Recent Advances of Cu-Based Materials for Electrochemical Nitrate Reduction to Ammonia
- Corresponding author: Lianlian Wang, 66246@bttc.edu.cn You Xu, yxu@zjut.edu.cn
Citation: Tianlun Ren, Youwei Sheng, Mingzhen Wang, Kaili Ren, Lianlian Wang, You Xu. Recent Advances of Cu-Based Materials for Electrochemical Nitrate Reduction to Ammonia[J]. Chinese Journal of Structural Chemistry, ;2022, 41(12): 221208. doi: 10.14102/j.cnki.0254-5861.2022-0201
Yao, Y.; Zhu, S.; Wang, H.; Li, H.; Shao, M. A Spectroscopic study of electrochemical nitrogen and nitrate reduction on rhodium surfaces. Angew. Chem., Int. Ed. 2020, 59, 10479-10483.
doi: 10.1002/anie.202003071
Tang, C.; Qiao, S. Z. How to explore ambient electrocatalytic nitrogen reduction reliably and insightfully. Chem. Soc. Rev. 2019, 48, 3166-3180.
doi: 10.1039/C9CS00280D
Qiu, W.; Xie, X. -Y.; Qiu, J.; Fang, W. -H.; Liang, R.; Ren, X.; Ji, X.; Cui, G.; Asiri, A. M.; Cui, G.; Tang, B.; Sun, X. High-performance artificial nitrogen fixation at ambient conditions using a metal-free electrocatalyst. Nat. Commun. 2018, 9, 3485.
doi: 10.1038/s41467-018-05758-5
Qu, Y.; Dai, T.; Cui, Y.; Zhang, Y.; Wang, Z.; Jiang, Q. Tailoring electronic structure of copper nanosheets by silver doping toward highly efficient electrochemical reduction of nitrogen to ammonia. Chem. Eng. J. 2022, 433, 133752.
doi: 10.1016/j.cej.2021.133752
Khalil, I. E.; Xue, C.; Liu, W.; Li, X.; Shen, Y.; Li, S.; Zhang, W.; Huo, F. The role of defects in metal-organic frameworks for nitrogen reduction reaction: when defects switch to features. Adv. Funct. Mater. 2021, 31, 2010052.
doi: 10.1002/adfm.202010052
Ashida, Y.; Arashiba, K.; Nakajima, K.; Nishibayashi, Y. Molybdenum-catalysed ammonia production with samarium diiodide and alcohols or water. Nature 2019, 568, 536-540.
doi: 10.1038/s41586-019-1134-2
Wang, Y.; Yu, Y.; Jia, R.; Zhang, C.; Zhang, B. Electrochemical synthesis of nitric acid from air and ammonia through waste utilization. Natl. Sci. Rev. 2019, 6, 730-738.
doi: 10.1093/nsr/nwz019
Cui, X.; Tang, C.; Zhang, Q. A review of electrocatalytic reduction of dinitrogen to ammonia under ambient conditions. Adv. Energy Mater. 2018, 8, 1800369.
doi: 10.1002/aenm.201800369
Utomo, W. P.; Leung, M. K. H.; Yin, Z.; Wu, H.; Ng, Y. H. Advancement of bismuth-based materials for electrocatalytic and photo(electro)catalytic ammonia synthesis. Adv. Funct. Mater. 2021, 32, 2106713.
Li, L.; Tang, C.; Yao, D.; Zheng, Y.; Qiao, S. -Z. Electrochemical nitrogen reduction: identification and elimination of contamination in electrolyte. ACS Energy Lett. 2019, 4, 2111-2116.
doi: 10.1021/acsenergylett.9b01573
Liu, D.; Chen, M.; Du, X.; Ai, H.; Lo, K. H.; Wang, S.; Chen, S.; Xing, G.; Wang, X.; Pan, H. Development of electrocatalysts for efficient nitrogen reduction reaction under ambient condition. Adv. Funct. Mater. 2020, 31, 2008983.
Wan, Y.; Zhou, H.; Zheng, M.; Huang, Z. H.; Kang, F.; Li, J.; Lv, R. Oxidation state modulation of bismuth for efficient electrocatalytic nitrogen reduction to ammonia. Adv. Funct. Mater. 2021, 31, 2100300.
doi: 10.1002/adfm.202100300
Tan, Y.; Yan, L.; Huang, C.; Zhang, W.; Qi, H.; Kang, L.; Pan, X.; Zhong, Y.; Hu, Y.; Ding, Y. Fabrication of an Au25-Cys-Mo electrocatalyst for efficient nitrogen reduction to ammonia under ambient conditions. Small 2021, 17, 2100372.
doi: 10.1002/smll.202100372
Hong, Q.; Li, T.; Zheng, S.; Chen, H.; Chu, H.; Xu, K.; Li, S.; Mei, Z.; Zhao, Q.; Ren, W. Tuning double layer structure of WO3 nanobelt for promoting the electrochemical nitrogen reduction reaction in water. Chin. J. Struct. Chem. 2021, 40, 519-526.
Wang, G.; Shen, P.; Luo, Y.; Li, X.; Li, X.; Chu, K. A vacancy engineered MnO2-x electrocatalyst promotes nitrate electroreduction to ammonia. Dalton Trans. 2022, 51, 9206-9212.
doi: 10.1039/D2DT01431A
Xie, L.; Liu, Q.; Sun, S.; Hu, L.; Zhang, L.; Zhao, D.; Liu, Q.; Chen, J.; Li, J.; Ouyang, L.; Alshehri, A. A.; Hamdy, M. S.; Kong, Q.; Sun, X. High-efficiency electrosynthesis of ammonia with selective reduction of nitrate in neutral media enabled by self-supported Mn2CoO4 nanoarray. ACS Appl. Mater. Interfaces 2022, 33242-33247.
Niu, H.; Zhang, Z.; Wang, X.; Wan, X.; Shao, C.; Guo, Y. Theoretical insights into the mechanism of selective nitrate-to-ammonia electroreduction on single-atom catalysts. Adv. Funct. Mater. 2020, 31, 2008533.
Yan, L.; Xu, Z.; Liu, X.; Mahmood, S.; Shen, J.; Ning, J.; Li, S.; Zhong, Y.; Hu, Y. Integrating trifunctional Co@NC-CNTs@NiFe-LDH electrocatalysts with arrays of porous triangle carbon plates for high-power-density rechargeable Zn-air batteries and self-powered water splitting. Chem. Eng. J. 2022, 446, 137049.
doi: 10.1016/j.cej.2022.137049
Wang, S.; Wang, H.; Huang, C.; Ye, P.; Luo, X.; Ning, J.; Zhong, Y.; Hu, Y. Trifunctional electrocatalyst of N-doped graphitic carbon nanosheets encapsulated with CoFe alloy nanocrystals: the key roles of bimetal components and high-content graphitic-N. Appl. Catal. B Environ. 2021, 298, 120512.
doi: 10.1016/j.apcatb.2021.120512
Wu, Z. Y.; Karamad, M.; Yong, X.; Huang, Q.; Cullen, D. A.; Zhu, P.; Xia, C.; Xiao, Q.; Shakouri, M.; Chen, F. Y.; Kim, J. Y. T.; Xia, Y.; Heck, K.; Hu, Y.; Wong, M. S.; Li, Q.; Gates, I.; Siahrostami, S.; Wang, H. Electrochemical ammonia synthesis via nitrate reduction on Fe single atom catalyst. Nat. Commun. 2021, 12, 2870.
doi: 10.1038/s41467-021-23115-x
Chauhan, R.; Srivastava, V. C. Electrochemical denitrification of highly contaminated actual nitrate wastewater by Ti/RuO2 anode and iron cathode. Chem. Eng. J. 2020, 386, 122065.
doi: 10.1016/j.cej.2019.122065
Li, J.; Zhang, Y.; Liu, C.; Zheng, L.; Petit, E.; Qi, K.; Zhang, Y.; Wu, H.; Wang, W.; Tiberj, A.; Wang, X.; Chhowalla, M.; Lajaunie, L.; Yu, R.; Voiry, D. 3.4% solar-to-ammonia efficiency from nitrate using Fe single atomic catalyst supported on MoS2 nanosheets. Adv. Funct. Mater. 2021, 32, 2108316.
Lv, X.; Mou, T.; Li, J.; Kou, L.; Frauenheim, T. Tunable surface chemistry in heterogeneous bilayer single-atom catalysts for electrocatalytic NOx reduction to ammonia. Adv. Funct. Mater. 2022, 32, 2201262.
doi: 10.1002/adfm.202201262
Su, L.; Han, D.; Zhu, G.; Xu, H.; Luo, W.; Wang, L.; Jiang, W.; Dong, A.; Yang, J. Tailoring the assembly of iron nanoparticles in carbon microspheres toward high-performance electrocatalytic denitrification. Nano Lett. 2019, 19, 5423-5430.
doi: 10.1021/acs.nanolett.9b01925
Yu, H.; Qu, S.; Chen, P. R.; Ou, K. Q.; Lin, J. Y.; Guo, Z. H.; Zheng, L.; Li, J. K.; Huang, S.; Teng, Y.; Zou, L.; Song, J. L. CO2 bubble-assisted in-situ construction of mesoporous Co-doped Cu2(OH)2CO3 nanosheets as advanced electrodes towards fast and highly efficient electrochemical reduction of nitrate to N2 in wastewater. J. Hazard. Mater. 2022, 430, 128351.
doi: 10.1016/j.jhazmat.2022.128351
Fu, W.; Hu, Z.; Zheng, Y.; Su, P.; Zhang, Q.; Jiao, Y.; Zhou, M. Tuning mobility of intermediate and electron transfer to enhance electrochemical reduction of nitrate to ammonia on Cu2O/Cu interface. Chem. Eng. J. 2022, 433, 133680.
doi: 10.1016/j.cej.2021.133680
Banasiak, L. J.; Schäfer, A. I. Removal of boron, fluoride and nitrate by electrodialysis in the presence of organic matter. J. Membr. Sci. 2009, 334, 101-109.
doi: 10.1016/j.memsci.2009.02.020
Samatya, S.; Kabay, N.; Yüksel, Ü.; Arda, M.; Yüksel, M. Removal of nitrate from aqueous solution by nitrate selective ion exchange resins. React. Funct. Polym. 2006, 66, 1206-1214.
doi: 10.1016/j.reactfunctpolym.2006.03.009
Bae, B. -U.; Jung, Y. -H.; Han, W. -W.; Shin, H. -S. Improved brine recycling during nitrate removal using ion exchange. Water Res. 2002, 36, 3330-3340.
doi: 10.1016/S0043-1354(02)00012-X
Xu, D.; Li, Y.; Yin, L.; Ji, Y.; Niu, J.; Yu, Y. Electrochemical removal of nitrate in industrial wastewater. Front. Environ. Sci. Eng. 2018, 12, 9.
Zhang, R.; Shuai, D.; Guy, K. A.; Shapley, J. R.; Strathmann, T. J.; Werth, C. J. Elucidation of nitrate reduction mechanisms on a Pd-In bimetallic catalyst using isotope labeled nitrogen species. ChemCatChem 2013, 5, 313-321.
doi: 10.1002/cctc.201200457
Zhang, X.; Wang, Y.; Liu, C.; Yu, Y.; Lu, S.; Zhang, B. Recent advances in non-noble metal electrocatalysts for nitrate reduction. Chem. Eng. J. 2021, 403, 126269.
doi: 10.1016/j.cej.2020.126269
Clark, C. A.; Reddy, C. P.; Xu, H.; Heck, K. N.; Luo, G.; Senftle, T. P.; Wong, M. S. Mechanistic insights into pH-controlled nitrite reduction to ammonia and hydrazine over rhodium. ACS Catal. 2019, 10, 494-509.
Wei, L.; Liu, D. -J.; Rosales, B. A.; Evans, J. W.; Vela, J. Mild and selective hydrogenation of nitrate to ammonia in the absence of noble metals. ACS Catal. 2020, 10, 3618-3628.
doi: 10.1021/acscatal.9b05338
Sun, W. J.; Ji, H. Q.; Li, L. X.; Zhang, H. Y.; Wang, Z. K.; He, J. H.; Lu, J. M. Built-in electric field triggered interfacial accumulation effect for efficient nitrate removal at ultra-low concentration and electroreduction to ammonia. Angew. Chem., Int. Ed. 2021, 60, 22933-22939.
doi: 10.1002/anie.202109785
Jia, R.; Wang, Y.; Wang, C.; Ling, Y.; Yu, Y.; Zhang, B. Boosting selective nitrate electroreduction to ammonium by constructing oxygen vacancies in TiO2. ACS Catal. 2020, 10, 3533-3540.
doi: 10.1021/acscatal.9b05260
Yu, Y.; Wang, C.; Yu, Y.; Wang, Y.; Zhang, B. Promoting selective electroreduction of nitrates to ammonia over electron-deficient Co modulated by rectifying Schottky contacts. Sci. China: Chem. 2020, 63, 1469-1476.
doi: 10.1007/s11426-020-9795-x
Li, Y.; Xiao, S.; Li, X.; Chang, C.; Xie, M.; Xu, J.; Yang, Z. A robust metal-free electrocatalyst for nitrate reduction reaction to synthesize ammonia. Mater. Today Phys. 2021, 19, 100431.
doi: 10.1016/j.mtphys.2021.100431
Kwon, Y. -I.; Kim, S. K.; Kim, Y. B.; Son, S. J.; Nam, G. D.; Park, H. J.; Cho, W. -C.; Yoon, H. C.; Joo, J. H. Nitric oxide utilization for ammonia production using solid electrolysis cell at atmospheric pressure. ACS Energy Lett. 2021, 6, 4165-4172.
doi: 10.1021/acsenergylett.1c01972
Liang, J.; Liu, P.; Li, Q.; Li, T.; Yue, L.; Luo, Y.; Liu, Q.; Li, N.; Tang, B.; Alshehri, A. A.; Shakir, I.; Agboola, P. O.; Sun, C.; Sun, X. Amorphous boron carbide on titanium dioxide nanobelt arrays for high-efficiency electrocatalytic NO reduction to NH3. Angew. Chem., Int. Ed. 2022, 61, e202202087.
Zhang, L.; Liang, J.; Wang, Y.; Mou, T.; Lin, Y.; Yue, L.; Li, T.; Liu, Q.; Luo, Y.; Li, N.; Tang, B.; Liu, Y.; Gao, S.; Alshehri, A. A.; Guo, X.; Ma, D.; Sun, X. High-performance electrochemical NO reduction into NH3 by MoS2 nanosheet. Angew. Chem., Int. Ed. 2021, 60, 25263-25268.
doi: 10.1002/anie.202110879
Ko, B. H.; Hasa, B.; Shin, H.; Zhao, Y.; Jiao, F. Electrochemical reduction of gaseous nitrogen oxides on transition metals at ambient conditions. J. Am. Chem. Soc. 2022, 144, 1258-1266.
doi: 10.1021/jacs.1c10535
Wang, Y.; Shu, S.; Peng, M.; Hu, L.; Lv, X.; Shen, Y.; Gong, H.; Jiang, G. Dual-site electrocatalytic nitrate reduction to ammonia on oxygen vacancy-enriched and Pd-decorated MnO2 nanosheets. Nanoscale 2021, 13, 17504-17511.
doi: 10.1039/D1NR04962C
Yin, H.; Chen, Z.; Xiong, S.; Chen, J.; Wang, C.; Wang, R.; Kuwahara, Y.; Luo, J.; Yamashita, H.; Peng, Y.; Li, J. Alloying effectinduced electron polarization drives nitrate electroreduction to ammonia. Chem. Catal. 2021, 1, 1088-1103.
doi: 10.1016/j.checat.2021.08.014
Chen, Q.; Liang, J.; Yue, L.; Luo, Y.; Liu, Q.; Li, N.; Alshehri, A. A.; Li, T.; Guo, H.; Sun, X. CoO nanoparticle decorated N-doped carbon nanotubes: a high-efficiency catalyst for nitrate reduction to ammonia. Chem. Commun. 2022, 58, 5901-5904.
doi: 10.1039/D2CC00997H
Fan, X.; Xie, L.; Liang, J.; Ren, Y.; Zhang, L.; Yue, L.; Li, T.; Luo, Y.; Li, N.; Tang, B.; Liu, Y.; Gao, S.; Alshehri, A. A.; Liu, Q.; Kong, Q.; Sun, X. In situ grown Fe3O4 particle on stainless steel: a highly efficient electrocatalyst for nitrate reduction to ammonia. Nano Res. 2021, 15, 3050-3055.
Chen, G. -F.; Yuan, Y.; Jiang, H.; Ren, S. -Y.; Ding, L. -X.; Ma, L.; Wu, T.; Lu, J.; Wang, H. Electrochemical reduction of nitrate to ammonia via direct eight-electron transfer using a copper-molecular solid catalyst. Nat. Energy 2020, 5, 605-613.
doi: 10.1038/s41560-020-0654-1
Crawford, J.; Yin, H.; Du, A.; O'Mullane, A. P. Nitrate-to-ammonia conversion at an InSn-enriched liquid-metal electrode. Angew. Chem., Int. Ed. 2022, 61, e202201604.
Deng, X.; Yang, Y.; Wang, L.; Fu, X. Z.; Luo, J. L. Metallic Co nanoarray catalyzes selective NH3 production from electrochemical nitrate reduction at current densities exceeding 2 A cm-2. Adv. Sci. 2021, 8, 2004523.
doi: 10.1002/advs.202004523
McEnaney, J. M.; Blair, S. J.; Nielander, A. C.; Schwalbe, J. A.; Koshy, D. M.; Cargnello, M.; Jaramillo, T. F. Electrolyte engineering for efficient electrochemical nitrate reduction to ammonia on a titanium electrode. ACS Sustainable Chem. Eng. 2020, 8, 2672-2681.
doi: 10.1021/acssuschemeng.9b05983
Li, Z.; Liang, J.; Liu, Q.; Xie, L.; Zhang, L.; Ren, Y.; Yue, L.; Li, N.; Tang, B.; Alshehri, A. A.; Hamdy, M. S.; Luo, Y.; Kong, Q.; Sun, X. High-efficiency ammonia electrosynthesis via selective reduction of nitrate on ZnCo2O4 nanosheet array. Mater. Today Phys. 2022, 23, 100619.
doi: 10.1016/j.mtphys.2022.100619
Yang, L.; Li, J.; Du, F.; Gao, J.; Liu, H.; Huang, S.; Zhang, H.; Li, C.; Guo, C. Interface engineering cerium-doped copper nanocrystal for efficient electrochemical nitrate-to-ammonia production. Electrochim. Acta 2022, 411, 140095.
doi: 10.1016/j.electacta.2022.140095
Li, J.; Zhan, G.; Yang, J.; Quan, F.; Mao, C.; Liu, Y.; Wang, B.; Lei, F.; Li, L.; Chan, A. W. M.; Xu, L.; Shi, Y.; Du, Y.; Hao, W.; Wong, P. K.; Wang, J.; Dou, S. X.; Zhang, L.; Yu, J. C. Efficient ammonia electrosynthesis from nitrate on strained ruthenium nanoclusters. J. Am. Chem. Soc. 2020, 142, 7036-7046.
doi: 10.1021/jacs.0c00418
Lim, J.; Liu, C. -Y.; Park, J.; Liu, Y. -H.; Senftle, T. P.; Lee, S. W.; Hatzell, M. C. Structure sensitivity of Pd facets for enhanced electrochemical nitrate reduction to ammonia. ACS Catal. 2021, 11, 7568-7577.
doi: 10.1021/acscatal.1c01413
Wang, Y.; Xu, A.; Wang, Z.; Huang, L.; Li, J.; Li, F.; Wicks, J.; Luo, M.; Nam, D. H.; Tan, C. S.; Ding, Y.; Wu, J.; Lum, Y.; Dinh, C. T.; Sinton, D.; Zheng, G.; Sargent, E. H. Enhanced nitrate-to-ammonia activity on copper-nickel alloys via tuning of intermediate adsorption. J. Am. Chem. Soc. 2020, 142, 5702-5708.
doi: 10.1021/jacs.9b13347
Wang, Z.; Young, S. D.; Goldsmith, B. R.; Singh, N. Increasing electrocatalytic nitrate reduction activity by controlling adsorption through PtRu alloying. J. Catal. 2021, 395, 143-154.
doi: 10.1016/j.jcat.2020.12.031
Zhu, J. Y.; Xue, Q.; Xue, Y. Y.; Ding, Y.; Li, F. M.; Jin, P.; Chen, P.; Chen, Y. Iridium nanotubes as bifunctional electrocatalysts for oxygen evolution and nitrate reduction reactions. ACS Appl. Mater. Interfaces 2020, 12, 14064-14070.
doi: 10.1021/acsami.0c01937
Yao, Q.; Chen, J.; Xiao, S.; Zhang, Y.; Zhou, X. Selective electrocatalytic reduction of nitrate to ammonia with nickel phosphide. ACS Appl. Mater. Interfaces 2021, 13, 30458-30467.
doi: 10.1021/acsami.0c22338
Wang, X.; Zhu, M.; Zeng, G.; Liu, X.; Fang, C.; Li, C. A three-dimensional Cu nanobelt cathode for highly efficient electrocatalytic nitrate reduction. Nanoscale 2020, 12, 9385-9391.
doi: 10.1039/C9NR10743F
Li, J.; Gao, J.; Feng, T.; Zhang, H.; Liu, D.; Zhang, C.; Huang, S.; Wang, C.; Du, F.; Li, C.; Guo, C. Effect of supporting matrixes on performance of copper catalysts in electrochemical nitrate reduction to ammonia. J. Power Sources 2021, 511, 230463.
doi: 10.1016/j.jpowsour.2021.230463
Pérez-Gallent, E.; Figueiredo, M. C.; Katsounaros, I.; Koper, M. T. M. Electrocatalytic reduction of nitrate on copper single crystals in acidic and alkaline solutions. Electrochim. Acta 2017, 227, 77-84.
doi: 10.1016/j.electacta.2016.12.147
Li, L. -X.; Sun, W. -J.; Zhang, H. -Y.; Wei, J. -L.; Wang, S. -X.; He, J. -H.; Li, N. -J.; Xu, Q. -F.; Chen, D. -Y.; Li, H.; Lu, J. -M. Highly efficient and selective nitrate electroreduction to ammonia catalyzed by molecular copper catalyst@Ti3C2Tx MXene. J. Mater. Chem. A 2021, 9, 21771-21778.
doi: 10.1039/D1TA06664A
Wang, Z.; Richards, D.; Singh, N. Recent discoveries in the reaction mechanism of heterogeneous electrocatalytic nitrate reduction. Catal. Sci. Technol. 2021, 11, 705-725.
doi: 10.1039/D0CY02025G
Bae, S. -E.; Stewart, K. L.; Gewirth, A. A. Nitrate adsorption and reduction on Cu(100) in acidic solution. J. Am. Chem. Soc. 2007, 129, 10171-10180.
doi: 10.1021/ja071330n
Yuan, J.; Xing, Z.; Tang, Y.; Liu, C. Tuning the oxidation state of Cu electrodes for selective electrosynthesis of ammonia from nitrate. ACS Appl. Mater. Interfaces 2021, 52469-52478.
Gao, J.; Jiang, B.; Ni, C.; Qi, Y.; Zhang, Y.; Oturan, N.; Oturan, M. A. Non-precious Co3O4-TiO2/Ti cathode based electrocatalytic nitrate reduction: preparation, performance and mechanism. Appl. Catal. B Environ. 2019, 254, 391-402.
doi: 10.1016/j.apcatb.2019.05.016
Gao, J.; Jiang, B.; Ni, C.; Qi, Y.; Bi, X. Enhanced reduction of nitrate by noble metal-free electrocatalysis on P doped three-dimensional Co3O4 cathode: mechanism exploration from both experimental and DFT studies. Chem. Eng. J. 2020, 382, 123034.
doi: 10.1016/j.cej.2019.123034
Liu, R.; Zhao, H.; Zhao, X.; He, Z.; Lai, Y.; Shan, W.; Bekana, D.; Li, G.; Liu, J. Defect sites in ultrathin Pd nanowires facilitate the highly efficient electrochemical hydrodechlorination of pollutants by H*ads. Environ. Sci. Technol. 2018, 52, 9992-10002.
doi: 10.1021/acs.est.8b02740
Martínez, J.; Ortiz, A.; Ortiz, I. State-of-the-art and perspectives of the catalytic and electrocatalytic reduction of aqueous nitrates. Appl. Catal. B Environ. 2017, 207, 42-59.
doi: 10.1016/j.apcatb.2017.02.016
de Vooys, A. C. A.; van Santen, R. A.; van Veen, J. A. R. Electrocatalytic reduction of NO3- on palladium/copper electrodes. J. Mol. Catal. A: Chem. 2000, 154, 203-215.
doi: 10.1016/S1381-1169(99)00375-1
Wang, Y.; Wang, C.; Li, M.; Yu, Y.; Zhang, B. Nitrate electroreduction: mechanism insight, in situ characterization, performance evaluation, and challenges. Chem. Soc. Rev. 2021, 50, 6720-6733.
doi: 10.1039/D1CS00116G
Garcia-Segura, S.; Lanzarini-Lopes, M.; Hristovski, K.; Westerhoff, P. Electrocatalytic reduction of nitrate: fundamentals to full-scale water treatment applications. Appl. Catal. B Environ. 2018, 236, 546-568.
doi: 10.1016/j.apcatb.2018.05.041
Wang, J.; Feng, T.; Chen, J.; Ramalingam, V.; Li, Z.; Kabtamu, D. M.; He, J. -H.; Fang, X. Electrocatalytic nitrate/nitrite reduction to ammonia synthesis using metal nanocatalysts and bio-inspired metalloenzymes. Nano Energy 2021, 86, 106088.
doi: 10.1016/j.nanoen.2021.106088
Lu, X.; Song, H.; Cai, J.; Lu, S. Recent development of electrochemical nitrate reduction to ammonia: a mini review. Electrochem. Commun. 2021, 129, 107094.
doi: 10.1016/j.elecom.2021.107094
Zeng, Y.; Priest, C.; Wang, G.; Wu, G. Restoring the nitrogen cycle by electrochemical reduction of nitrate: progress and prospects. Small Methods 2020, 4, 2000672.
doi: 10.1002/smtd.202000672
Duca, M.; Koper, M. T. Powering denitrification: the perspectives of electrocatalytic nitrate reduction. Energy Environ. Sci. 2012, 5, 9726-9742.
doi: 10.1039/c2ee23062c
Li, P.; Jin, Z.; Fang, Z.; Yu, G. A single-site iron catalyst with preoccupied active centers that achieves selective ammonia electrosynthesis from nitrate. Energy Environ. Sci. 2021, 14, 3522-3531.
doi: 10.1039/D1EE00545F
Liu, J. -X.; Richards, D.; Singh, N.; Goldsmith, B. R. Activity and selectivity trends in electrocatalytic nitrate reduction on transition metals. ACS Catal. 2019, 9, 7052-7064.
doi: 10.1021/acscatal.9b02179
Crawford, J.; Yin, H.; Du, A.; O'Mullane, A. P. Nitrate-to-ammonia conversion at an insn-enriched liquid-metal electrode. Angew. Chem. 2022, e202201604.
Shih, Y. -J.; Wu, Z. -L.; Huang, Y. -H.; Huang, C. -P. Electrochemical nitrate reduction as affected by the crystal morphology and facet of copper nanoparticles supported on nickel foam electrodes (Cu/Ni). Chem. Eng. J. 2020, 383, 123157.
doi: 10.1016/j.cej.2019.123157
Hu, T.; Wang, C.; Wang, M.; Li, C. M.; Guo, C. Theoretical insights into superior nitrate reduction to ammonia performance of copper catalysts. ACS Catal. 2021, 11, 14417-14427.
doi: 10.1021/acscatal.1c03666
Zhu, X.; Huang, H.; Zhang, H.; Zhang, Y.; Shi, P.; Qu, K.; Cheng, S. -B.; Wang, A. -L.; Lu, Q. Filling mesopores of conductive metal-organic frameworks with Cu clusters for selective nitrate reduction to ammonia. ACS Appl. Mater. Interfaces 2022, 14, 32176-32182.
doi: 10.1021/acsami.2c09241
Gong, Z.; Zhong, W.; He, Z.; Jia, C.; Zhou, D.; Zhang, N.; Kang, X.; Chen, Y. Improving electrochemical nitrate reduction activity of layered perovskite oxide La2CuO4 via B-site doping. Catal. Today 2022, 402, 259-265.
doi: 10.1016/j.cattod.2022.04.019
Niu, Z.; Fan, S.; Li, X.; Wang, P.; Tadé, M. O.; Liu, S. Optimizing oxidation state of octahedral copper for boosting electroreduction nitrate to ammonia. ACS Appl. Energy Mater. 2022, 5, 3339-3345.
doi: 10.1021/acsaem.1c03969
Xu, Y. -T.; Xie, M. -Y.; Zhong, H.; Cao, Y. In situ clustering of singleatom copper precatalysts in a metal-organic framework for efficient electrocatalytic nitrate-to-ammonia reduction. ACS Catal. 2022, 12, 8698-8706.
doi: 10.1021/acscatal.2c02033
Qiu, W.; Chen, X.; Liu, Y.; Xiao, D.; Wang, P.; Li, R.; Liu, K.; Jin, Z.; Li, P. Confining intermediates within a catalytic nanoreactor facilitates nitrate-to-ammonia electrosynthesis. Appl. Catal. B Environ. 2022, 315, 121548.
doi: 10.1016/j.apcatb.2022.121548
Fang, L.; Wang, S.; Song, C.; Lu, S.; Yang, X.; Qi, X.; Liu, H. Boosting nitrate electroreduction to ammonia via in situ generated stacking faults in oxide-derived copper. Chem. Eng. J. 2022, 446, 137341.
doi: 10.1016/j.cej.2022.137341
Cai, J.; Wei, Y.; Cao, A.; Huang, J.; Jiang, Z.; Lu, S.; Zang, S. -Q. Electrocatalytic nitrate-to-ammonia conversion with ~100% faradaic efficiency via single-atom alloying. Appl. Catal. B Environ. 2022, 316, 121683.
doi: 10.1016/j.apcatb.2022.121683
Gong, Z.; Zhong, W.; He, Z.; Liu, Q.; Chen, H.; Zhou, D.; Zhang, N.; Kang, X.; Chen, Y. Regulating surface oxygen species on copper(I) oxides via plasma treatment for effective reduction of nitrate to ammonia. Appl. Catal. B Environ. 2022, 305, 121021.
doi: 10.1016/j.apcatb.2021.121021
Liu, Y.; Deng, B.; Li, K.; Wang, H.; Sun, Y.; Dong, F. Metal-organic framework derived carbon-supported bimetallic copper-nickel alloy electrocatalysts for highly selective nitrate reduction to ammonia. J. Colloid Interface Sci. 2022, 614, 405-414.
doi: 10.1016/j.jcis.2022.01.127
Liu, H.; Lang, X.; Zhu, C.; Timoshenko, J.; Ruscher, M.; Bai, L.; Guijarro, N.; Yin, H.; Peng, Y.; Li, J.; Liu, Z.; Wang, W.; Cuenya, B. R.; Luo, J. Efficient electrochemical nitrate reduction to ammonia with copper-supported rhodium cluster and single-atom catalysts. Angew. Chem., Int. Ed. 2022, 61, e202202556.
Yin, H.; Zhao, X.; Xiong, S.; Peng, Y.; Chen, Z.; Wang, R.; Wen, M.; Luo, J.; Yamashita, H.; Li, J. New insight on electroreduction of nitrate to ammonia driven by oxygen vacancies-induced strong interface interactions. J. Catal. 2022, 406, 39-47.
doi: 10.1016/j.jcat.2021.12.031
Wang, C.; Ye, F.; Shen, J.; Xue, K. H.; Zhu, Y.; Li, C. In situ loading of Cu2O active sites on island-like copper for efficient electrochemical reduction of nitrate to ammonia. ACS Appl. Mater. Interfaces 2022, 14, 6680-6688.
doi: 10.1021/acsami.1c21691
Jiang, G.; Peng, M.; Hu, L.; Ouyang, J.; Lv, X.; Yang, Z.; Liang, X.; Liu, Y.; Liu, H. Electron-deficient Cuδ+ stabilized by interfacial Cu-O-Al bonding for accelerating electrocatalytic nitrate conversion. Chem. Eng. J. 2022, 435, 134853.
doi: 10.1016/j.cej.2022.134853
Patil, S. B.; Liu, T. R.; Chou, H. L.; Huang, Y. B.; Chang, C. C.; Chen, Y. C.; Lin, Y. S.; Li, H.; Lee, Y. C.; Chang, Y. J.; Lai, Y. H.; Wen, C. Y.; Wang, D. Y. Electrocatalytic Reduction of NO3- to ultrapure ammonia on {200} facet dominant Cu nanodendrites with high conversion faradaic efficiency. J. Phys. Chem. Lett. 2021, 12, 8121-8128.
doi: 10.1021/acs.jpclett.1c02236
Chen, L. -F.; Xie, A. -Y.; Lou, Y. -Y.; Tian, N.; Zhou, Z. -Y.; Sun, S. -G. Electrochemical synthesis of tetrahexahedral Cu nanocrystals with high-index facets for efficient nitrate electroreduction. J. Electroanal. Chem. 2022, 907, 116022.
doi: 10.1016/j.jelechem.2022.116022
Zhao, Y.; Liu, Y.; Zhang, Z.; Mo, Z.; Wang, C.; Gao, S. Flower-like open-structured polycrystalline copper with synergistic multi-crystal plane for efficient electrocatalytic reduction of nitrate to ammonia. Nano Energy 2022, 97, 107124.
doi: 10.1016/j.nanoen.2022.107124
Wang, Y.; Zhou, W.; Jia, R.; Yu, Y.; Zhang, B. Unveiling the activity origin of a copper-based electrocatalyst for selective nitrate reduction to ammonia. Angew. Chem., Int. Ed. 2020, 59, 5350-5354.
doi: 10.1002/anie.201915992
Ren, T.; Yu, Z.; Yu, H.; Deng, K.; Wang, Z.; Li, X.; Wang, H.; Wang, L.; Xu, Y. Interfacial polarization in metal-organic framework reconstructed Cu/Pd/CuOx multi-phase heterostructures for electrocatalytic nitrate reduction to ammonia. Appl. Catal. B Environ. 2022, 318, 121805.
doi: 10.1016/j.apcatb.2022.121805
Ren, T.; Ren, K.; Wang, M.; Liu, M.; Wang, Z.; Wang, H.; Li, X.; Wang, L.; Xu, Y. Concave-convex surface oxide layers over copper nanowires boost electrochemical nitrate-to-ammonia conversion. Chem. Eng. J. 2021, 426, 130759.
doi: 10.1016/j.cej.2021.130759
Xu, Y.; Sheng, Y.; Wang, M.; Ren, T.; Shi, K.; Wang, Z.; Li, X.; Wang, L.; Wang, H. Interface coupling induced built-in electric fields boost electrochemical nitrate reduction to ammonia over CuO@MnO2 core-shell hierarchical nanoarrays. J. Mater. Chem. A 2022, 10, 16883-16890.
doi: 10.1039/D2TA02006H
Xu, Y.; Shi, K.; Ren, T.; Yu, H.; Deng, K.; Wang, X.; Wang, Z.; Wang, H.; Wang, L. Electronic metal-support interaction triggering interfacial charge polarization over CuPd/N-Doped-C nanohybrids drives selectively electrocatalytic conversion of nitrate to ammonia. Small 2022, 2203335.
Xu, Y.; Wang, M.; Ren, K.; Ren, T.; Liu, M.; Wang, Z.; Li, X.; Wang, L.; Wang, H. Atomic defects in pothole-rich two-dimensional copper nanoplates triggering enhanced electrocatalytic selective nitrate-to-ammonia transformation. J. Mater. Chem. A 2021, 9, 16411-16417.
doi: 10.1039/D1TA04743D
Xu, Y.; Ren, K.; Ren, T.; Wang, M.; Liu, M.; Wang, Z.; Li, X.; Wang, L.; Wang, H. Cooperativity of Cu and Pd active sites in CuPd aerogels enhances nitrate electroreduction to ammonia. Chem. Commun. 2021, 57, 7525-7528.
doi: 10.1039/D1CC02105B
Tang, Z.; Bai, Z.; Li, X.; Ding, L.; Zhang, B.; Chang, X. Chloride-derived bimetallic Cu-Fe nanoparticles for high-selective nitrate-to-ammonia electrochemical catalysis. Processes 2022, 10, 751.
doi: 10.3390/pr10040751
Li, Z.; Wang, L.; Cai, Y.; Zhang, J. -R.; Zhu, W. Electrochemically reconstructed copper-polypyrrole nanofiber network for remediating nitrate-containing water at neutral pH. J. Hazard. Mater. 2022, 440, 129828.
doi: 10.1016/j.jhazmat.2022.129828
Xu, Y.; Ren, K.; Ren, T.; Wang, M.; Wang, Z.; Li, X.; Wang, L.; Wang, H. Ultralow-content Pd in-situ incorporation mediated hierarchical defects in corner-etched Cu2O octahedra for enhanced electrocatalytic nitrate reduction to ammonia. Appl. Catal. B Environ. 2022, 306, 121094.
doi: 10.1016/j.apcatb.2022.121094
Chen, D.; Zhang, S.; Bu, X.; Zhang, R.; Quan, Q.; Lai, Z.; Wang, W.; Meng, Y.; Yin, D.; Yip, S.; Liu, C.; Zhi, C.; Ho, J. C. Synergistic modulation of local environment for electrochemical nitrate reduction via asymmetric vacancies and adjacent ion clusters. Nano Energy 2022, 98, 107338.
doi: 10.1016/j.nanoen.2022.107338
Niu, Z.; Fan, S.; Li, X.; Liu, Z.; Wang, J.; Duan, J.; Tade, M. O.; Liu, S. Facile tailoring of the electronic structure and the d-band center of copper-doped cobaltate for efficient nitrate electrochemical hydrogenation. ACS Appl. Mater. Interfaces 2022, 14, 35477-35484.
doi: 10.1021/acsami.2c04789
Wang, J.; Zhang, S.; Wang, C.; Li, K.; Zha, Y.; Liu, M.; Zhang, H.; Shi, T. Ambient ammonia production via electrocatalytic nitrate reduction catalyzed by a flower-like CuCo2O4 electrocatalyst. Inorg. Chem. Front. 2022, 9, 2374-2378.
doi: 10.1039/D1QI01656C
Zhu, T.; Chen, Q.; Liao, P.; Duan, W.; Liang, S.; Yan, Z.; Feng, C. Single-atom Cu catalysts for enhanced electrocatalytic nitrate reduction with significant alleviation of nitrite production. Small 2020, 16, 2004526.
doi: 10.1002/smll.202004526
Chen, Y.; Zhao, Y.; Zhao, Z.; Liu, Y. Highly dispersed face-centered cubic copper-cobalt alloys constructed by ultrafast carbothermal shock for efficient electrocatalytic nitrate-to-ammonia conversion. Mater. Today Energy 2022, 29, 101112.
doi: 10.1016/j.mtener.2022.101112
Zhu, H.; Dong, S.; Du, X.; Du, H.; Xia, J.; Liu, Q.; Luo, Y.; Guo, H.; Li, T. Defective CuO-rich CuFe2O4 nanofibers enable the efficient synergistic electrochemical reduction of nitrate to ammonia. Catal. Sci. Technol. 2022, 12, 4998-5002.
doi: 10.1039/D2CY00910B
Chen, H.; Zhang, C.; Sheng, L.; Wang, M.; Fu, W.; Gao, S.; Zhang, Z.; Chen, S.; Si, R.; Wang, L.; Yang, B. Copper single-atom catalyst as a high-performance electrocatalyst for nitrate-ammonium conversion. J. Hazard. Mater. 2022, 434, 128892.
doi: 10.1016/j.jhazmat.2022.128892
Wang, H.; Guo, Y.; Li, C.; Yu, H.; Deng, K.; Wang, Z.; Li, X.; Xu, Y.; Wang, L. Cu/CuOx in-plane heterostructured nanosheet arrays with rich oxygen vacancies enhance nitrate electroreduction to ammonia. ACS Appl. Mater. Interfaces 2022, 14, 34761-34769.
doi: 10.1021/acsami.2c08534
Xu, Y.; Wen, Y.; Ren, T.; Yu, H.; Deng, K.; Wang, Z.; Li, X.; Wang, L.; Wang, H. Engineering the surface chemical microenvironment over CuO nanowire arrays by polyaniline modification for efficient ammonia electrosynthesis from nitrate. Appl. Catal. B Environ. 2023, 320, 121981.
doi: 10.1016/j.apcatb.2022.121981
Hou, M.; Pu, Y.; Qi, W. -K.; Tang, Y.; Wan, P.; Yang, X. J.; Song, P.; Fisher, A. Enhanced electrocatalytic reduction of aqueous nitrate by modified copper catalyst through electrochemical deposition and annealing treatment. Chem. Eng. Commun. 2018, 205, 706-715.
doi: 10.1080/00986445.2017.1413357
Cerrón-Calle, G. A.; Fajardo, A. S.; Sánchez-Sánchez, C. M.; Garcia-Segura, S. Highly reactive Cu-Pt bimetallic 3D-electrocatalyst for selective nitrate reduction to ammonia. Appl. Catal. B Environ. 2022, 302, 120844.
doi: 10.1016/j.apcatb.2021.120844
Fang, L.; Wang, S.; Song, C.; Yang, X.; Li, Y.; Liu, H. Enhanced nitrate reduction reaction via efficient intermediate nitrite conversion on tunable CuxNiy/NC electrocatalysts. J. Hazard. Mater. 2022, 421, 126628.
doi: 10.1016/j.jhazmat.2021.126628
Wang, C.; Liu, Z.; Hu, T.; Li, J.; Dong, L.; Du, F.; Li, C.; Guo, C. Metasequoia-like nanocrystal of iron-doped copper for efficient electrocatalytic nitrate reduction into ammonia in neutral media. ChemSusChem 2021, 14, 1825-1829.
doi: 10.1002/cssc.202100127
Yin, D.; Liu, Y.; Song, P.; Chen, P.; Liu, X.; Cai, L.; Zhang, L. In situ growth of copper/reduced graphene oxide on graphite surfaces for the electrocatalytic reduction of nitrate. Electrochim. Acta 2019, 324, 134846.
doi: 10.1016/j.electacta.2019.134846
Daiyan, R.; Tran-Phu, T.; Kumar, P.; Iputera, K.; Tong, Z.; Leverett, J.; Khan, M. H. A.; Asghar Esmailpour, A.; Jalili, A.; Lim, M.; Tricoli, A.; Liu, R. -S.; Lu, X.; Lovell, E.; Amal, R. Nitrate reduction to ammonium: from CuO defect engineering to waste NOx-to-NH3 economic feasibility. Energy Environ. Sci. 2021, 14, 3588-3598.
doi: 10.1039/D1EE00594D
Couto, A. B.; Santos, L. C. D.; Matsushima, J. T.; Baldan, M. R.; Ferreira, N. G. Hydrogen and oxygen plasma enhancement in the Cu electrodeposition and consolidation processes on BDD electrode applied to nitrate reduction. Appl. Surf. Sci. 2011, 257, 10141-10146.
doi: 10.1016/j.apsusc.2011.07.006
Yu, J.; Kolln, A. F.; Jing, D.; Oh, J.; Liu, H.; Qi, Z.; Zhou, L.; Li, W.; Huang, W. Precisely controlled synthesis of hybrid intermetallic-metal nanoparticles for nitrate electroreduction. ACS Appl. Mater. Interfaces 2021, 13, 52073-52081.
doi: 10.1021/acsami.1c09301
Cai, J.; Qin, S.; Akram, M. A.; Hou, X.; Jin, P.; Wang, F.; Zhu, B.; Li, X.; Feng, L. In situ reconstruction enhanced dual-site catalysis towards nitrate electroreduction to ammonia. J. Mater. Chem. A 2022, 10, 12669-12678.
doi: 10.1039/D2TA01772E
He, W.; Zhang, J.; Dieckhofer, S.; Varhade, S.; Brix, A. C.; Lielpetere, A.; Seisel, S.; Junqueira, J. R. C.; Schuhmann, W. Splicing the active phases of copper/cobalt-based catalysts achieves high-rate tandem electroreduction of nitrate to ammonia. Nat. Commun. 2022, 13, 1129.
doi: 10.1038/s41467-022-28728-4
Gao, Q.; Pillai, H. S.; Huang, Y.; Liu, S.; Mu, Q.; Han, X.; Yan, Z.; Zhou, H.; He, Q.; Xin, H.; Zhu, H. Breaking adsorption-energy scaling limitations of electrocatalytic nitrate reduction on intermetallic CuPd nanocubes by machine-learned insights. Nat. Commun. 2022, 13, 2338.
doi: 10.1038/s41467-022-29926-w
Yang, J.; Qi, H.; Li, A.; Liu, X.; Yang, X.; Zhang, S.; Zhao, Q.; Jiang, Q.; Su, Y.; Zhang, L.; Li, J. F.; Tian, Z. Q.; Liu, W.; Wang, A.; Zhang, T. Potential-driven restructuring of Cu single atoms to nanoparticles for boosting the electrochemical reduction of nitrate to ammonia. J. Am. Chem. Soc. 2022, 144, 12062-12071.
doi: 10.1021/jacs.2c02262
Jeon, T. H.; Wu, Z. -Y.; Chen, F. -Y.; Choi, W.; Alvarez, P. J. J.; Wang, H. Cobalt-copper nanoparticles on three-dimensional substrate for efficient ammonia synthesis via electrocatalytic nitrate reduction. J. Phys. Chem. C 2022, 126, 6982-6989.
doi: 10.1021/acs.jpcc.1c10781
Wu, K.; Sun, C.; Wang, Z.; Song, Q.; Bai, X.; Yu, X.; Li, Q.; Wang, Z.; Zhang, H.; Zhang, J.; Tong, X.; Liang, Y.; Khosla, A.; Zhao, Z. Surface reconstruction on uniform Cu nanodisks boosted electrochemical nitrate reduction to ammonia. ACS Mater. Lett. 2022, 4, 650-656.
doi: 10.1021/acsmaterialslett.2c00149
Zhang, Y.; Chen, X.; Wang, W.; Yin, L.; Crittenden, J. C. Electrocatalytic nitrate reduction to ammonia on defective Au1Cu (111) single-atom alloys. Appl. Catal. B Environ. 2022, 310, 121346.
doi: 10.1016/j.apcatb.2022.121346
Chen, F. Y.; Wu, Z. Y.; Gupta, S.; Rivera, D. J.; Lambeets, S. V.; Pecaut, S.; Kim, J. Y. T.; Zhu, P.; Finfrock, Y. Z.; Meira, D. M.; King, G.; Gao, G.; Xu, W.; Cullen, D. A.; Zhou, H.; Han, Y.; Perea, D. E.; Muhich, C. L.; Wang, H. Efficient conversion of low-concentration nitrate sources into ammonia on a Ru-dispersed Cu nanowire electrocatalyst. Nat. Nanotechnol. 2022, 17, 759-767.
doi: 10.1038/s41565-022-01121-4
Zhao, X.; Hu, G.; Tan, F.; Zhang, S.; Wang, X.; Hu, X.; Kuklin, A. V.; Baryshnikov, G. V.; Ågren, H.; Zhou, X.; Zhang, H. Copper confined in vesicle-like BCN cavities promotes electrochemical reduction of nitrate to ammonia in water. J. Mater. Chem. A 2021, 9, 23675-23686.
doi: 10.1039/D1TA05718A
Zhao, X.; Li, X.; Zhang, H.; Chen, X.; Xu, J.; Yang, J.; Zhang, H.; Hu, G. Atomic-dispersed copper simultaneously achieve high-efficiency removal and high-value-added conversion to ammonia of nitrate in sewage. J. Hazard. Mater. 2022, 424 (Pt A), 127319.
Hu, Q.; Qin, Y.; Wang, X.; Zheng, H.; Gao, K.; Yang, H.; Zhang, P.; Shao, M.; He, C. Grain boundaries engineering of hollow copper nanoparticles enables highly efficient ammonia electrosynthesis from nitrate. CCS Chem. 2022, 4, 2053-2064.
doi: 10.31635/ccschem.021.202101042
Geng, J.; Ji, S.; Xu, H.; Zhao, C.; Zhang, S.; Zhang, H. Electrochemical reduction of nitrate to ammonia in a fluidized electrocatalysis system with oxygen vacancy-rich CuOx nanoparticles. Inorg. Chem. Front. 2021, 8, 5209-5213.
doi: 10.1039/D1QI01062J
Song, Z.; Liu, Y.; Zhong, Y.; Guo, Q.; Zeng, J.; Geng, Z. Efficient electroreduction of nitrate into ammonia at ultralow concentrations via an enrichment effect. Adv. Mater. 2022, 34, 2204306.
doi: 10.1002/adma.202204306
Hu, Q.; Qin, Y.; Wang, X.; Wang, Z.; Huang, X.; Zheng, H.; Gao, K.; Yang, H.; Zhang, P.; Shao, M.; He, C. Reaction intermediate-mediated electrocatalyst synthesis favors specified facet and defect exposure for efficient nitrate-ammonia conversion. Energy Environ. Sci. 2021, 14, 4989-4997.
doi: 10.1039/D1EE01731D
Zhao, X.; Jia, X.; He, Y.; Zhang, H.; Zhou, X.; Zhang, H.; Zhang, S.; Dong, Y.; Hu, X.; Kuklin, A. V.; Baryshnikov, G. V.; Ågren, H.; Hu, G. Two-dimensional BCN matrix inlaid with single-atom-Cu driven electrochemical nitrate reduction reaction to achieve sustainable industrial-grade production of ammonia. Appl. Mater. Today 2021, 25, 101206.
doi: 10.1016/j.apmt.2021.101206
Fu, X.; Zhao, X.; Hu, X.; He, K.; Yu, Y.; Li, T.; Tu, Q.; Qian, X.; Yue, Q.; Wasielewski, M. R.; Kang, Y. Alternative route for electrochemical ammonia synthesis by reduction of nitrate on copper nanosheets. Appl. Mater. Today 2020, 19, 100620.
doi: 10.1016/j.apmt.2020.100620
Li, C.; Liu, S.; Xu, Y.; Ren, T.; Guo, Y.; Wang, Z.; Li, X.; Wang, L.; Wang, H. Controllable reconstruction of copper nanowires into nanotubes for efficient electrocatalytic nitrate conversion into ammonia. Nanoscale 2022, 14, 12332-12338.
doi: 10.1039/D2NR03767J
Yao, F.; Jia, M.; Yang, Q.; Chen, F.; Zhong, Y.; Chen, S.; He, L.; Pi, Z.; Hou, K.; Wang, D.; Li, X. Highly selective electrochemical nitrate reduction using copper phosphide self-supported copper foam electrode: performance, mechanism, and application. Water Res. 2021, 193, 116881.
doi: 10.1016/j.watres.2021.116881
Gao, Z.; Lai, Y.; Tao, Y.; Xiao, L.; Zhang, L.; Luo, F. Constructing well-defined and robust Th-MOF-supported single-site copper for production and storage of ammonia from electroreduction of nitrate. ACS Cent. Sci. 2021, 7, 1066-1072.
doi: 10.1021/acscentsci.1c00370
Sajid Mahmood , Haiyan Wang , Fang Chen , Yijun Zhong , Yong Hu . Recent progress and prospects of electrolytes for electrocatalytic nitrogen reduction toward ammonia. Chinese Chemical Letters, 2024, 35(4): 108550-. doi: 10.1016/j.cclet.2023.108550
Xiaoxia WANG , Ya'nan GUO , Feng SU , Chun HAN , Long SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478
Xue Zhao , Mengshan Chen , Dan Wang , Haoran Zhang , Guangzhi Hu , Yingtang Zhou . Ultrafine nano-copper derived from dopamine polymerization & synchronous adsorption achieve electrochemical purification of nitrate to ammonia in complex water environments. Chinese Chemical Letters, 2024, 35(8): 109327-. doi: 10.1016/j.cclet.2023.109327
Jin Long , Xingqun Zheng , Bin Wang , Chenzhong Wu , Qingmei Wang , Lishan Peng . Improving the electrocatalytic performances of Pt-based catalysts for oxygen reduction reaction via strong interactions with single-CoN4-rich carbon support. Chinese Chemical Letters, 2024, 35(5): 109354-. doi: 10.1016/j.cclet.2023.109354
Rui PAN , Yuting MENG , Ruigang XIE , Daixiang CHEN , Jiefa SHEN , Shenghu YAN , Jianwu LIU , Yue ZHANG . Selective electrocatalytic reduction of Sn(Ⅳ) by carbon nitrogen materials prepared with different precursors. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1015-1024. doi: 10.11862/CJIC.20230433
Yuan Dong , Mutian Ma , Zhenyang Jiao , Sheng Han , Likun Xiong , Zhao Deng , Yang Peng . Effect of electrolyte cation-mediated mechanism on electrocatalytic carbon dioxide reduction. Chinese Chemical Letters, 2024, 35(7): 109049-. doi: 10.1016/j.cclet.2023.109049
Xianxu Chu , Lu Wang , Junru Li , Hui Xu . Surface chemical microenvironment engineering of catalysts by organic molecules for boosting electrocatalytic reaction. Chinese Chemical Letters, 2024, 35(8): 109105-. doi: 10.1016/j.cclet.2023.109105
Zhao Li , Huimin Yang , Wenjing Cheng , Lin Tian . Recent progress of in situ/operando characterization techniques for electrocatalytic energy conversion reaction. Chinese Chemical Letters, 2024, 35(9): 109237-. doi: 10.1016/j.cclet.2023.109237
Yuxin Wang , Zhengxuan Song , Yutao Liu , Yang Chen , Jinping Li , Libo Li , Jia Yao . Methyl functionalization of trimesic acid in copper-based metal-organic framework for ammonia colorimetric sensing at high relative humidity. Chinese Chemical Letters, 2024, 35(6): 108779-. doi: 10.1016/j.cclet.2023.108779
Ling Fang , Sha Wang , Shun Lu , Fengjun Yin , Yujie Dai , Lin Chang , Hong Liu . Efficient electroreduction of nitrate via enriched active phases on copper-cobalt oxides. Chinese Chemical Letters, 2024, 35(4): 108864-. doi: 10.1016/j.cclet.2023.108864
Peng Wang , Daijie Deng , Suqin Wu , Li Xu . Cobalt-based deep eutectic solvent modified nitrogen-doped carbon catalyst for boosting oxygen reduction reaction in zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100199-100199. doi: 10.1016/j.cjsc.2023.100199
Wei Zhou , Xi Chen , Lin Lu , Xian-Rong Song , Mu-Jia Luo , Qiang Xiao . Recent advances in electrocatalytic generation of indole-derived radical cations and their applications in organic synthesis. Chinese Chemical Letters, 2024, 35(4): 108902-. doi: 10.1016/j.cclet.2023.108902
Jiayu Huang , Kuan Chang , Qi Liu , Yameng Xie , Zhijia Song , Zhiping Zheng , Qin Kuang . Fe-N-C nanostick derived from 1D Fe-ZIFs for Electrocatalytic oxygen reduction. Chinese Journal of Structural Chemistry, 2023, 42(10): 100097-100097. doi: 10.1016/j.cjsc.2023.100097
Xue Xin , Qiming Qu , Islam E. Khalil , Yuting Huang , Mo Wei , Jie Chen , Weina Zhang , Fengwei Huo , Wenjing Liu . Hetero-phase zirconia encapsulated with Au nanoparticles for boosting electrocatalytic nitrogen reduction. Chinese Chemical Letters, 2024, 35(5): 108654-. doi: 10.1016/j.cclet.2023.108654
Qiang Cao , Xue-Feng Cheng , Jia Wang , Chang Zhou , Liu-Jun Yang , Guan Wang , Dong-Yun Chen , Jing-Hui He , Jian-Mei Lu . Graphene from microwave-initiated upcycling of waste polyethylene for electrocatalytic reduction of chloramphenicol. Chinese Chemical Letters, 2024, 35(4): 108759-. doi: 10.1016/j.cclet.2023.108759
Yuxiang Zhang , Jia Zhao , Sen Lin . Nitrogen doping retrofits the coordination environment of copper single-atom catalysts for deep CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100415-100415. doi: 10.1016/j.cjsc.2024.100415
Maomao Liu , Guizeng Liang , Ningce Zhang , Tao Li , Lipeng Diao , Ping Lu , Xiaoliang Zhao , Daohao Li , Dongjiang Yang . Electron-rich Ni2+ in Ni3S2 boosting electrocatalytic CO2 reduction to formate and syngas. Chinese Journal of Structural Chemistry, 2024, 43(8): 100359-100359. doi: 10.1016/j.cjsc.2024.100359
Wenyi Mei , Lijuan Xie , Xiaodong Zhang , Cunjian Shi , Fengzhi Wang , Qiqi Fu , Zhenjiang Zhao , Honglin Li , Yufang Xu , Zhuo Chen . Design, synthesis and biological evaluation of fluorescent derivatives of ursolic acid in living cells. Chinese Chemical Letters, 2024, 35(5): 108825-. doi: 10.1016/j.cclet.2023.108825
Dong-Ling Kuang , Song Chen , Shaoru Chen , Yong-Jie Liao , Ning Li , Lai-Hon Chung , Jun He . 2D Zirconium-based metal-organic framework/bismuth(III) oxide nanorods composite for electrocatalytic CO2-to-formate reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100301-100301. doi: 10.1016/j.cjsc.2024.100301
Ruikui YAN , Xiaoli CHEN , Miao CAI , Jing REN , Huali CUI , Hua YANG , Jijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301