Citation: Tianlun Ren, Youwei Sheng, Mingzhen Wang, Kaili Ren, Lianlian Wang, You Xu. Recent Advances of Cu-Based Materials for Electrochemical Nitrate Reduction to Ammonia[J]. Chinese Journal of Structural Chemistry, ;2022, 41(12): 221208. doi: 10.14102/j.cnki.0254-5861.2022-0201 shu

Recent Advances of Cu-Based Materials for Electrochemical Nitrate Reduction to Ammonia







  • Author Bio: Tianlun Ren received his master's degree from Zhejiang University of Technology in 2021. He is currently studying for his Ph.D. degree at Zhejiang University of Technology. His main research work is the design and construction of efficient metal-based electrocatalysts for the electrochemical synthesis of ammonia from nitrogen and nitrate
    Youwei Sheng received his bachelor's degree from Nanjing University Jinling College in 2020. He is currently studying for his master's degree at Zhejiang University of Technology. His main research work focuses on the design and construction of electrocatalysts and their applications in electrochemical ammonia synthesis and electrochemical reduction of CO2
    Mingzhen Wang received his bachelor's degree from Hefei University in 2018 and master's degree from Zhejiang University in 2022. His current research interests include the controlled preparation and construction of non-noble metal-based electrocatalysts for electrocatalytic nitrate reduction for ammonia production
    Kaili Ren received her bachelor's degree from Xinyang Normal University in 2019 and her master's degree from Zhejiang University of Technology in 2022. During the master's degree, her main research work is electrolysis of water to produce hydrogen and electrochemical nitrate reduction to synthesize ammonia
    Lianlian Wang received her Ph.D. degree from Changchun Institute of Optics Fine Mechanics and Physics (CIOMP), Chinese Academy of Sciences in 2013, and then she became a lecturer at Department of Chemistry, Baotou Teachers' College. Her current research work is the design and construction of nano functional materials and the application in luminescent fields
    You Xu received his Ph.D. degree from Tianjin University (China) in 2014. He worked as a postdoctoral researcher at Nanyang Technological University (Singapore) in 2014-2017. Since 2017, he has been an Associate Professor at the College of Chemical Engineering, Zhejiang University of Technology (China). His research interests include the development of advanced nanomaterials and their hybrids for electrocatalytic applications
  • Corresponding author: Lianlian Wang, 66246@bttc.edu.cn You Xu, yxu@zjut.edu.cn
  • Received Date: 25 September 2022
    Accepted Date: 12 November 2022
    Available Online: 22 November 2022

Figures(12)

  • The pollution of nitrate in groundwater has become an environmental problem of general concern due to adverse human and ecological impacts. Treatment of nitrate-rich wastewater is of significance yet challenging for the conventional biological denitrification processes. Electrocatalytic nitrate-to-ammonia conversion emerges as one of the most promising avenues to remove environmentally harmful nitrate from various types of wastewaters while simultaneously producing value-added ammonia. Cu-based materials show great advantages in promoting selective electroreduction of nitrate to ammonia in terms of high nitrate conversion efficiency, ammonia selectivity and ammonia faradaic efficiency thanks to the 3d transition metal structure, low cost, high reserves, and excellent catalytic performance of Cu. In this review, we comprehensively overview the most recent advances in selective electrocatalytic nitrate-to-ammonia conversion using Cu-based materials. Various kinds of Cu-based materials including monometallic Cu catalysts, bimetallic Cu-based catalysts, Cu-based compounds, and Cu-based inorganic-organic hybrid materials and their derivatives are discussed in detail with emphasis on their structural and compositional features and functional mechanisms in promoting nitrate-to-ammonia conversion. Finally, a brief discussion on future directions, challenges and opportunities in this field is also provided.
  • 加载中
    1. [1]

      Yao, Y.; Zhu, S.; Wang, H.; Li, H.; Shao, M. A Spectroscopic study of electrochemical nitrogen and nitrate reduction on rhodium surfaces. Angew. Chem., Int. Ed. 2020, 59, 10479-10483.  doi: 10.1002/anie.202003071

    2. [2]

      Tang, C.; Qiao, S. Z. How to explore ambient electrocatalytic nitrogen reduction reliably and insightfully. Chem. Soc. Rev. 2019, 48, 3166-3180.  doi: 10.1039/C9CS00280D

    3. [3]

      Qiu, W.; Xie, X. -Y.; Qiu, J.; Fang, W. -H.; Liang, R.; Ren, X.; Ji, X.; Cui, G.; Asiri, A. M.; Cui, G.; Tang, B.; Sun, X. High-performance artificial nitrogen fixation at ambient conditions using a metal-free electrocatalyst. Nat. Commun. 2018, 9, 3485.  doi: 10.1038/s41467-018-05758-5

    4. [4]

      Qu, Y.; Dai, T.; Cui, Y.; Zhang, Y.; Wang, Z.; Jiang, Q. Tailoring electronic structure of copper nanosheets by silver doping toward highly efficient electrochemical reduction of nitrogen to ammonia. Chem. Eng. J. 2022, 433, 133752.  doi: 10.1016/j.cej.2021.133752

    5. [5]

      Khalil, I. E.; Xue, C.; Liu, W.; Li, X.; Shen, Y.; Li, S.; Zhang, W.; Huo, F. The role of defects in metal-organic frameworks for nitrogen reduction reaction: when defects switch to features. Adv. Funct. Mater. 2021, 31, 2010052.  doi: 10.1002/adfm.202010052

    6. [6]

      Ashida, Y.; Arashiba, K.; Nakajima, K.; Nishibayashi, Y. Molybdenum-catalysed ammonia production with samarium diiodide and alcohols or water. Nature 2019, 568, 536-540.  doi: 10.1038/s41586-019-1134-2

    7. [7]

      Wang, Y.; Yu, Y.; Jia, R.; Zhang, C.; Zhang, B. Electrochemical synthesis of nitric acid from air and ammonia through waste utilization. Natl. Sci. Rev. 2019, 6, 730-738.  doi: 10.1093/nsr/nwz019

    8. [8]

      Cui, X.; Tang, C.; Zhang, Q. A review of electrocatalytic reduction of dinitrogen to ammonia under ambient conditions. Adv. Energy Mater. 2018, 8, 1800369.  doi: 10.1002/aenm.201800369

    9. [9]

      Utomo, W. P.; Leung, M. K. H.; Yin, Z.; Wu, H.; Ng, Y. H. Advancement of bismuth-based materials for electrocatalytic and photo(electro)catalytic ammonia synthesis. Adv. Funct. Mater. 2021, 32, 2106713.

    10. [10]

      Li, L.; Tang, C.; Yao, D.; Zheng, Y.; Qiao, S. -Z. Electrochemical nitrogen reduction: identification and elimination of contamination in electrolyte. ACS Energy Lett. 2019, 4, 2111-2116.  doi: 10.1021/acsenergylett.9b01573

    11. [11]

      Liu, D.; Chen, M.; Du, X.; Ai, H.; Lo, K. H.; Wang, S.; Chen, S.; Xing, G.; Wang, X.; Pan, H. Development of electrocatalysts for efficient nitrogen reduction reaction under ambient condition. Adv. Funct. Mater. 2020, 31, 2008983.

    12. [12]

      Wan, Y.; Zhou, H.; Zheng, M.; Huang, Z. H.; Kang, F.; Li, J.; Lv, R. Oxidation state modulation of bismuth for efficient electrocatalytic nitrogen reduction to ammonia. Adv. Funct. Mater. 2021, 31, 2100300.  doi: 10.1002/adfm.202100300

    13. [13]

      Tan, Y.; Yan, L.; Huang, C.; Zhang, W.; Qi, H.; Kang, L.; Pan, X.; Zhong, Y.; Hu, Y.; Ding, Y. Fabrication of an Au25-Cys-Mo electrocatalyst for efficient nitrogen reduction to ammonia under ambient conditions. Small 2021, 17, 2100372.  doi: 10.1002/smll.202100372

    14. [14]

      Hong, Q.; Li, T.; Zheng, S.; Chen, H.; Chu, H.; Xu, K.; Li, S.; Mei, Z.; Zhao, Q.; Ren, W. Tuning double layer structure of WO3 nanobelt for promoting the electrochemical nitrogen reduction reaction in water. Chin. J. Struct. Chem. 2021, 40, 519-526.

    15. [15]

      Wang, G.; Shen, P.; Luo, Y.; Li, X.; Li, X.; Chu, K. A vacancy engineered MnO2-x electrocatalyst promotes nitrate electroreduction to ammonia. Dalton Trans. 2022, 51, 9206-9212.  doi: 10.1039/D2DT01431A

    16. [16]

      Xie, L.; Liu, Q.; Sun, S.; Hu, L.; Zhang, L.; Zhao, D.; Liu, Q.; Chen, J.; Li, J.; Ouyang, L.; Alshehri, A. A.; Hamdy, M. S.; Kong, Q.; Sun, X. High-efficiency electrosynthesis of ammonia with selective reduction of nitrate in neutral media enabled by self-supported Mn2CoO4 nanoarray. ACS Appl. Mater. Interfaces 2022, 33242-33247.

    17. [17]

      Niu, H.; Zhang, Z.; Wang, X.; Wan, X.; Shao, C.; Guo, Y. Theoretical insights into the mechanism of selective nitrate-to-ammonia electroreduction on single-atom catalysts. Adv. Funct. Mater. 2020, 31, 2008533.

    18. [18]

      Yan, L.; Xu, Z.; Liu, X.; Mahmood, S.; Shen, J.; Ning, J.; Li, S.; Zhong, Y.; Hu, Y. Integrating trifunctional Co@NC-CNTs@NiFe-LDH electrocatalysts with arrays of porous triangle carbon plates for high-power-density rechargeable Zn-air batteries and self-powered water splitting. Chem. Eng. J. 2022, 446, 137049.  doi: 10.1016/j.cej.2022.137049

    19. [19]

      Wang, S.; Wang, H.; Huang, C.; Ye, P.; Luo, X.; Ning, J.; Zhong, Y.; Hu, Y. Trifunctional electrocatalyst of N-doped graphitic carbon nanosheets encapsulated with CoFe alloy nanocrystals: the key roles of bimetal components and high-content graphitic-N. Appl. Catal. B Environ. 2021, 298, 120512.  doi: 10.1016/j.apcatb.2021.120512

    20. [20]

      Wu, Z. Y.; Karamad, M.; Yong, X.; Huang, Q.; Cullen, D. A.; Zhu, P.; Xia, C.; Xiao, Q.; Shakouri, M.; Chen, F. Y.; Kim, J. Y. T.; Xia, Y.; Heck, K.; Hu, Y.; Wong, M. S.; Li, Q.; Gates, I.; Siahrostami, S.; Wang, H. Electrochemical ammonia synthesis via nitrate reduction on Fe single atom catalyst. Nat. Commun. 2021, 12, 2870.  doi: 10.1038/s41467-021-23115-x

    21. [21]

      Chauhan, R.; Srivastava, V. C. Electrochemical denitrification of highly contaminated actual nitrate wastewater by Ti/RuO2 anode and iron cathode. Chem. Eng. J. 2020, 386, 122065.  doi: 10.1016/j.cej.2019.122065

    22. [22]

      Li, J.; Zhang, Y.; Liu, C.; Zheng, L.; Petit, E.; Qi, K.; Zhang, Y.; Wu, H.; Wang, W.; Tiberj, A.; Wang, X.; Chhowalla, M.; Lajaunie, L.; Yu, R.; Voiry, D. 3.4% solar-to-ammonia efficiency from nitrate using Fe single atomic catalyst supported on MoS2 nanosheets. Adv. Funct. Mater. 2021, 32, 2108316.

    23. [23]

      Lv, X.; Mou, T.; Li, J.; Kou, L.; Frauenheim, T. Tunable surface chemistry in heterogeneous bilayer single-atom catalysts for electrocatalytic NOx reduction to ammonia. Adv. Funct. Mater. 2022, 32, 2201262.  doi: 10.1002/adfm.202201262

    24. [24]

      Su, L.; Han, D.; Zhu, G.; Xu, H.; Luo, W.; Wang, L.; Jiang, W.; Dong, A.; Yang, J. Tailoring the assembly of iron nanoparticles in carbon microspheres toward high-performance electrocatalytic denitrification. Nano Lett. 2019, 19, 5423-5430.  doi: 10.1021/acs.nanolett.9b01925

    25. [25]

      Yu, H.; Qu, S.; Chen, P. R.; Ou, K. Q.; Lin, J. Y.; Guo, Z. H.; Zheng, L.; Li, J. K.; Huang, S.; Teng, Y.; Zou, L.; Song, J. L. CO2 bubble-assisted in-situ construction of mesoporous Co-doped Cu2(OH)2CO3 nanosheets as advanced electrodes towards fast and highly efficient electrochemical reduction of nitrate to N2 in wastewater. J. Hazard. Mater. 2022, 430, 128351.  doi: 10.1016/j.jhazmat.2022.128351

    26. [26]

      Fu, W.; Hu, Z.; Zheng, Y.; Su, P.; Zhang, Q.; Jiao, Y.; Zhou, M. Tuning mobility of intermediate and electron transfer to enhance electrochemical reduction of nitrate to ammonia on Cu2O/Cu interface. Chem. Eng. J. 2022, 433, 133680.  doi: 10.1016/j.cej.2021.133680

    27. [27]

      Banasiak, L. J.; Schäfer, A. I. Removal of boron, fluoride and nitrate by electrodialysis in the presence of organic matter. J. Membr. Sci. 2009, 334, 101-109.  doi: 10.1016/j.memsci.2009.02.020

    28. [28]

      Samatya, S.; Kabay, N.; Yüksel, Ü.; Arda, M.; Yüksel, M. Removal of nitrate from aqueous solution by nitrate selective ion exchange resins. React. Funct. Polym. 2006, 66, 1206-1214.  doi: 10.1016/j.reactfunctpolym.2006.03.009

    29. [29]

      Bae, B. -U.; Jung, Y. -H.; Han, W. -W.; Shin, H. -S. Improved brine recycling during nitrate removal using ion exchange. Water Res. 2002, 36, 3330-3340.  doi: 10.1016/S0043-1354(02)00012-X

    30. [30]

      Xu, D.; Li, Y.; Yin, L.; Ji, Y.; Niu, J.; Yu, Y. Electrochemical removal of nitrate in industrial wastewater. Front. Environ. Sci. Eng. 2018, 12, 9.

    31. [31]

      Zhang, R.; Shuai, D.; Guy, K. A.; Shapley, J. R.; Strathmann, T. J.; Werth, C. J. Elucidation of nitrate reduction mechanisms on a Pd-In bimetallic catalyst using isotope labeled nitrogen species. ChemCatChem 2013, 5, 313-321.  doi: 10.1002/cctc.201200457

    32. [32]

      Zhang, X.; Wang, Y.; Liu, C.; Yu, Y.; Lu, S.; Zhang, B. Recent advances in non-noble metal electrocatalysts for nitrate reduction. Chem. Eng. J. 2021, 403, 126269.  doi: 10.1016/j.cej.2020.126269

    33. [33]

      Clark, C. A.; Reddy, C. P.; Xu, H.; Heck, K. N.; Luo, G.; Senftle, T. P.; Wong, M. S. Mechanistic insights into pH-controlled nitrite reduction to ammonia and hydrazine over rhodium. ACS Catal. 2019, 10, 494-509.

    34. [34]

      Wei, L.; Liu, D. -J.; Rosales, B. A.; Evans, J. W.; Vela, J. Mild and selective hydrogenation of nitrate to ammonia in the absence of noble metals. ACS Catal. 2020, 10, 3618-3628.  doi: 10.1021/acscatal.9b05338

    35. [35]

      Sun, W. J.; Ji, H. Q.; Li, L. X.; Zhang, H. Y.; Wang, Z. K.; He, J. H.; Lu, J. M. Built-in electric field triggered interfacial accumulation effect for efficient nitrate removal at ultra-low concentration and electroreduction to ammonia. Angew. Chem., Int. Ed. 2021, 60, 22933-22939.  doi: 10.1002/anie.202109785

    36. [36]

      Jia, R.; Wang, Y.; Wang, C.; Ling, Y.; Yu, Y.; Zhang, B. Boosting selective nitrate electroreduction to ammonium by constructing oxygen vacancies in TiO2. ACS Catal. 2020, 10, 3533-3540.  doi: 10.1021/acscatal.9b05260

    37. [37]

      Yu, Y.; Wang, C.; Yu, Y.; Wang, Y.; Zhang, B. Promoting selective electroreduction of nitrates to ammonia over electron-deficient Co modulated by rectifying Schottky contacts. Sci. China: Chem. 2020, 63, 1469-1476.  doi: 10.1007/s11426-020-9795-x

    38. [38]

      Li, Y.; Xiao, S.; Li, X.; Chang, C.; Xie, M.; Xu, J.; Yang, Z. A robust metal-free electrocatalyst for nitrate reduction reaction to synthesize ammonia. Mater. Today Phys. 2021, 19, 100431.  doi: 10.1016/j.mtphys.2021.100431

    39. [39]

      Kwon, Y. -I.; Kim, S. K.; Kim, Y. B.; Son, S. J.; Nam, G. D.; Park, H. J.; Cho, W. -C.; Yoon, H. C.; Joo, J. H. Nitric oxide utilization for ammonia production using solid electrolysis cell at atmospheric pressure. ACS Energy Lett. 2021, 6, 4165-4172.  doi: 10.1021/acsenergylett.1c01972

    40. [40]

      Liang, J.; Liu, P.; Li, Q.; Li, T.; Yue, L.; Luo, Y.; Liu, Q.; Li, N.; Tang, B.; Alshehri, A. A.; Shakir, I.; Agboola, P. O.; Sun, C.; Sun, X. Amorphous boron carbide on titanium dioxide nanobelt arrays for high-efficiency electrocatalytic NO reduction to NH3. Angew. Chem., Int. Ed. 2022, 61, e202202087.

    41. [41]

      Zhang, L.; Liang, J.; Wang, Y.; Mou, T.; Lin, Y.; Yue, L.; Li, T.; Liu, Q.; Luo, Y.; Li, N.; Tang, B.; Liu, Y.; Gao, S.; Alshehri, A. A.; Guo, X.; Ma, D.; Sun, X. High-performance electrochemical NO reduction into NH3 by MoS2 nanosheet. Angew. Chem., Int. Ed. 2021, 60, 25263-25268.  doi: 10.1002/anie.202110879

    42. [42]

      Ko, B. H.; Hasa, B.; Shin, H.; Zhao, Y.; Jiao, F. Electrochemical reduction of gaseous nitrogen oxides on transition metals at ambient conditions. J. Am. Chem. Soc. 2022, 144, 1258-1266.  doi: 10.1021/jacs.1c10535

    43. [43]

      Wang, Y.; Shu, S.; Peng, M.; Hu, L.; Lv, X.; Shen, Y.; Gong, H.; Jiang, G. Dual-site electrocatalytic nitrate reduction to ammonia on oxygen vacancy-enriched and Pd-decorated MnO2 nanosheets. Nanoscale 2021, 13, 17504-17511.  doi: 10.1039/D1NR04962C

    44. [44]

      Yin, H.; Chen, Z.; Xiong, S.; Chen, J.; Wang, C.; Wang, R.; Kuwahara, Y.; Luo, J.; Yamashita, H.; Peng, Y.; Li, J. Alloying effectinduced electron polarization drives nitrate electroreduction to ammonia. Chem. Catal. 2021, 1, 1088-1103.  doi: 10.1016/j.checat.2021.08.014

    45. [45]

      Chen, Q.; Liang, J.; Yue, L.; Luo, Y.; Liu, Q.; Li, N.; Alshehri, A. A.; Li, T.; Guo, H.; Sun, X. CoO nanoparticle decorated N-doped carbon nanotubes: a high-efficiency catalyst for nitrate reduction to ammonia. Chem. Commun. 2022, 58, 5901-5904.  doi: 10.1039/D2CC00997H

    46. [46]

      Fan, X.; Xie, L.; Liang, J.; Ren, Y.; Zhang, L.; Yue, L.; Li, T.; Luo, Y.; Li, N.; Tang, B.; Liu, Y.; Gao, S.; Alshehri, A. A.; Liu, Q.; Kong, Q.; Sun, X. In situ grown Fe3O4 particle on stainless steel: a highly efficient electrocatalyst for nitrate reduction to ammonia. Nano Res. 2021, 15, 3050-3055.

    47. [47]

      Chen, G. -F.; Yuan, Y.; Jiang, H.; Ren, S. -Y.; Ding, L. -X.; Ma, L.; Wu, T.; Lu, J.; Wang, H. Electrochemical reduction of nitrate to ammonia via direct eight-electron transfer using a copper-molecular solid catalyst. Nat. Energy 2020, 5, 605-613.  doi: 10.1038/s41560-020-0654-1

    48. [48]

      Crawford, J.; Yin, H.; Du, A.; O'Mullane, A. P. Nitrate-to-ammonia conversion at an InSn-enriched liquid-metal electrode. Angew. Chem., Int. Ed. 2022, 61, e202201604.

    49. [49]

      Deng, X.; Yang, Y.; Wang, L.; Fu, X. Z.; Luo, J. L. Metallic Co nanoarray catalyzes selective NH3 production from electrochemical nitrate reduction at current densities exceeding 2 A cm-2. Adv. Sci. 2021, 8, 2004523.  doi: 10.1002/advs.202004523

    50. [50]

      McEnaney, J. M.; Blair, S. J.; Nielander, A. C.; Schwalbe, J. A.; Koshy, D. M.; Cargnello, M.; Jaramillo, T. F. Electrolyte engineering for efficient electrochemical nitrate reduction to ammonia on a titanium electrode. ACS Sustainable Chem. Eng. 2020, 8, 2672-2681.  doi: 10.1021/acssuschemeng.9b05983

    51. [51]

      Li, Z.; Liang, J.; Liu, Q.; Xie, L.; Zhang, L.; Ren, Y.; Yue, L.; Li, N.; Tang, B.; Alshehri, A. A.; Hamdy, M. S.; Luo, Y.; Kong, Q.; Sun, X. High-efficiency ammonia electrosynthesis via selective reduction of nitrate on ZnCo2O4 nanosheet array. Mater. Today Phys. 2022, 23, 100619.  doi: 10.1016/j.mtphys.2022.100619

    52. [52]

      Yang, L.; Li, J.; Du, F.; Gao, J.; Liu, H.; Huang, S.; Zhang, H.; Li, C.; Guo, C. Interface engineering cerium-doped copper nanocrystal for efficient electrochemical nitrate-to-ammonia production. Electrochim. Acta 2022, 411, 140095.  doi: 10.1016/j.electacta.2022.140095

    53. [53]

      Li, J.; Zhan, G.; Yang, J.; Quan, F.; Mao, C.; Liu, Y.; Wang, B.; Lei, F.; Li, L.; Chan, A. W. M.; Xu, L.; Shi, Y.; Du, Y.; Hao, W.; Wong, P. K.; Wang, J.; Dou, S. X.; Zhang, L.; Yu, J. C. Efficient ammonia electrosynthesis from nitrate on strained ruthenium nanoclusters. J. Am. Chem. Soc. 2020, 142, 7036-7046.  doi: 10.1021/jacs.0c00418

    54. [54]

      Lim, J.; Liu, C. -Y.; Park, J.; Liu, Y. -H.; Senftle, T. P.; Lee, S. W.; Hatzell, M. C. Structure sensitivity of Pd facets for enhanced electrochemical nitrate reduction to ammonia. ACS Catal. 2021, 11, 7568-7577.  doi: 10.1021/acscatal.1c01413

    55. [55]

      Wang, Y.; Xu, A.; Wang, Z.; Huang, L.; Li, J.; Li, F.; Wicks, J.; Luo, M.; Nam, D. H.; Tan, C. S.; Ding, Y.; Wu, J.; Lum, Y.; Dinh, C. T.; Sinton, D.; Zheng, G.; Sargent, E. H. Enhanced nitrate-to-ammonia activity on copper-nickel alloys via tuning of intermediate adsorption. J. Am. Chem. Soc. 2020, 142, 5702-5708.  doi: 10.1021/jacs.9b13347

    56. [56]

      Wang, Z.; Young, S. D.; Goldsmith, B. R.; Singh, N. Increasing electrocatalytic nitrate reduction activity by controlling adsorption through PtRu alloying. J. Catal. 2021, 395, 143-154.  doi: 10.1016/j.jcat.2020.12.031

    57. [57]

      Zhu, J. Y.; Xue, Q.; Xue, Y. Y.; Ding, Y.; Li, F. M.; Jin, P.; Chen, P.; Chen, Y. Iridium nanotubes as bifunctional electrocatalysts for oxygen evolution and nitrate reduction reactions. ACS Appl. Mater. Interfaces 2020, 12, 14064-14070.  doi: 10.1021/acsami.0c01937

    58. [58]

      Yao, Q.; Chen, J.; Xiao, S.; Zhang, Y.; Zhou, X. Selective electrocatalytic reduction of nitrate to ammonia with nickel phosphide. ACS Appl. Mater. Interfaces 2021, 13, 30458-30467.  doi: 10.1021/acsami.0c22338

    59. [59]

      Wang, X.; Zhu, M.; Zeng, G.; Liu, X.; Fang, C.; Li, C. A three-dimensional Cu nanobelt cathode for highly efficient electrocatalytic nitrate reduction. Nanoscale 2020, 12, 9385-9391.  doi: 10.1039/C9NR10743F

    60. [60]

      Li, J.; Gao, J.; Feng, T.; Zhang, H.; Liu, D.; Zhang, C.; Huang, S.; Wang, C.; Du, F.; Li, C.; Guo, C. Effect of supporting matrixes on performance of copper catalysts in electrochemical nitrate reduction to ammonia. J. Power Sources 2021, 511, 230463.  doi: 10.1016/j.jpowsour.2021.230463

    61. [61]

      Pérez-Gallent, E.; Figueiredo, M. C.; Katsounaros, I.; Koper, M. T. M. Electrocatalytic reduction of nitrate on copper single crystals in acidic and alkaline solutions. Electrochim. Acta 2017, 227, 77-84.  doi: 10.1016/j.electacta.2016.12.147

    62. [62]

      Li, L. -X.; Sun, W. -J.; Zhang, H. -Y.; Wei, J. -L.; Wang, S. -X.; He, J. -H.; Li, N. -J.; Xu, Q. -F.; Chen, D. -Y.; Li, H.; Lu, J. -M. Highly efficient and selective nitrate electroreduction to ammonia catalyzed by molecular copper catalyst@Ti3C2Tx MXene. J. Mater. Chem. A 2021, 9, 21771-21778.  doi: 10.1039/D1TA06664A

    63. [63]

      Wang, Z.; Richards, D.; Singh, N. Recent discoveries in the reaction mechanism of heterogeneous electrocatalytic nitrate reduction. Catal. Sci. Technol. 2021, 11, 705-725.  doi: 10.1039/D0CY02025G

    64. [64]

      Bae, S. -E.; Stewart, K. L.; Gewirth, A. A. Nitrate adsorption and reduction on Cu(100) in acidic solution. J. Am. Chem. Soc. 2007, 129, 10171-10180.  doi: 10.1021/ja071330n

    65. [65]

      Yuan, J.; Xing, Z.; Tang, Y.; Liu, C. Tuning the oxidation state of Cu electrodes for selective electrosynthesis of ammonia from nitrate. ACS Appl. Mater. Interfaces 2021, 52469-52478.

    66. [66]

      Gao, J.; Jiang, B.; Ni, C.; Qi, Y.; Zhang, Y.; Oturan, N.; Oturan, M. A. Non-precious Co3O4-TiO2/Ti cathode based electrocatalytic nitrate reduction: preparation, performance and mechanism. Appl. Catal. B Environ. 2019, 254, 391-402.  doi: 10.1016/j.apcatb.2019.05.016

    67. [67]

      Gao, J.; Jiang, B.; Ni, C.; Qi, Y.; Bi, X. Enhanced reduction of nitrate by noble metal-free electrocatalysis on P doped three-dimensional Co3O4 cathode: mechanism exploration from both experimental and DFT studies. Chem. Eng. J. 2020, 382, 123034.  doi: 10.1016/j.cej.2019.123034

    68. [68]

      Liu, R.; Zhao, H.; Zhao, X.; He, Z.; Lai, Y.; Shan, W.; Bekana, D.; Li, G.; Liu, J. Defect sites in ultrathin Pd nanowires facilitate the highly efficient electrochemical hydrodechlorination of pollutants by H*ads. Environ. Sci. Technol. 2018, 52, 9992-10002.  doi: 10.1021/acs.est.8b02740

    69. [69]

      Martínez, J.; Ortiz, A.; Ortiz, I. State-of-the-art and perspectives of the catalytic and electrocatalytic reduction of aqueous nitrates. Appl. Catal. B Environ. 2017, 207, 42-59.  doi: 10.1016/j.apcatb.2017.02.016

    70. [70]

      de Vooys, A. C. A.; van Santen, R. A.; van Veen, J. A. R. Electrocatalytic reduction of NO3- on palladium/copper electrodes. J. Mol. Catal. A: Chem. 2000, 154, 203-215.  doi: 10.1016/S1381-1169(99)00375-1

    71. [71]

      Wang, Y.; Wang, C.; Li, M.; Yu, Y.; Zhang, B. Nitrate electroreduction: mechanism insight, in situ characterization, performance evaluation, and challenges. Chem. Soc. Rev. 2021, 50, 6720-6733.  doi: 10.1039/D1CS00116G

    72. [72]

      Garcia-Segura, S.; Lanzarini-Lopes, M.; Hristovski, K.; Westerhoff, P. Electrocatalytic reduction of nitrate: fundamentals to full-scale water treatment applications. Appl. Catal. B Environ. 2018, 236, 546-568.  doi: 10.1016/j.apcatb.2018.05.041

    73. [73]

      Wang, J.; Feng, T.; Chen, J.; Ramalingam, V.; Li, Z.; Kabtamu, D. M.; He, J. -H.; Fang, X. Electrocatalytic nitrate/nitrite reduction to ammonia synthesis using metal nanocatalysts and bio-inspired metalloenzymes. Nano Energy 2021, 86, 106088.  doi: 10.1016/j.nanoen.2021.106088

    74. [74]

      Lu, X.; Song, H.; Cai, J.; Lu, S. Recent development of electrochemical nitrate reduction to ammonia: a mini review. Electrochem. Commun. 2021, 129, 107094.  doi: 10.1016/j.elecom.2021.107094

    75. [75]

      Zeng, Y.; Priest, C.; Wang, G.; Wu, G. Restoring the nitrogen cycle by electrochemical reduction of nitrate: progress and prospects. Small Methods 2020, 4, 2000672.  doi: 10.1002/smtd.202000672

    76. [76]

      Duca, M.; Koper, M. T. Powering denitrification: the perspectives of electrocatalytic nitrate reduction. Energy Environ. Sci. 2012, 5, 9726-9742.  doi: 10.1039/c2ee23062c

    77. [77]

      Li, P.; Jin, Z.; Fang, Z.; Yu, G. A single-site iron catalyst with preoccupied active centers that achieves selective ammonia electrosynthesis from nitrate. Energy Environ. Sci. 2021, 14, 3522-3531.  doi: 10.1039/D1EE00545F

    78. [78]

      Liu, J. -X.; Richards, D.; Singh, N.; Goldsmith, B. R. Activity and selectivity trends in electrocatalytic nitrate reduction on transition metals. ACS Catal. 2019, 9, 7052-7064.  doi: 10.1021/acscatal.9b02179

    79. [79]

      Crawford, J.; Yin, H.; Du, A.; O'Mullane, A. P. Nitrate-to-ammonia conversion at an insn-enriched liquid-metal electrode. Angew. Chem. 2022, e202201604.

    80. [80]

      Shih, Y. -J.; Wu, Z. -L.; Huang, Y. -H.; Huang, C. -P. Electrochemical nitrate reduction as affected by the crystal morphology and facet of copper nanoparticles supported on nickel foam electrodes (Cu/Ni). Chem. Eng. J. 2020, 383, 123157.  doi: 10.1016/j.cej.2019.123157

    81. [81]

      Hu, T.; Wang, C.; Wang, M.; Li, C. M.; Guo, C. Theoretical insights into superior nitrate reduction to ammonia performance of copper catalysts. ACS Catal. 2021, 11, 14417-14427.  doi: 10.1021/acscatal.1c03666

    82. [82]

      Zhu, X.; Huang, H.; Zhang, H.; Zhang, Y.; Shi, P.; Qu, K.; Cheng, S. -B.; Wang, A. -L.; Lu, Q. Filling mesopores of conductive metal-organic frameworks with Cu clusters for selective nitrate reduction to ammonia. ACS Appl. Mater. Interfaces 2022, 14, 32176-32182.  doi: 10.1021/acsami.2c09241

    83. [83]

      Gong, Z.; Zhong, W.; He, Z.; Jia, C.; Zhou, D.; Zhang, N.; Kang, X.; Chen, Y. Improving electrochemical nitrate reduction activity of layered perovskite oxide La2CuO4 via B-site doping. Catal. Today 2022, 402, 259-265.  doi: 10.1016/j.cattod.2022.04.019

    84. [84]

      Niu, Z.; Fan, S.; Li, X.; Wang, P.; Tadé, M. O.; Liu, S. Optimizing oxidation state of octahedral copper for boosting electroreduction nitrate to ammonia. ACS Appl. Energy Mater. 2022, 5, 3339-3345.  doi: 10.1021/acsaem.1c03969

    85. [85]

      Xu, Y. -T.; Xie, M. -Y.; Zhong, H.; Cao, Y. In situ clustering of singleatom copper precatalysts in a metal-organic framework for efficient electrocatalytic nitrate-to-ammonia reduction. ACS Catal. 2022, 12, 8698-8706.  doi: 10.1021/acscatal.2c02033

    86. [86]

      Qiu, W.; Chen, X.; Liu, Y.; Xiao, D.; Wang, P.; Li, R.; Liu, K.; Jin, Z.; Li, P. Confining intermediates within a catalytic nanoreactor facilitates nitrate-to-ammonia electrosynthesis. Appl. Catal. B Environ. 2022, 315, 121548.  doi: 10.1016/j.apcatb.2022.121548

    87. [87]

      Fang, L.; Wang, S.; Song, C.; Lu, S.; Yang, X.; Qi, X.; Liu, H. Boosting nitrate electroreduction to ammonia via in situ generated stacking faults in oxide-derived copper. Chem. Eng. J. 2022, 446, 137341.  doi: 10.1016/j.cej.2022.137341

    88. [88]

      Cai, J.; Wei, Y.; Cao, A.; Huang, J.; Jiang, Z.; Lu, S.; Zang, S. -Q. Electrocatalytic nitrate-to-ammonia conversion with ~100% faradaic efficiency via single-atom alloying. Appl. Catal. B Environ. 2022, 316, 121683.  doi: 10.1016/j.apcatb.2022.121683

    89. [89]

      Gong, Z.; Zhong, W.; He, Z.; Liu, Q.; Chen, H.; Zhou, D.; Zhang, N.; Kang, X.; Chen, Y. Regulating surface oxygen species on copper(I) oxides via plasma treatment for effective reduction of nitrate to ammonia. Appl. Catal. B Environ. 2022, 305, 121021.  doi: 10.1016/j.apcatb.2021.121021

    90. [90]

      Liu, Y.; Deng, B.; Li, K.; Wang, H.; Sun, Y.; Dong, F. Metal-organic framework derived carbon-supported bimetallic copper-nickel alloy electrocatalysts for highly selective nitrate reduction to ammonia. J. Colloid Interface Sci. 2022, 614, 405-414.  doi: 10.1016/j.jcis.2022.01.127

    91. [91]

      Liu, H.; Lang, X.; Zhu, C.; Timoshenko, J.; Ruscher, M.; Bai, L.; Guijarro, N.; Yin, H.; Peng, Y.; Li, J.; Liu, Z.; Wang, W.; Cuenya, B. R.; Luo, J. Efficient electrochemical nitrate reduction to ammonia with copper-supported rhodium cluster and single-atom catalysts. Angew. Chem., Int. Ed. 2022, 61, e202202556.

    92. [92]

      Yin, H.; Zhao, X.; Xiong, S.; Peng, Y.; Chen, Z.; Wang, R.; Wen, M.; Luo, J.; Yamashita, H.; Li, J. New insight on electroreduction of nitrate to ammonia driven by oxygen vacancies-induced strong interface interactions. J. Catal. 2022, 406, 39-47.  doi: 10.1016/j.jcat.2021.12.031

    93. [93]

      Wang, C.; Ye, F.; Shen, J.; Xue, K. H.; Zhu, Y.; Li, C. In situ loading of Cu2O active sites on island-like copper for efficient electrochemical reduction of nitrate to ammonia. ACS Appl. Mater. Interfaces 2022, 14, 6680-6688.  doi: 10.1021/acsami.1c21691

    94. [94]

      Jiang, G.; Peng, M.; Hu, L.; Ouyang, J.; Lv, X.; Yang, Z.; Liang, X.; Liu, Y.; Liu, H. Electron-deficient Cuδ+ stabilized by interfacial Cu-O-Al bonding for accelerating electrocatalytic nitrate conversion. Chem. Eng. J. 2022, 435, 134853.  doi: 10.1016/j.cej.2022.134853

    95. [95]

      Patil, S. B.; Liu, T. R.; Chou, H. L.; Huang, Y. B.; Chang, C. C.; Chen, Y. C.; Lin, Y. S.; Li, H.; Lee, Y. C.; Chang, Y. J.; Lai, Y. H.; Wen, C. Y.; Wang, D. Y. Electrocatalytic Reduction of NO3- to ultrapure ammonia on {200} facet dominant Cu nanodendrites with high conversion faradaic efficiency. J. Phys. Chem. Lett. 2021, 12, 8121-8128.  doi: 10.1021/acs.jpclett.1c02236

    96. [96]

      Chen, L. -F.; Xie, A. -Y.; Lou, Y. -Y.; Tian, N.; Zhou, Z. -Y.; Sun, S. -G. Electrochemical synthesis of tetrahexahedral Cu nanocrystals with high-index facets for efficient nitrate electroreduction. J. Electroanal. Chem. 2022, 907, 116022.  doi: 10.1016/j.jelechem.2022.116022

    97. [97]

      Zhao, Y.; Liu, Y.; Zhang, Z.; Mo, Z.; Wang, C.; Gao, S. Flower-like open-structured polycrystalline copper with synergistic multi-crystal plane for efficient electrocatalytic reduction of nitrate to ammonia. Nano Energy 2022, 97, 107124.  doi: 10.1016/j.nanoen.2022.107124

    98. [98]

      Wang, Y.; Zhou, W.; Jia, R.; Yu, Y.; Zhang, B. Unveiling the activity origin of a copper-based electrocatalyst for selective nitrate reduction to ammonia. Angew. Chem., Int. Ed. 2020, 59, 5350-5354.  doi: 10.1002/anie.201915992

    99. [99]

      Ren, T.; Yu, Z.; Yu, H.; Deng, K.; Wang, Z.; Li, X.; Wang, H.; Wang, L.; Xu, Y. Interfacial polarization in metal-organic framework reconstructed Cu/Pd/CuOx multi-phase heterostructures for electrocatalytic nitrate reduction to ammonia. Appl. Catal. B Environ. 2022, 318, 121805.  doi: 10.1016/j.apcatb.2022.121805

    100. [100]

      Ren, T.; Ren, K.; Wang, M.; Liu, M.; Wang, Z.; Wang, H.; Li, X.; Wang, L.; Xu, Y. Concave-convex surface oxide layers over copper nanowires boost electrochemical nitrate-to-ammonia conversion. Chem. Eng. J. 2021, 426, 130759.  doi: 10.1016/j.cej.2021.130759

    101. [101]

      Xu, Y.; Sheng, Y.; Wang, M.; Ren, T.; Shi, K.; Wang, Z.; Li, X.; Wang, L.; Wang, H. Interface coupling induced built-in electric fields boost electrochemical nitrate reduction to ammonia over CuO@MnO2 core-shell hierarchical nanoarrays. J. Mater. Chem. A 2022, 10, 16883-16890.  doi: 10.1039/D2TA02006H

    102. [102]

      Xu, Y.; Shi, K.; Ren, T.; Yu, H.; Deng, K.; Wang, X.; Wang, Z.; Wang, H.; Wang, L. Electronic metal-support interaction triggering interfacial charge polarization over CuPd/N-Doped-C nanohybrids drives selectively electrocatalytic conversion of nitrate to ammonia. Small 2022, 2203335.

    103. [103]

      Xu, Y.; Wang, M.; Ren, K.; Ren, T.; Liu, M.; Wang, Z.; Li, X.; Wang, L.; Wang, H. Atomic defects in pothole-rich two-dimensional copper nanoplates triggering enhanced electrocatalytic selective nitrate-to-ammonia transformation. J. Mater. Chem. A 2021, 9, 16411-16417.  doi: 10.1039/D1TA04743D

    104. [104]

      Xu, Y.; Ren, K.; Ren, T.; Wang, M.; Liu, M.; Wang, Z.; Li, X.; Wang, L.; Wang, H. Cooperativity of Cu and Pd active sites in CuPd aerogels enhances nitrate electroreduction to ammonia. Chem. Commun. 2021, 57, 7525-7528.  doi: 10.1039/D1CC02105B

    105. [105]

      Tang, Z.; Bai, Z.; Li, X.; Ding, L.; Zhang, B.; Chang, X. Chloride-derived bimetallic Cu-Fe nanoparticles for high-selective nitrate-to-ammonia electrochemical catalysis. Processes 2022, 10, 751.  doi: 10.3390/pr10040751

    106. [106]

      Li, Z.; Wang, L.; Cai, Y.; Zhang, J. -R.; Zhu, W. Electrochemically reconstructed copper-polypyrrole nanofiber network for remediating nitrate-containing water at neutral pH. J. Hazard. Mater. 2022, 440, 129828.  doi: 10.1016/j.jhazmat.2022.129828

    107. [107]

      Xu, Y.; Ren, K.; Ren, T.; Wang, M.; Wang, Z.; Li, X.; Wang, L.; Wang, H. Ultralow-content Pd in-situ incorporation mediated hierarchical defects in corner-etched Cu2O octahedra for enhanced electrocatalytic nitrate reduction to ammonia. Appl. Catal. B Environ. 2022, 306, 121094.  doi: 10.1016/j.apcatb.2022.121094

    108. [108]

      Chen, D.; Zhang, S.; Bu, X.; Zhang, R.; Quan, Q.; Lai, Z.; Wang, W.; Meng, Y.; Yin, D.; Yip, S.; Liu, C.; Zhi, C.; Ho, J. C. Synergistic modulation of local environment for electrochemical nitrate reduction via asymmetric vacancies and adjacent ion clusters. Nano Energy 2022, 98, 107338.  doi: 10.1016/j.nanoen.2022.107338

    109. [109]

      Niu, Z.; Fan, S.; Li, X.; Liu, Z.; Wang, J.; Duan, J.; Tade, M. O.; Liu, S. Facile tailoring of the electronic structure and the d-band center of copper-doped cobaltate for efficient nitrate electrochemical hydrogenation. ACS Appl. Mater. Interfaces 2022, 14, 35477-35484.  doi: 10.1021/acsami.2c04789

    110. [110]

      Wang, J.; Zhang, S.; Wang, C.; Li, K.; Zha, Y.; Liu, M.; Zhang, H.; Shi, T. Ambient ammonia production via electrocatalytic nitrate reduction catalyzed by a flower-like CuCo2O4 electrocatalyst. Inorg. Chem. Front. 2022, 9, 2374-2378.  doi: 10.1039/D1QI01656C

    111. [111]

      Zhu, T.; Chen, Q.; Liao, P.; Duan, W.; Liang, S.; Yan, Z.; Feng, C. Single-atom Cu catalysts for enhanced electrocatalytic nitrate reduction with significant alleviation of nitrite production. Small 2020, 16, 2004526.  doi: 10.1002/smll.202004526

    112. [112]

      Chen, Y.; Zhao, Y.; Zhao, Z.; Liu, Y. Highly dispersed face-centered cubic copper-cobalt alloys constructed by ultrafast carbothermal shock for efficient electrocatalytic nitrate-to-ammonia conversion. Mater. Today Energy 2022, 29, 101112.  doi: 10.1016/j.mtener.2022.101112

    113. [113]

      Zhu, H.; Dong, S.; Du, X.; Du, H.; Xia, J.; Liu, Q.; Luo, Y.; Guo, H.; Li, T. Defective CuO-rich CuFe2O4 nanofibers enable the efficient synergistic electrochemical reduction of nitrate to ammonia. Catal. Sci. Technol. 2022, 12, 4998-5002.  doi: 10.1039/D2CY00910B

    114. [114]

      Chen, H.; Zhang, C.; Sheng, L.; Wang, M.; Fu, W.; Gao, S.; Zhang, Z.; Chen, S.; Si, R.; Wang, L.; Yang, B. Copper single-atom catalyst as a high-performance electrocatalyst for nitrate-ammonium conversion. J. Hazard. Mater. 2022, 434, 128892.  doi: 10.1016/j.jhazmat.2022.128892

    115. [115]

      Wang, H.; Guo, Y.; Li, C.; Yu, H.; Deng, K.; Wang, Z.; Li, X.; Xu, Y.; Wang, L. Cu/CuOx in-plane heterostructured nanosheet arrays with rich oxygen vacancies enhance nitrate electroreduction to ammonia. ACS Appl. Mater. Interfaces 2022, 14, 34761-34769.  doi: 10.1021/acsami.2c08534

    116. [116]

      Xu, Y.; Wen, Y.; Ren, T.; Yu, H.; Deng, K.; Wang, Z.; Li, X.; Wang, L.; Wang, H. Engineering the surface chemical microenvironment over CuO nanowire arrays by polyaniline modification for efficient ammonia electrosynthesis from nitrate. Appl. Catal. B Environ. 2023, 320, 121981.  doi: 10.1016/j.apcatb.2022.121981

    117. [117]

      Hou, M.; Pu, Y.; Qi, W. -K.; Tang, Y.; Wan, P.; Yang, X. J.; Song, P.; Fisher, A. Enhanced electrocatalytic reduction of aqueous nitrate by modified copper catalyst through electrochemical deposition and annealing treatment. Chem. Eng. Commun. 2018, 205, 706-715.  doi: 10.1080/00986445.2017.1413357

    118. [118]

      Cerrón-Calle, G. A.; Fajardo, A. S.; Sánchez-Sánchez, C. M.; Garcia-Segura, S. Highly reactive Cu-Pt bimetallic 3D-electrocatalyst for selective nitrate reduction to ammonia. Appl. Catal. B Environ. 2022, 302, 120844.  doi: 10.1016/j.apcatb.2021.120844

    119. [119]

      Fang, L.; Wang, S.; Song, C.; Yang, X.; Li, Y.; Liu, H. Enhanced nitrate reduction reaction via efficient intermediate nitrite conversion on tunable CuxNiy/NC electrocatalysts. J. Hazard. Mater. 2022, 421, 126628.  doi: 10.1016/j.jhazmat.2021.126628

    120. [120]

      Wang, C.; Liu, Z.; Hu, T.; Li, J.; Dong, L.; Du, F.; Li, C.; Guo, C. Metasequoia-like nanocrystal of iron-doped copper for efficient electrocatalytic nitrate reduction into ammonia in neutral media. ChemSusChem 2021, 14, 1825-1829.  doi: 10.1002/cssc.202100127

    121. [121]

      Yin, D.; Liu, Y.; Song, P.; Chen, P.; Liu, X.; Cai, L.; Zhang, L. In situ growth of copper/reduced graphene oxide on graphite surfaces for the electrocatalytic reduction of nitrate. Electrochim. Acta 2019, 324, 134846.  doi: 10.1016/j.electacta.2019.134846

    122. [122]

      Daiyan, R.; Tran-Phu, T.; Kumar, P.; Iputera, K.; Tong, Z.; Leverett, J.; Khan, M. H. A.; Asghar Esmailpour, A.; Jalili, A.; Lim, M.; Tricoli, A.; Liu, R. -S.; Lu, X.; Lovell, E.; Amal, R. Nitrate reduction to ammonium: from CuO defect engineering to waste NOx-to-NH3 economic feasibility. Energy Environ. Sci. 2021, 14, 3588-3598.  doi: 10.1039/D1EE00594D

    123. [123]

      Couto, A. B.; Santos, L. C. D.; Matsushima, J. T.; Baldan, M. R.; Ferreira, N. G. Hydrogen and oxygen plasma enhancement in the Cu electrodeposition and consolidation processes on BDD electrode applied to nitrate reduction. Appl. Surf. Sci. 2011, 257, 10141-10146.  doi: 10.1016/j.apsusc.2011.07.006

    124. [124]

      Yu, J.; Kolln, A. F.; Jing, D.; Oh, J.; Liu, H.; Qi, Z.; Zhou, L.; Li, W.; Huang, W. Precisely controlled synthesis of hybrid intermetallic-metal nanoparticles for nitrate electroreduction. ACS Appl. Mater. Interfaces 2021, 13, 52073-52081.  doi: 10.1021/acsami.1c09301

    125. [125]

      Cai, J.; Qin, S.; Akram, M. A.; Hou, X.; Jin, P.; Wang, F.; Zhu, B.; Li, X.; Feng, L. In situ reconstruction enhanced dual-site catalysis towards nitrate electroreduction to ammonia. J. Mater. Chem. A 2022, 10, 12669-12678.  doi: 10.1039/D2TA01772E

    126. [126]

      He, W.; Zhang, J.; Dieckhofer, S.; Varhade, S.; Brix, A. C.; Lielpetere, A.; Seisel, S.; Junqueira, J. R. C.; Schuhmann, W. Splicing the active phases of copper/cobalt-based catalysts achieves high-rate tandem electroreduction of nitrate to ammonia. Nat. Commun. 2022, 13, 1129.  doi: 10.1038/s41467-022-28728-4

    127. [127]

      Gao, Q.; Pillai, H. S.; Huang, Y.; Liu, S.; Mu, Q.; Han, X.; Yan, Z.; Zhou, H.; He, Q.; Xin, H.; Zhu, H. Breaking adsorption-energy scaling limitations of electrocatalytic nitrate reduction on intermetallic CuPd nanocubes by machine-learned insights. Nat. Commun. 2022, 13, 2338.  doi: 10.1038/s41467-022-29926-w

    128. [128]

      Yang, J.; Qi, H.; Li, A.; Liu, X.; Yang, X.; Zhang, S.; Zhao, Q.; Jiang, Q.; Su, Y.; Zhang, L.; Li, J. F.; Tian, Z. Q.; Liu, W.; Wang, A.; Zhang, T. Potential-driven restructuring of Cu single atoms to nanoparticles for boosting the electrochemical reduction of nitrate to ammonia. J. Am. Chem. Soc. 2022, 144, 12062-12071.  doi: 10.1021/jacs.2c02262

    129. [129]

      Jeon, T. H.; Wu, Z. -Y.; Chen, F. -Y.; Choi, W.; Alvarez, P. J. J.; Wang, H. Cobalt-copper nanoparticles on three-dimensional substrate for efficient ammonia synthesis via electrocatalytic nitrate reduction. J. Phys. Chem. C 2022, 126, 6982-6989.  doi: 10.1021/acs.jpcc.1c10781

    130. [130]

      Wu, K.; Sun, C.; Wang, Z.; Song, Q.; Bai, X.; Yu, X.; Li, Q.; Wang, Z.; Zhang, H.; Zhang, J.; Tong, X.; Liang, Y.; Khosla, A.; Zhao, Z. Surface reconstruction on uniform Cu nanodisks boosted electrochemical nitrate reduction to ammonia. ACS Mater. Lett. 2022, 4, 650-656.  doi: 10.1021/acsmaterialslett.2c00149

    131. [131]

      Zhang, Y.; Chen, X.; Wang, W.; Yin, L.; Crittenden, J. C. Electrocatalytic nitrate reduction to ammonia on defective Au1Cu (111) single-atom alloys. Appl. Catal. B Environ. 2022, 310, 121346.  doi: 10.1016/j.apcatb.2022.121346

    132. [132]

      Chen, F. Y.; Wu, Z. Y.; Gupta, S.; Rivera, D. J.; Lambeets, S. V.; Pecaut, S.; Kim, J. Y. T.; Zhu, P.; Finfrock, Y. Z.; Meira, D. M.; King, G.; Gao, G.; Xu, W.; Cullen, D. A.; Zhou, H.; Han, Y.; Perea, D. E.; Muhich, C. L.; Wang, H. Efficient conversion of low-concentration nitrate sources into ammonia on a Ru-dispersed Cu nanowire electrocatalyst. Nat. Nanotechnol. 2022, 17, 759-767.  doi: 10.1038/s41565-022-01121-4

    133. [133]

      Zhao, X.; Hu, G.; Tan, F.; Zhang, S.; Wang, X.; Hu, X.; Kuklin, A. V.; Baryshnikov, G. V.; Ågren, H.; Zhou, X.; Zhang, H. Copper confined in vesicle-like BCN cavities promotes electrochemical reduction of nitrate to ammonia in water. J. Mater. Chem. A 2021, 9, 23675-23686.  doi: 10.1039/D1TA05718A

    134. [134]

      Zhao, X.; Li, X.; Zhang, H.; Chen, X.; Xu, J.; Yang, J.; Zhang, H.; Hu, G. Atomic-dispersed copper simultaneously achieve high-efficiency removal and high-value-added conversion to ammonia of nitrate in sewage. J. Hazard. Mater. 2022, 424 (Pt A), 127319.

    135. [135]

      Hu, Q.; Qin, Y.; Wang, X.; Zheng, H.; Gao, K.; Yang, H.; Zhang, P.; Shao, M.; He, C. Grain boundaries engineering of hollow copper nanoparticles enables highly efficient ammonia electrosynthesis from nitrate. CCS Chem. 2022, 4, 2053-2064.  doi: 10.31635/ccschem.021.202101042

    136. [136]

      Geng, J.; Ji, S.; Xu, H.; Zhao, C.; Zhang, S.; Zhang, H. Electrochemical reduction of nitrate to ammonia in a fluidized electrocatalysis system with oxygen vacancy-rich CuOx nanoparticles. Inorg. Chem. Front. 2021, 8, 5209-5213.  doi: 10.1039/D1QI01062J

    137. [137]

      Song, Z.; Liu, Y.; Zhong, Y.; Guo, Q.; Zeng, J.; Geng, Z. Efficient electroreduction of nitrate into ammonia at ultralow concentrations via an enrichment effect. Adv. Mater. 2022, 34, 2204306.  doi: 10.1002/adma.202204306

    138. [138]

      Hu, Q.; Qin, Y.; Wang, X.; Wang, Z.; Huang, X.; Zheng, H.; Gao, K.; Yang, H.; Zhang, P.; Shao, M.; He, C. Reaction intermediate-mediated electrocatalyst synthesis favors specified facet and defect exposure for efficient nitrate-ammonia conversion. Energy Environ. Sci. 2021, 14, 4989-4997.  doi: 10.1039/D1EE01731D

    139. [139]

      Zhao, X.; Jia, X.; He, Y.; Zhang, H.; Zhou, X.; Zhang, H.; Zhang, S.; Dong, Y.; Hu, X.; Kuklin, A. V.; Baryshnikov, G. V.; Ågren, H.; Hu, G. Two-dimensional BCN matrix inlaid with single-atom-Cu driven electrochemical nitrate reduction reaction to achieve sustainable industrial-grade production of ammonia. Appl. Mater. Today 2021, 25, 101206.  doi: 10.1016/j.apmt.2021.101206

    140. [140]

      Fu, X.; Zhao, X.; Hu, X.; He, K.; Yu, Y.; Li, T.; Tu, Q.; Qian, X.; Yue, Q.; Wasielewski, M. R.; Kang, Y. Alternative route for electrochemical ammonia synthesis by reduction of nitrate on copper nanosheets. Appl. Mater. Today 2020, 19, 100620.  doi: 10.1016/j.apmt.2020.100620

    141. [141]

      Li, C.; Liu, S.; Xu, Y.; Ren, T.; Guo, Y.; Wang, Z.; Li, X.; Wang, L.; Wang, H. Controllable reconstruction of copper nanowires into nanotubes for efficient electrocatalytic nitrate conversion into ammonia. Nanoscale 2022, 14, 12332-12338.  doi: 10.1039/D2NR03767J

    142. [142]

      Yao, F.; Jia, M.; Yang, Q.; Chen, F.; Zhong, Y.; Chen, S.; He, L.; Pi, Z.; Hou, K.; Wang, D.; Li, X. Highly selective electrochemical nitrate reduction using copper phosphide self-supported copper foam electrode: performance, mechanism, and application. Water Res. 2021, 193, 116881.  doi: 10.1016/j.watres.2021.116881

    143. [143]

      Gao, Z.; Lai, Y.; Tao, Y.; Xiao, L.; Zhang, L.; Luo, F. Constructing well-defined and robust Th-MOF-supported single-site copper for production and storage of ammonia from electroreduction of nitrate. ACS Cent. Sci. 2021, 7, 1066-1072.  doi: 10.1021/acscentsci.1c00370

  • 加载中
    1. [1]

      Sajid MahmoodHaiyan WangFang ChenYijun ZhongYong Hu . Recent progress and prospects of electrolytes for electrocatalytic nitrogen reduction toward ammonia. Chinese Chemical Letters, 2024, 35(4): 108550-. doi: 10.1016/j.cclet.2023.108550

    2. [2]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    3. [3]

      Xue ZhaoMengshan ChenDan WangHaoran ZhangGuangzhi HuYingtang Zhou . Ultrafine nano-copper derived from dopamine polymerization & synchronous adsorption achieve electrochemical purification of nitrate to ammonia in complex water environments. Chinese Chemical Letters, 2024, 35(8): 109327-. doi: 10.1016/j.cclet.2023.109327

    4. [4]

      Jin LongXingqun ZhengBin WangChenzhong WuQingmei WangLishan Peng . Improving the electrocatalytic performances of Pt-based catalysts for oxygen reduction reaction via strong interactions with single-CoN4-rich carbon support. Chinese Chemical Letters, 2024, 35(5): 109354-. doi: 10.1016/j.cclet.2023.109354

    5. [5]

      Rui PANYuting MENGRuigang XIEDaixiang CHENJiefa SHENShenghu YANJianwu LIUYue ZHANG . Selective electrocatalytic reduction of Sn(Ⅳ) by carbon nitrogen materials prepared with different precursors. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1015-1024. doi: 10.11862/CJIC.20230433

    6. [6]

      Yuan DongMutian MaZhenyang JiaoSheng HanLikun XiongZhao DengYang Peng . Effect of electrolyte cation-mediated mechanism on electrocatalytic carbon dioxide reduction. Chinese Chemical Letters, 2024, 35(7): 109049-. doi: 10.1016/j.cclet.2023.109049

    7. [7]

      Xianxu ChuLu WangJunru LiHui Xu . Surface chemical microenvironment engineering of catalysts by organic molecules for boosting electrocatalytic reaction. Chinese Chemical Letters, 2024, 35(8): 109105-. doi: 10.1016/j.cclet.2023.109105

    8. [8]

      Zhao LiHuimin YangWenjing ChengLin Tian . Recent progress of in situ/operando characterization techniques for electrocatalytic energy conversion reaction. Chinese Chemical Letters, 2024, 35(9): 109237-. doi: 10.1016/j.cclet.2023.109237

    9. [9]

      Yuxin WangZhengxuan SongYutao LiuYang ChenJinping LiLibo LiJia Yao . Methyl functionalization of trimesic acid in copper-based metal-organic framework for ammonia colorimetric sensing at high relative humidity. Chinese Chemical Letters, 2024, 35(6): 108779-. doi: 10.1016/j.cclet.2023.108779

    10. [10]

      Ling FangSha WangShun LuFengjun YinYujie DaiLin ChangHong Liu . Efficient electroreduction of nitrate via enriched active phases on copper-cobalt oxides. Chinese Chemical Letters, 2024, 35(4): 108864-. doi: 10.1016/j.cclet.2023.108864

    11. [11]

      Peng Wang Daijie Deng Suqin Wu Li Xu . Cobalt-based deep eutectic solvent modified nitrogen-doped carbon catalyst for boosting oxygen reduction reaction in zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100199-100199. doi: 10.1016/j.cjsc.2023.100199

    12. [12]

      Wei ZhouXi ChenLin LuXian-Rong SongMu-Jia LuoQiang Xiao . Recent advances in electrocatalytic generation of indole-derived radical cations and their applications in organic synthesis. Chinese Chemical Letters, 2024, 35(4): 108902-. doi: 10.1016/j.cclet.2023.108902

    13. [13]

      Jiayu Huang Kuan Chang Qi Liu Yameng Xie Zhijia Song Zhiping Zheng Qin Kuang . Fe-N-C nanostick derived from 1D Fe-ZIFs for Electrocatalytic oxygen reduction. Chinese Journal of Structural Chemistry, 2023, 42(10): 100097-100097. doi: 10.1016/j.cjsc.2023.100097

    14. [14]

      Xue XinQiming QuIslam E. KhalilYuting HuangMo WeiJie ChenWeina ZhangFengwei HuoWenjing Liu . Hetero-phase zirconia encapsulated with Au nanoparticles for boosting electrocatalytic nitrogen reduction. Chinese Chemical Letters, 2024, 35(5): 108654-. doi: 10.1016/j.cclet.2023.108654

    15. [15]

      Qiang CaoXue-Feng ChengJia WangChang ZhouLiu-Jun YangGuan WangDong-Yun ChenJing-Hui HeJian-Mei Lu . Graphene from microwave-initiated upcycling of waste polyethylene for electrocatalytic reduction of chloramphenicol. Chinese Chemical Letters, 2024, 35(4): 108759-. doi: 10.1016/j.cclet.2023.108759

    16. [16]

      Yuxiang Zhang Jia Zhao Sen Lin . Nitrogen doping retrofits the coordination environment of copper single-atom catalysts for deep CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100415-100415. doi: 10.1016/j.cjsc.2024.100415

    17. [17]

      Maomao Liu Guizeng Liang Ningce Zhang Tao Li Lipeng Diao Ping Lu Xiaoliang Zhao Daohao Li Dongjiang Yang . Electron-rich Ni2+ in Ni3S2 boosting electrocatalytic CO2 reduction to formate and syngas. Chinese Journal of Structural Chemistry, 2024, 43(8): 100359-100359. doi: 10.1016/j.cjsc.2024.100359

    18. [18]

      Wenyi MeiLijuan XieXiaodong ZhangCunjian ShiFengzhi WangQiqi FuZhenjiang ZhaoHonglin LiYufang XuZhuo Chen . Design, synthesis and biological evaluation of fluorescent derivatives of ursolic acid in living cells. Chinese Chemical Letters, 2024, 35(5): 108825-. doi: 10.1016/j.cclet.2023.108825

    19. [19]

      Dong-Ling Kuang Song Chen Shaoru Chen Yong-Jie Liao Ning Li Lai-Hon Chung Jun He . 2D Zirconium-based metal-organic framework/bismuth(III) oxide nanorods composite for electrocatalytic CO2-to-formate reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100301-100301. doi: 10.1016/j.cjsc.2024.100301

    20. [20]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

Metrics
  • PDF Downloads(167)
  • Abstract views(2291)
  • HTML views(537)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return