Citation: Zheyue Li, Di Wu, Wanbing Gong, Jiayi Li, Shuaikang Sang, Hengjie Liu, Ran Long, Yujie Xiong. Highly Efficient Photocatalytic CO2 Methanation over Ru-Doped TiO2 with Tunable Oxygen Vacancies[J]. Chinese Journal of Structural Chemistry, ;2022, 41(12): 221204. doi: 10.14102/j.cnki.0254-5861.2022-0212 shu

Highly Efficient Photocatalytic CO2 Methanation over Ru-Doped TiO2 with Tunable Oxygen Vacancies

  • Corresponding author: Wanbing Gong, wbgong2021@ustc.edu.cn Yujie Xiong, yjxiong@ustc.edu.cn
  • Z.L. and D.W. contribute equally to this work.
  • Received Date: 22 October 2022
    Accepted Date: 11 November 2022
    Available Online: 16 November 2022

Figures(4)

  • Solar-driven CO2 methanation is an imperative and promising approach to relieve the global warming and environmental crisis, yet remains a great challenge due to the low reaction efficiency, unsatisfactory selectivity and poor stability. In this work, we demonstrate a facile and efficient strategy to prepare Ru-doped TiO2 photocatalyst with tunable oxygen vacancies using the ascorbic acid as a reducing agent for the CO2 methanation reaction. The optimal Ru-TiO2-OV-50 exhibits a remarkable CH4 production rate of 81.7 mmol g-1 h-1 with a 100% CH4 selectivity under a 1.5 W cm-2 light illumination, which is significantly higher than commercial Ru/TiO2 and other reported catalysts. We reveal that the superior photocatalytic CO2 methanation performance is mainly due to the synergistic effect of Ru doping and TiO2 with tunable oxygen vacancies. Impressively, the light rather than thermal effect is confirmed as the main influencing factor by experimental studies. In addition, in situ spectroscopic technology is performed to investigate the CO2 methanation reaction pathway. This work will open an avenue to design and prepare highly efficient photocatalyst with tunable oxygen vacancies for CO2 conversion and other related applications.
  • 加载中
    1. [1]

      Gao, P.; Li, S.; Bu, X.; Dang, S.; Liu, Z.; Wang, H.; Zhong, L.; Qiu, M.; Yang, C.; Cai, J.; Wei, W.; Sun, Y. Direct conversion of CO2 into liquid fuels with high selectivity over a bifunctional catalyst. Nat. Chem. 2017, 9, 1019-1024.  doi: 10.1038/nchem.2794

    2. [2]

      Wang, L.; Zhang, W.; Zheng, X.; Chen, Y.; Wu, W.; Qiu, J.; Zhao, X.; Zhao, X.; Dai, Y.; Zeng, J. Incorporating nitrogen atoms into cobalt nanosheets as a strategy to boost catalytic activity toward CO2 hydrogenation. Nat. Energy 2017, 2, 869-876.  doi: 10.1038/s41560-017-0015-x

    3. [3]

      Cai, M.; Wu, Z.; Li, Z.; Wang, L.; Sun, W.; Tountas, A. A.; Li, C.; Wang, S.; Feng, K.; Xu, A. -B.; Tang, S.; Tavasoli, A.; Peng, M.; Liu, W.; Helmy, A. S.; He, L.; Ozin, G. A.; Zhang, X. Greenhouse-inspired supra-photothermal CO2 catalysis. Nat. Energy 2021, 6, 807-814.  doi: 10.1038/s41560-021-00867-w

    4. [4]

      Barrio, J.; Mateo, D.; Albero, J.; García, H.; Shalom, M. A heterogeneous carbon nitride-nickel photocatalyst for efficient low-temperature CO2 methana-tion. Adv. Energy Mater. 2019, 9, 1902738.  doi: 10.1002/aenm.201902738

    5. [5]

      Kattel, S.; Liu, P.; Chen, J. G. Tuning selectivity of CO2 hydrogenation reactions at the metal/oxide interface. J. Am. Chem. Soc. 2017, 139, 9739-9754.  doi: 10.1021/jacs.7b05362

    6. [6]

      Guo, Y.; Mei, S.; Yuan, K.; Wang, D. -J.; Liu, H. -C.; Yan, C. -H.; Zhang, Y. -W. Low-temperature CO2 methanation over CeO2-supported Ru single atoms, nanoclusters, and nanoparticles competitively tuned by strong metal-support interactions and H-spillover effect. ACS Catal. 2018, 8, 6203-6215.  doi: 10.1021/acscatal.7b04469

    7. [7]

      Wan, L.; Zhou, Q.; Wang, X.; Wood, T. E.; Wang, L.; Duchesne, P. N.; Guo, J.; Yan, X.; Xia, M.; Li, Y. F.; Jelle, A. A.; Ulmer, U.; Jia, J.; Li, T.; Sun, W.; Ozin, G. A. Cu2O nanocubes with mixed oxidation-state facets for (photo)catalytic hydrogenation of carbon dioxide. Nat. Catal. 2019, 2, 889-898.  doi: 10.1038/s41929-019-0338-z

    8. [8]

      Chen, Y.; Zhang, Y.; Fan, G.; Song, L.; Jia, G.; Huang, H.; Ouyang, S.; Ye, J.; Li, Z.; Zou, Z. Cooperative catalysis coupling photo-/photothermal effect to drive Sabatier reaction with unprecedented conversion and selectivity. Joule 2021, 5, 3235-3251.  doi: 10.1016/j.joule.2021.11.009

    9. [9]

      Han, S.; Li, B.; Huang, L.; Xi, H.; Ding, Z.; Long, J. Construction of ZnIn2S4-CdIn2S4 microspheres for efficient photo-catalytic reduction of CO2 with visible light. Chin. J. Struct. Chem. 2022, 41, 2201007-2201013.

    10. [10]

      Wang, Z.; Hong, J.; Ng, S. -F.; Liu, W.; Huang, J.; Chen, P.; Ong, W. -J. Recent progress of perovskite oxide in emerging photocatalysis landscape: water splitting, CO2 reduction, and N2 fixation. Acta Phys. Chim. Sin. 2021, 37, 2011033.

    11. [11]

      Li, N.; Peng, J.; Shi, Z.; Zhang, P.; Li, X. Charge transfer and orbital reconstruction of non-noble transition metal single-atoms anchored on Ti2CTx-MXenes for highly selective CO2 electrochemical reduction. Chin. J. Catal. 2022, 43, 1906-1917.  doi: 10.1016/S1872-2067(21)64018-4

    12. [12]

      Xu, Z. -T., X.; Xie, K. Enhanced CO2 electrolysis with metal-oxide interface structures. Chin. J. Struct. Chem. 2021, 40, 31-41.

    13. [13]

      Wang, C.; Sun, Z.; Zheng, Y.; Hu, Y. H. Recent progress in visible light photocatalytic conversion of carbon dioxide. J. Mater. Chem. A 2019, 7, 865-887.  doi: 10.1039/C8TA09865D

    14. [14]

      He, K.; Shen, R.; Hao, L.; Li, Y.; Zhang, P.; Jiang, J.; Xin, L. Advances in nanostructured silicon carbide photocatalysts. Acta Phys. Chim. Sin. 2022, 38, 2201021.

    15. [15]

      Chai, Y.; Chen, Y.; Wang, B.; Jiang, J.; Liu, Y.; Shen, J.; Wang, X.; Zhang, Z. Sn2+ and Cu2+ self-codoped Cu2ZnSnS4 nanosheets switching from p-type to n-type semiconductors for visible-light-driven CO2 reduction. ACS Sustain. Chem. Eng. 2022, 10, 8825-8834.  doi: 10.1021/acssuschemeng.2c01564

    16. [16]

      Shen, R.; Hao, L.; Ng, Y. H.; Zhang, P.; Arramel, A.; Li, Y.; Li, X. Heterogeneous N-coordinated single-atom photocatalysts and electrocatalysts. Chin. J. Catal. 2022, 43, 2453-2483.  doi: 10.1016/S1872-2067(22)64104-4

    17. [17]

      Quan, F.; Zhan, G.; Mao, C.; Ai, Z.; Jia, F.; Zhang, L.; Gu, H.; Liu, S. Efficient light-driven CO2 hydrogenation on Ru/CeO2 catalysts. Catal. Sci. Technol. 2018, 8, 6503-6510.  doi: 10.1039/C8CY01787E

    18. [18]

      Lin, L.; Wang, K.; Yang, K.; Chen, X.; Fu, X.; Dai, W. The visible-light-assisted thermocatalytic methanation of CO2 over Ru/TiO(2-x)Nx. Appl. Catal., B. 2017, 204, 440-455.  doi: 10.1016/j.apcatb.2016.11.054

    19. [19]

      Mateo, D.; Albero, J.; Garcia, H. Titanium-perovskite-supported RuO2 nanoparticles for photocatalytic CO2 methanation. Joule 2019, 3, 1949-1962.  doi: 10.1016/j.joule.2019.06.001

    20. [20]

      Sun, Z.; Talreja, N.; Tao, H.; Texter, J.; Muhler, M.; Strunk, J.; Chen, J. Catalysis of carbon dioxide photoreduction on nanosheets: fundamentals and challenges. Angew. Chem. Int. Ed. 2018, 57, 7610-7627.  doi: 10.1002/anie.201710509

    21. [21]

      Zhou, Y.; Zhang, Q.; Shi, X.; Song, Q.; Zhou, C.; Jiang, D. Photocatalytic reduction of CO2 into CH4 over Ru-doped TiO2: synergy of Ru and oxygen vacancies. J. Colloid Interf. Sci. 2022, 608, 2809-2819.  doi: 10.1016/j.jcis.2021.11.011

    22. [22]

      Liu, Y.; Yu, F.; Wang, F.; Bai, S.; He, G. Construction of Z-scheme In2S3-TiO2 for CO2 reduction under concentrated natural sunlight. Chin. J. Struct. Chem. 2022, 41, 2201034-2201039.

    23. [23]

      Su, B.; Huang, H.; Ding, Z.; Roeffaers, M. B. J.; Wang, S.; Long, J. S-scheme CoTiO3/Cd9.51Zn0.49S10 heterostructures for visible-light driven photo-catalytic CO2 reduction. J. Mater. Sci. Technol. 2022, 124, 164-170.  doi: 10.1016/j.jmst.2022.01.030

    24. [24]

      Wu, Z.; Guo, S.; Kong, L. -H.; Geng, A. -F.; Wang, Y. -J.; Wang, P.; Yao, S.; Chen, K. -K.; Zhang, Z. -M. Doping [Ru(bpy)3]2+ into metal-organic framework to facilitate the separation and reuse of noble-metal photosensitizer during CO2 photoreduction. Chin. J. Catal. 2021, 42, 1790-1797.  doi: 10.1016/S1872-2067(21)63820-2

    25. [25]

      Chai, S.; Men, Y.; Wang, J.; Liu, S.; Song, Q.; An, W.; Kolb, G. Boosting CO2 methanation activity on Ru/TiO2 catalysts by exposing (001) facets of anatase TiO2. J. CO2 Util. 2019, 33, 242-252.  doi: 10.1016/j.jcou.2019.05.031

    26. [26]

      Abe, T.; Tanizawa, M.; Watanabe, K.; Taguchi, A. CO2 methanation property of Ru nanoparticle-loaded TiO2 prepared by a polygonal barrel-sputtering method. Energy Environ. Sci. 2009, 2, 315-321.  doi: 10.1039/b817740f

    27. [27]

      Kar, P.; Farsinezhad, S.; Mahdi, N.; Zhang, Y.; Obuekwe, U.; Sharma, H.; Shen, J.; Semagina, N.; Shankar, K. Enhanced CH4 yield by photocatalytic CO2 reduction using TiO2 nanotube arrays grafted with Au, Ru, and ZnPd nanoparticles. Nano Res. 2016, 9, 3478-3493.  doi: 10.1007/s12274-016-1225-4

    28. [28]

      Li, X.; Yu, J.; Jaroniec, M.; Chen, X. Cocatalysts for selective photo-reduction of CO2 into solar fuels. Chem. Rev. 2019, 119, 3962-4179.  doi: 10.1021/acs.chemrev.8b00400

    29. [29]

      Liu, S.; Li, Y.; Ding, K.; Chen, W.; Zhang, Y.; Lin, W. Mechanism on carbon vacancies in polymeric carbon nitride for CO2 photoreduction. Chin. J. Struct. Chem. 2020, 39, 2068-2076.

    30. [30]

      Wang, R.; Yang, P.; Wang, S.; Wang, X. Distorted carbon nitride nano-sheets with activated n→π* transition and preferred textural properties for photocatalytic CO2 reduction. J. Catal. 2021, 402, 166-176.  doi: 10.1016/j.jcat.2021.08.025

    31. [31]

      Li, D.; Huang, Y.; Li, S.; Wang, C.; Li, Y.; Zhang, X.; Liu, Y. Thermal coupled photoconductivity as a tool to understand the photothermal catalytic reduction of CO2. Chin. J. Catal. 2020, 41, 154-160.  doi: 10.1016/S1872-2067(19)63475-3

    32. [32]

      Zhou, J.; Gao, Z.; Xiang, G.; Zhai, T.; Liu, Z.; Zhao, W.; Liang, X.; Wang, L. Interfacial compatibility critically controls Ru/TiO2 metal-support interaction modes in CO2 hydrogenation. Nat. Commun. 2022, 13, 327.

    33. [33]

      Panagiotopoulou, P. Methanation of CO2 over alkali-promoted Ru/TiO2 catalysts: Ⅱ. Effect of alkali additives on the reaction pathway. Appl. Catal., B 2018, 236, 162-170.  doi: 10.1016/j.apcatb.2018.05.028

    34. [34]

      Li, M.; Li, P.; Chang, K.; Wang, T.; Liu, L.; Kang, Q.; Ouyang, S.; Ye, J. Highly efficient and stable photocatalytic reduction of CO2 to CH4 over Ru loaded NaTaO3. Chem. Commun. 2015, 51, 7645-7648.  doi: 10.1039/C5CC01124H

    35. [35]

      Cai, S.; Zhang, M.; Li, J.; Chen, J.; Jia, H. Anchoring single-atom Ru on CdS with enhanced CO2 capture and charge accumulation for high selectivity of photothermocatalytic CO2 reduction to solar fuels. Solar RRL 2021, 5, 2000313.  doi: 10.1002/solr.202000313

    36. [36]

      Lin, Y.; Tian, Z.; Zhang, L.; Ma, J.; Jiang, Z.; Deibert, B. J.; Ge, R.; Chen, L. Chromium-ruthenium oxide solid solution electrocatalyst for highly efficient oxygen evolution reaction in acidic media. Nat. Commun. 2019, 10, 162.  doi: 10.1038/s41467-018-08144-3

    37. [37]

      Jarzembska, K.; Seal, S.; Woźniak, K.; Szadkowska, A.; Bieniek, M.; Grela, K. X-ray photoelectron spectroscopy and reactivity studies of a series of ruthenium catalysts. ChemCatChem 2009, 1, 144-151.  doi: 10.1002/cctc.200900052

    38. [38]

      Morgan, D. J. Resolving ruthenium: XPS studies of common ruthenium materials. Surf. Interf. Anal. 2015, 47, 1072-1079.  doi: 10.1002/sia.5852

    39. [39]

      Marchal, C.; Cottineau, T.; Méndez-Medrano, M. G.; Colbeau‐Justin, C.; Caps, V.; Keller, V. Au/TiO2-gC3N4 nanocomposites for enhanced photocatalytic H2 production from water under visible light irradiation with very low quantities of sacrificial agents. Adv. Energy Mater. 2018, 8, 1702142.  doi: 10.1002/aenm.201702142

    40. [40]

      Wu, M.; Zhang, J.; Liu, C.; Gong, Y.; Wang, R.; He, B.; Wang, H. Rational design and fabrication of noble‐metal‐free NixP cocatalyst embedded 3D N-TiO2/g-C3N4 heterojunctions with enhanced photocatalytic hydrogen evolution. ChemCatChem 2018, 10, 3069-3077.  doi: 10.1002/cctc.201800197

    41. [41]

      Eom, J. -Y.; Lim, S. -J.; Lee, S. -M.; Ryu, W. -H.; Kwon, H. -S. Black titanium oxide nanoarray electrodes for high rate Li-ion microbatteries. J. Mater. Chem. A 2015, 3, 11183-11188.  doi: 10.1039/C5TA01718A

    42. [42]

      Ge, H.; Zhang, B.; Liang, H.; Zhang, M.; Fang, K.; Chen, Y.; Qin, Y. Photocatalytic conversion of CO2 into light olefins over TiO2 nanotube confined Cu clusters with high ratio of Cu+. Appl. Catal., B 2020, 263, 118133.  doi: 10.1016/j.apcatb.2019.118133

    43. [43]

      Yin, G.; Huang, X.; Chen, T.; Zhao, W.; Bi, Q.; Xu, J.; Han, Y.; Huang, F. Hydrogenated blue titania for efficient solar to chemical conversions: preparation, characterization, and reaction mechanism of CO2 reduction. ACS Catal. 2018, 8, 1009-1017.  doi: 10.1021/acscatal.7b03473

    44. [44]

      Zhou, Z.; Li, X.; Li, J.; You, Z. Promoting CO2 methanation performance of Ru/TiO2 through Co-activity of exposing (001) facets and oxygen vacancies of TiO2. Mater. Sci. Semicon. Proc. 2022, 146, 106677.  doi: 10.1016/j.mssp.2022.106677

    45. [45]

      Cheng, S.; Gao, Y. -J.; Yan, Y. -L.; Gao, X.; Zhang, S. -H.; Zhuang, G. -L.; Deng, S. -W.; Wei, Z. -Z.; Zhong, X.; Wang, J. -G. Oxygen vacancy enhancing mechanism of nitrogen reduction reaction property in Ru/TiO2. J. Energy Chem. 2019, 39, 144-151.  doi: 10.1016/j.jechem.2019.01.020

    46. [46]

      Chen, S.; Abdel-Mageed, A. M.; Li, D.; Bansmann, J.; Cisneros, S.; Biskupek, J.; Huang, W.; Behm, R. J. Morphology‐engineered highly active and stable Ru/TiO2 catalysts for selective CO methanation. Angew. Chem. Int. Ed. 2019, 58, 10732-10736.  doi: 10.1002/anie.201903882

    47. [47]

      Du, J.; Huang, Y.; Huang, Z.; Wu, G.; Wu, B.; Han, X.; Chen, C.; Zheng, X.; Cui, P.; Wu, Y. Reversing the catalytic selectivity of single-atom Ru via support amorphization. JACS Au 2022, 2, 1078-1083.  doi: 10.1021/jacsau.2c00192

    48. [48]

      Miao, B.; Ma, S. S. K.; Wang, X.; Su, H.; Chan, S. H. Catalysis mecha-nisms of CO2 and CO methanation. Catal. Sci. Technol. 2016, 6, 4048-4058.  doi: 10.1039/C6CY00478D

    49. [49]

      Gupta, N.; Kamble, V.; Kartha, V.; Iyer, R.; Thampi, K. R.; Gratzel, M. FTIR spectroscopic study of the interaction of CO2 and CO2 + H2 over partially oxidized RuTiO2 catalyst. J. Catal. 1994, 146, 173-184.  doi: 10.1016/0021-9517(94)90020-5

    50. [50]

      Abdel-Mageed, A. M.; Widmann, D.; Olesen, S. E.; Chorkendorff, I.; Biskupek, J.; Behm, R. J. Selective CO methanation on Ru/TiO2 catalysts: role and influence of metal-support interactions. ACS Catal. 2015, 5, 6753-6763.  doi: 10.1021/acscatal.5b01520

    51. [51]

      Aldana, P. A. U.; Ocampo, F.; Kobl, K.; Louis, B.; Thibault-Starzyk, F.; Daturi, M.; Bazin, P.; Thomas, S.; Roger, A. C. Catalytic CO2 valorization into CH4 on Ni-based ceria-zirconia. Reaction mechanism by operando IR spectroscopy. Catal. Today 2013, 215, 201-207.  doi: 10.1016/j.cattod.2013.02.019

    52. [52]

      Dalla Betta, R.; Shelef, M. Heterogeneous methanation: in situ infrared spectroscopic study of RuAl2O3 during the hydrogenation of CO. J. Catal. 1977, 48, 111-119.  doi: 10.1016/0021-9517(77)90082-3

    53. [53]

      Eckle, S.; Anfang, H. -G.; Behm, R. J. R. Reaction intermediates and side products in the methanation of CO and CO2 over supported Ru catalysts in H2-rich reformate gases. J. Phys. Chem. C 2011, 115, 1361-1367.  doi: 10.1021/jp108106t

    54. [54]

      Eckle, S.; Denkwitz, Y.; Behm, R. J. Activity, selectivity, and adsorbed reaction intermediates/reaction side products in the selective methanation of CO in reformate gases on supported Ru catalysts. J. Catal. 2010, 269, 255-268.  doi: 10.1016/j.jcat.2009.10.025

    55. [55]

      Prairie, M. R.; Renken, A.; Highfield, J. G.; Thampi, K. R.; Grätzel, M. A fourier transform infrared spectroscopic study of CO2 methanation on supported ruthenium. J. Catal. 1991, 129, 130-144.  doi: 10.1016/0021-9517(91)90017-X

    56. [56]

      Zhang, S. -T.; Yan, H.; Wei, M.; Evans, D. G.; Duan, X. Hydrogenation mechanism of carbon dioxide and carbon monoxide on Ru(0001) surface: a density functional theory study. RSC Adv. 2014, 4, 30241-30249.  doi: 10.1039/C4RA01655F

  • 加载中
    1. [1]

      Jinglin CHENGXiaoming GUOTao MENGXu HULiang LIYanzhe WANGWenzhu HUANG . NiAlNd catalysts for CO2 methanation derived from the layered double hydroxide precursor. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1592-1602. doi: 10.11862/CJIC.20240152

    2. [2]

      Jun LIHuipeng LIHua ZHAOQinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401

    3. [3]

      Wenda WANGJinku MAYuzhu WEIShuaishuai MA . Waste biomass-derived carbon modified porous graphite carbon nitride heterojunction for efficient photodegradation of oxytetracycline in seawater. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 809-822. doi: 10.11862/CJIC.20230353

    4. [4]

      Huirong LIUHao XUDunru ZHUJunyong ZHANGChunhua GONGJingli XIE . Syntheses, structures, photochromic and photocatalytic properties of two viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1368-1376. doi: 10.11862/CJIC.20240066

    5. [5]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    6. [6]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    7. [7]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    8. [8]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    9. [9]

      Renshu Huang Jinli Chen Xingfa Chen Tianqi Yu Huyi Yu Kaien Li Bin Li Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171

    10. [10]

      Huizhong WuRuiheng LiangGe SongZhongzheng HuXuyang ZhangMinghua Zhou . Enhanced interfacial charge transfer on Bi metal@defective Bi2Sn2O7 quantum dots towards improved full-spectrum photocatalysis: A combined experimental and theoretical investigation. Chinese Chemical Letters, 2024, 35(6): 109131-. doi: 10.1016/j.cclet.2023.109131

    11. [11]

      Qian-Qian TangLi-Fang FengZhi-Peng LiShi-Hao WuLong-Shuai ZhangQing SunMei-Feng WuJian-Ping Zou . Single-atom sites regulation by the second-shell doping for efficient electrochemical CO2 reduction. Chinese Chemical Letters, 2024, 35(9): 109454-. doi: 10.1016/j.cclet.2023.109454

    12. [12]

      Yuxiang Zhang Jia Zhao Sen Lin . Nitrogen doping retrofits the coordination environment of copper single-atom catalysts for deep CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100415-100415. doi: 10.1016/j.cjsc.2024.100415

    13. [13]

      Bei Li Zhaoke Zheng . In situ monitoring of the spatial distribution of oxygen vacancies at the single-particle level. Chinese Journal of Structural Chemistry, 2024, 43(10): 100331-100331. doi: 10.1016/j.cjsc.2024.100331

    14. [14]

      Zhenjie YangChenyang HuXuan PangXuesi Chen . Sequence design in terpolymerization of ε-caprolactone, CO2 and cyclohexane oxide: Random ester-carbonate distributions lead to large-span tunability. Chinese Chemical Letters, 2024, 35(5): 109340-. doi: 10.1016/j.cclet.2023.109340

    15. [15]

      Dong-Ling Kuang Song Chen Shaoru Chen Yong-Jie Liao Ning Li Lai-Hon Chung Jun He . 2D Zirconium-based metal-organic framework/bismuth(III) oxide nanorods composite for electrocatalytic CO2-to-formate reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100301-100301. doi: 10.1016/j.cjsc.2024.100301

    16. [16]

      Shu-Ran Xu Fang-Xing Xiao . Metal halide perovskites quantum dots: Synthesis, and modification strategies for solar CO2 conversion. Chinese Journal of Structural Chemistry, 2023, 42(12): 100173-100173. doi: 10.1016/j.cjsc.2023.100173

    17. [17]

      Xueyang ZhaoBangwei DengHongtao XieYizhao LiQingqing YeFan Dong . Recent process in developing advanced heterogeneous diatomic-site metal catalysts for electrochemical CO2 reduction. Chinese Chemical Letters, 2024, 35(7): 109139-. doi: 10.1016/j.cclet.2023.109139

    18. [18]

      Yuhao Guo Na Li Tingjiang Yan . Tandem catalysis for photoreduction of CO2 into multi-carbon fuels on atomically thin dual-metal phosphochalcogenides. Chinese Journal of Structural Chemistry, 2024, 43(7): 100320-100320. doi: 10.1016/j.cjsc.2024.100320

    19. [19]

      Tinghui Yang Min Kuang Jianping Yang . Mesoporous CuCe dual-metal catalysts for efficient electrochemical reduction of CO2 to methane. Chinese Journal of Structural Chemistry, 2024, 43(8): 100350-100350. doi: 10.1016/j.cjsc.2024.100350

    20. [20]

      Yatian DengDao WangJinglan ChengYunkun ZhaoZongbao LiChunyan ZangJian LiLichao Jia . A new popular transition metal-based catalyst: SmMn2O5 mullite-type oxide. Chinese Chemical Letters, 2024, 35(8): 109141-. doi: 10.1016/j.cclet.2023.109141

Metrics
  • PDF Downloads(24)
  • Abstract views(982)
  • HTML views(70)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return