [51]

      Zhang, W. L.; Cheng, W. D.; Zhang, H.; Geng, L.; Li, Y. Y.; Lin, C. S.; He, Z. Z. Syntheses and characterizations of Cs2Cr3(BP4O14)(P4O13) and CsFe(BP3O11) compounds with novel borophosphate anionic partial structures. Inorg. Chem. 2010, 49, 2550–2556.  doi: 10.1021/ic902463t

  • 加载中
    1. [1]

      Xiumei LIYanju HUANGBo LIUYaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109

    2. [2]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    3. [3]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    4. [4]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    5. [5]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    6. [6]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    7. [7]

      Chao LIUJiang WUZhaolei JIN . Synthesis, crystal structures, and antibacterial activities of two zinc(Ⅱ) complexes bearing 5-phenyl-1H-pyrazole group. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1986-1994. doi: 10.11862/CJIC.20240153

    8. [8]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    9. [9]

      Shuyan ZHAO . Field-induced Co single-ion magnet with pentagonal bipyramidal configuration. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1583-1591. doi: 10.11862/CJIC.20240231

    10. [10]

      Tianyi Hou Yunhui Huang Henghui Xu . Interfacial engineering for advanced solid-state Li-metal batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100313-100313. doi: 10.1016/j.cjsc.2024.100313

    11. [11]

      Ying LiYanjun XuXingqi HanDi HanXuesong WuXinlong WangZhongmin Su . A new metal–organic rotaxane framework for enhanced ion conductivity of solid-state electrolyte in lithium-metal batteries. Chinese Chemical Letters, 2024, 35(9): 109189-. doi: 10.1016/j.cclet.2023.109189

    12. [12]

      Qianqian SongYunting ZhangJianli LiangSi LiuJian ZhuXingbin Yan . Boron nitride nanofibers enhanced composite PEO-based solid-state polymer electrolytes for lithium metal batteries. Chinese Chemical Letters, 2024, 35(6): 108797-. doi: 10.1016/j.cclet.2023.108797

    13. [13]

      Yang Deng Yitao Ouyang Chao Han . Constriction-susceptible makes fast cycling of lithium metal in solid-state batteries: Silicon as an example. Chinese Journal of Structural Chemistry, 2024, 43(7): 100276-100276. doi: 10.1016/j.cjsc.2024.100276

    14. [14]

      Shuwen SUNGaofeng WANG . Two cadmium coordination polymers constructed by varying Ⅴ-shaped co-ligands: Syntheses, structures, and fluorescence properties. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 613-620. doi: 10.11862/CJIC.20230368

    15. [15]

      Zhenghua ZHAOQin ZHANGYufeng LIUZifa SHIJinzhong GU . Syntheses, crystal structures, catalytic and anti-wear properties of nickel(Ⅱ) and zinc(Ⅱ) coordination polymers based on 5-(2-carboxyphenyl)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 621-628. doi: 10.11862/CJIC.20230342

    16. [16]

      Weizhong LINGXiangyun CHENWenjing LIUYingkai HUANGYu LI . Syntheses, crystal structures, and catalytic properties of three zinc(Ⅱ), cobalt(Ⅱ) and nickel(Ⅱ) coordination polymers constructed from 5-(4-carboxyphenoxy)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1803-1810. doi: 10.11862/CJIC.20240068

    17. [17]

      Biao Fang Runwei Mo . PVDF-based solid-state battery. Chinese Journal of Structural Chemistry, 2024, 43(8): 100347-100347. doi: 10.1016/j.cjsc.2024.100347

    18. [18]

      Peng MengQian-Cheng LuoAidan BrockXiaodong WangMahboobeh ShahbaziAaron MicallefJohn McMurtrieDongchen QiYan-Zhen ZhengJingsan Xu . Molar ratio induced crystal transformation from coordination complex to coordination polymers. Chinese Chemical Letters, 2024, 35(4): 108542-. doi: 10.1016/j.cclet.2023.108542

    19. [19]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    20. [20]

      Xinzhi Ding Chong Liu Jing Niu Nan Chen Shutao Xu Yingxu Wei Zhongmin Liu . Solid-state NMR study of the stability of MOR framework aluminum. Chinese Journal of Structural Chemistry, 2024, 43(4): 100247-100247. doi: 10.1016/j.cjsc.2024.100247

Metrics
  • PDF Downloads(1)
  • Abstract views(180)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return