Citation: Yu-Qin Xing, Shi-Yong Liu. Recent Progress in π-Conjugated Polymer-Inorganic Heterostructures for Photocatalysis[J]. Chinese Journal of Structural Chemistry, ;2022, 41(9): 220905. doi: 10.14102/j.cnki.0254-5861.2022-0188 shu

Recent Progress in π-Conjugated Polymer-Inorganic Heterostructures for Photocatalysis



  • Author Bio: Yu-Qin Xing received her Master degree in Chemical Engineering from Jiangxi University of Science and Techno-logy in 2022. Her research interests focus on photocatalytic water splitting using heterojunctions
    Shi-Yong Liu is a full professor at Jiangxi University of Science and Technology (JXUST). He received his B.S. degree from Nanchang University in 1999, his Master degree in 2005 from Fuzhou University, and his Ph.D. degree in 2008 from Zhejiang University (ZJU). He was postdoctoral researcher in 2010-2016 at ZJU, and a visiting professor in 2014-2015 and University of Washington, USA. He became a research scientist in 2008 at Taizhou University (Zhejiang) and joined JXUST in 2017. His research interests focus on the design and synthesis of organic semiconductor for renewable energy applications, such as photocatalysis and organic photovoltaics
  • Corresponding author: Shi-Yong Liu, chelsy@zju.edu.cn; chelsy@jxust.edu.cn
  • Received Date: 20 August 2022
    Accepted Date: 11 September 2022
    Available Online: 20 September 2022

Figures(10)

  • Polymer-inorganic (P-I) soft-hard heterostructures & heterojunction photocatalysts, featured by large interfacial contact, efficient charge separation, broad light absorption and maximized redox capacity, have received great attention for their applications in energy conversion and environmental remediation. In this minireview, the classification and mechanism of P-I heterojunctions, i.e., type-I/II, p-n, Z-scheme and S-scheme heterojunctions, and their preparation methods are firstly introduced. Next, the photocatalytic applications of P-I heterojunctions, including water splitting, environmental remediation and carbon dioxide reduction, are extensively reviewed. Lastly, a brief summary and perspectives on ongoing challenges and opportunities to construct high performance P-I soft-hard photocatalysts are intensively highlighted. We envision this review will provide a picture of the state-of-the-art achievements and promote the photocatalytic applications of P-I heterostructures in energy conversion and environmental remediation.
  • 加载中
    1. [1]

      Wang, H.; Li, X.; Zhao, X.; Li, C.; Song, X.; Zhang, P.; Huo, P.; Li, X. A review on heterogeneous photocatalysis for environmental remediation: from semiconductors to modification strategies. Chin. J. Catal. 2022, 43, 178-214.  doi: 10.1016/S1872-2067(21)63910-4

    2. [2]

      Wang, M.; Wu, X.; Wang, S.; Lu, C. A stable polyoxometalate-based coordination polymer for light driven degradation of organic dye pollutant. Chin. J. Struct. Chem. 2021, 40, 1449-1455.

    3. [3]

      Yuan, L.; Qi, M.; Tang, Z.; Xu, Y. Coupling strategy for CO2 valorization integrated with organic synthesis by heterogeneous photocatalysis. Angew. Chem. Int. Ed. 2021, 60, 21150-21172.

    4. [4]

      Su, T.; Shao, Q.; Qin, Z.; Guo, Z.; Wu, Z. Role of interfaces in two-dimensional photocatalyst for water splitting. ACS Catal. 2018, 8, 2253-2276.

    5. [5]

      Wu, H.; Miao, T.; Shi, H.; Xu, W.; Fu, X.; Qian, L. Probing photocatalytic hydrogen evolution of cobalt complexes: experimental and theoretical methods. Chin. J. Struct. Chem. 2021, 40, 1696-1709.

    6. [6]

      Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37-38.  doi: 10.1038/238037a0

    7. [7]

      Yanagida, S.; Kabumoto, A.; Mizumoto, K.; Pac, C.; Yoshino, K. Poly(p-phenylene)-catalysed photoreduction of water to hydrogen. J. Chem. Soc. Chem. Commun. 1985, 8, 474.

    8. [8]

      Wang, X.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J.; Domen, K.; Antonietti, M. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 2009, 8, 76-80.  doi: 10.1038/nmat2317

    9. [9]

      Lan, Z.; Ren, W.; Chen, X.; Zhang, Y.; Wang, X. Conjugated donor-acceptor polymer photocatalysts with electron-output "tentacles" for efficient hydrogen evolution. Appl. Catal. B Environ. 2019, 245, 596.  doi: 10.1016/j.apcatb.2019.01.010

    10. [10]

      Cheng, J. -Z.; Liu, L. -L.; Liao, G.; Shen, Z. -Q.; Tan, Z.; Xing, Y.; Li, X. -X.; Yang, K.; Chen, L.; Liu, S. -Y. Achieving an unprecedented hydrogen evolution rate by solvent-exfoliated CPP-based photocatalysts. J. Mater. Chem. A 2020, 8, 5890-5899.  doi: 10.1039/C9TA13514F

    11. [11]

      Lan, Z.; Zhang, G.; Chen, X.; Zhang, Y.; Zhang, K.; Wang, X. Reducing the exciton binding energy of donor-acceptor-based conjugated polymers to promote charge-induced reactions. Angew. Chem. Int. Ed. 2019, 30, 10236-10240.

    12. [12]

      Li, G.; Xie, Z.; Wang, Q.; Chen, X.; Zhang, Y.; Wang, X. Asymmetric acceptor-donor-acceptor polymers with fast charge carrier transfer for solar hydrogen production. Chem. Eur. J. 2021, 27, 939-943.  doi: 10.1002/chem.202003856

    13. [13]

      Li, G.; Wang, B.; Wang, R. g-C3N4/Ag/GO composite photocatalyst with efficient photocatalytic performance: synthesis, characterization, kinetic studies, toxicity assessment and degradation mechanism. Chin. J. Struct. Chem. 2020, 39, 1675-1688.

    14. [14]

      Low, J.; Yu, J.; Jaroniec, M.; Wageh, S.; Al-Ghamdi, A. Heterojunction photocatalysts. Adv. Mater 2017, 29, 1601694.  doi: 10.1002/adma.201601694

    15. [15]

      Li, H.; Li, X.; Lang, X. Extending the π-conjugated molecules on TiO2 for the selective photocatalytic aerobic oxidation of suldes triggered by visible light. Sustain. Energy Fuels 2021, 5, 2127-2135.

    16. [16]

      Xu, F.; Zhang, L.; Cheng, B.; Yu, J. Direct Z-scheme TiO2/NiS core-shell hybrid nanofibers with enhanced photocatalytic H2-production activity. ACS Sustain. Chem. Eng. 2018, 6, 12291-12298.

    17. [17]

      Zhang, J.; Liao, H.; Sun, S. Construction of 1D/1D WO3 nanorod/TiO2 nanobelt hybrid heterostructure for photocatalytic application. Chin. J. Struct. Chem. 2020, 39, 1019-1028.

    18. [18]

      Zhou, B.; Yang, B.; Waqas, M.; Xiao, K.; Zhu, C.; Wu, L. Design of a p-n heterojunction in 0D/3D MoS2/g-C3N4 composite for boosting the efficient separation of photogenerated carriers with enhanced visible-light-driven H2 evolution. RSC Adv. 2020, 10, 19169-19177.

    19. [19]

      Zhao, B.; Zhao. Y.; Liu, P.; Men, Y.; Meng, X.; Pan, Y. Progress and understanding on catalysts with well-defined interface for boosting CO2 conversion. Chin. J. Struct. Chem. 2022, 41, 41324-41333.

    20. [20]

      Zhang, X.; Xiao, J.; Hou, M.; Xiang, Y.; Chen, H. Robust visible/near-infrared light driven hydrogen generation over Z-scheme conjugated polymer/CdS hybrid. Appl. Catal. B Environ. 2018, 224, 871-876.

    21. [21]

      Xu, Q.; Zhang, L.; Cheng, B.; Fan, J.; Yu, J. S-Scheme heterojunction photocatalyst. Chem 2020, 6, 1543-1559.

    22. [22]

      Liao, G.; Li, C.; Liu, S.; Fang, B.; Yang, H. Emerging frontiers of Z-scheme photocatalytic systems. Trends Chem. 2022, 4, 111-127.

    23. [23]

      Zhu, Y.; Wan, T.; Wen, X.; Chu, D.; Jiang, Y. Tunable type I and II heterojunction of CoOx nanoparticles confined in g-C3N4 nanotubes for photocatalytic hydrogen production. Appl. Catal. B Environ. 2019, 244, 814-822.

    24. [24]

      Hu, Y.; Hao, X.; Cui, Z.; Zhou, J.; Chu, S.; Wang, Y.; Zou, Z. Enhanced photocarrier separation in conjugated polymer engineered CdS for direct Z-scheme photocatalytic hydrogen evolution. Appl. Catal. B Environ. 2020, 260, 118131.

    25. [25]

      Ma, X.; Wang, G.; Qin, L.; Liu, J.; Li, B.; Hu, Y.; Cheng, H. Z-scheme g-C3N4-AQ-MoO3 photocatalyst with unique electron transfer channel and large reduction area for enhanced sunlight photocatalytic hydrogen production. Appl. Catal. B Environ. 2021, 288, 120025.

    26. [26]

      Shu, G.; Wang, Y.; Li, Y.; Zhang, S.; Jiang, J.; Wang, F. A high performance and low cost poly (dibenzothiophene-S, S-dioxide)@TiO2 composite with hydrogen evolution rate up to 51.5 mmol h-1 g-1. J. Mater. Chem. A 2020, 8, 18292-18301.

    27. [27]

      Xing, Y. -Q.; Tan, Z.; Cheng, J.; Shen, Z.; Zhang, Y.; Chen, L.; Liu, S. -Y. In situ C-H activation-derived polymer@TiO2 p-n heterojunction for photocatalytic hydrogen evolution. Sustain. Energy Fuels 2021, 5, 5166-5174.

    28. [28]

      Hou, H.; Zhang, X.; Huang, D.; Ding, X.; Wang, S.; Yang, X.; Li, S.; Xiang, Y.; Chen, H. Conjugated microporous poly(benzothiadiazole)/TiO2 heterojunction for visible-light-driven H2 production and pollutant removal. Appl. Catal. B Environ. 2017, 203, 563-571.

    29. [29]

      Xiao, J.; Luo, Y.; Yang, Z.; Xiang, Y.; Zhang, X.; Chen, H. Synergistic design for enhancing solar-to-hydrogen conversion over TiO2 based ternary hybrid. Catal. Sci. Technol. 2018, 8, 2477-2487.

    30. [30]

      Yang, L.; Yu, Y.; Zhang, J.; Chen, F.; Meng, X.; Qiu, Y.; Dan, Y.; Jiang, L. In-situ fabrication of diketopyrrolopyrrole-carbazole-based conjugated polymer/TiO2 heterojunction for enhanced visible light photocatalysis. Appl. Surf. Sci. 2018, 434, 796-805.

    31. [31]

      Yang, X.; Fu, H.; Wang, W.; Xiong, S.; Han, D.; Deng, Z.; An, X. Enhanced solar light photocatalytic performance based on a novel Au-WO3@TiO2 ternary core-shell nanostructures. Appl. Surf. Sci. 2020, 505, 144631.

    32. [32]

      Lu, M.; Li, Q.; Zhang, C.; Fan, X.; Li, L.; Dong, Y.; Chen, G.; Shi, H. Remarkable photocatalytic activity enhancement of CO2 conversion over 2D/2D g-C3N4/BiVO4 Z-scheme heterojunction promoted by efficient interfacial charge transfer. Carbon 2020, 160, 342-352.

    33. [33]

      Xu, Q.; Zhu, B.; Jiang, C.; Cheng, B.; Yu, J. Constructing 2D/2D Fe2O3/g-C3N4 direct Z-scheme photocatalysts with enhanced H2 generation performance. Solar RRL 2018, 2, 1800006.

    34. [34]

      You, Z.; Wu, C.; Shen, Q.; Yu, Y.; Chen, H.; Su, Y.; Wang, H.; Wu, C.; Zhang, F.; Yang, H. A novel efficient g-C3N4@BiOI p-n heterojunction photocatalyst constructed through the assembly of g-C3N4 nanoparticles. Dalton Trans. 2018, 47, 7353-7361.

    35. [35]

      Cai, T.; Zeng, W.; Liu, Y.; Wang, L.; Dong, W.; Chen, H.; Xia, X. A promising inorganic-organic Z-scheme photocatalyst Ag3PO4/PDI supermolecule with enhanced photoactivity and photostability for environmental remediation. Appl. Catal. B Environ. 2020, 263, 118327.

    36. [36]

      Guo, Y.; Li, J.; Gao, Z.; Zhu, X.; Liu, Y.; Wei, Z.; Zhao, W.; Sun, C. A simple and effective method for fabricating novel p-n heterojunction photocatalyst g-C3N4/Bi4Ti3O12 and its photocatalytic performances. Appl. Catal. B Environ. 2016, 192, 57-71.

    37. [37]

      You, Y.; Wang, S.; Xiao, K.; Ma, T.; Zhang, Y.; Huang, H. Z-Scheme g-C3N4/Bi4NbO8Cl heterojunction for enhanced photocatalytic hydrogen production. ACS Sustain. Chem. Eng. 2018, 6, 16219-16227.
       

    38. [38]

      Zhang, X.; Xiao, J.; Peng, C.; Xiang, Y.; Chen, H. Enhanced photocatalytic hydrogen production over conjugated polymer/black TiO2 hybrid: the impact of constructing active defect states. Appl. Surf. Sci. 2019, 465, 288-296.

    39. [39]

      Xia, P.; Zhu, B.; Cheng, B.; Yu, J.; Xu, J. 2D/2D g-C3N4/MnO2 nanocomposite as a direct Z-scheme photocatalyst for enhanced photocatalytic activity. ACS Sustain. Chem. Eng. 2018, 6, 965-973.

    40. [40]

      Yu, F.; Wang, Z.; Zhang, S.; Ye, H.; Kong, K.; Gong, X.; Hua, J.; Tian, H. Molecular engineering of donor-acceptor conjugated polymer/g-C3N4 heterostructures for significantly enhanced hydrogen evolution under visible-light irradiation. Adv. Funct. Mater. 2018, 28, 1804512.

    41. [41]

      Zhang, X.; Peng, B.; Zhang, S.; Peng, T. Robust wide visible-light-responsive photoactivity for H2 production over a polymer/polymer heterojunction photocatalyst: the significance of sacrificial reagent. ACS Sustain. Chem. Eng. 2015, 3, 1501-1509.

    42. [42]

      Ke, X.; Dai, K.; Zhu, G.; Zhang, J.; Liang, C. In situ photochemical synthesis noble-metal-free NiS on CdS diethylenetriamine nanosheets for boosting photocatalytic H2 production activity. Appl. Surf. Sci. 2019, 481, 669-677.

    43. [43]

      Sun, L.; Shi, Y.; Li, B.; Li, X.; Wang, Y. Preparation and characterization of polypyrrole/TiO2 nanocomposites by reverse microemulsion polymerization and its photocatalytic activity for the degradation of methyl orange under natural light. Polym. Compos. 2013, 34, 1076-1080.

    44. [44]

      Jo, W.; Kang, H. (Ratios: 5, 10, 50, 100, and 200) polyaniline-TiO2 composites under visible- or UV-light irradiation for decomposition of organic vapors. Mater. Chem. Phys. 2013, 143, 247-255.

    45. [45]

      Belabed, C.; Tab, A.; Moulai, F.; Černohorský, O.; Boudiaf, S.; Benrekaa, N.; Grym, J.; Trari, M. ZnO nanorods-PANI heterojunction dielectric, electrochemical properties, and photodegradation study of organic pollutant under solar light. Int. J. Hydrogen Energy 2021, 46, 20893-20904.

    46. [46]

      Zeng, W.; Cai, T.; Liu, Y.; Wang, L.; Dong, W.; Chen, H.; Xia, X. An artificial organic-inorganic Z-scheme photocatalyst WO3@Cu@PDI supramolecular with excellent visible light absorption and photocatalytic activity. Chem. Eng. J. 2020, 381, 122691.

    47. [47]

      Zhang, Q.; Zhou, S.; Fu, S.; Wang, X. Tetranitrophthalocyanine zinc/TiO2 nanofibers organic-inorganic heterostructures with enhanced visible photocatalytic activity. Nano 2017, 12, 1750117.

    48. [48]

      Pei, K.; Zhai, T. Emerging 2D organic-inorganic heterojunctions. Cell Rep. Phys. Sci. 2020, 1, 100166.

    49. [49]

      Wang, H.; Qian, C.; Liu, J.; Zeng, Y.; Wang, D.; Zhou, W.; Gu, L.; Wu, H.; Liu, G.; Zhao, Y. Integrating suitable linkage of covalent organic frameworks into covalently bridged inorganic/organic hybrids toward efficient photocatalysis. J. Am. Chem. Soc. 2020, 142, 4862-4871.

    50. [50]

      Yan, J.; Wu, H.; Chen, H.; Zhang, Y.; Zhang, F.; Frank Liu, S. Fabrication of TiO2/C3N4 heterostructure for enhanced photocatalytic Z-scheme overall water splitting. Appl. Catal. B Environ. 2016, 191, 130-137.

    51. [51]

      Cheng, C.; He, B.; Fan, J.; Cheng, B.; Cao, S.; Yu, J. An inorganic/organic S-scheme heterojunction H2-production photocatalyst and its charge transfer mechanism. Adv. Mater. 2021, 33, 2100317.

    52. [52]

      Yuan, X.; Wang, C.; Dragoe, D.; Beaunier, P.; Colbeau-Justin, C.; Remita, H. Highly promoted photocatalytic hydrogen generation by multiple electron transfer pathways. Appl. Catal. B Environ. 2021, 281, 119457.

    53. [53]

      Dai, K.; Hu, T.; Zhang, J.; Lu, L. Carbon nanotube exfoliated porous reduced graphene oxide/CdS-diethylenetriamine heterojunction for efficient photocatalytic H2 production. Appl. Surf. Sci. 2020, 512, 144783.

    54. [54]

      Xiang, Y.; Wang, X.; Zhang, X.; Hou, H.; Dai, K.; Huang, Q.; Chen, H. Enhanced visible light photocatalytic activity of TiO2 assisted by organic semiconductors: a structure optimization strategy of conjugated polymers. J. Mater. Chem. A 2018, 6, 153-159.

    55. [55]

      Wang, J.; Fan, Y.; Pan, R.; Hao, Q.; Ye, J.; Wu, Y.; Ree, T. In situ bridging nanotwinned all-solid-state Z-scheme g-C3N4/CdCO3/CdS heterojunction photocatalyst by metal oxide for H2 evolution. Nanoscale 2022, 14, 7408-7417.

    56. [56]

      Kong, L.; Yan, J.; Li, P.; Frank Liu, S. Fe2O3/C-C3N4-based tight heterojunction for boosting visible-light-driven photocatalytic water oxidation. ACS Sustain. Chem. Eng. 2018, 6, 10436-10444.

    57. [57]

      Zhang, J.; Zhang, G.; Zhang, J. Organic/inorganic nitride heterostructure for efficient photocatalytic oxygen evolution. Appl. Surf. Sci. 2019, 475, 256-263.

    58. [58]

      Bai, Y.; Nakagawa, K.; Cowan, A.; Aitchison, C.; Yamaguchi, Y.; Zwijnenburg, M.; Kudo, A.; Sprick, R.; Cooper, A. Photocatalyst Z-scheme system composed of a linear conjugated polymer and BiVO4 for overall water splitting under visible light. J. Mater. Chem. A 2020, 8, 16283-16290.

    59. [59]

      Zhao, G.; Huang, X.; Fina, F.; Zhang, G.; Irvine, J. Facile structure design based on C3N4 for mediator-free Z-scheme water splitting under visible light. Catal. Sci. Technol. 2015, 5, 3416-3422.

    60. [60]

      Pan, Z.; Zhang, G.; Wang, X. Polymeric carbon nitride/RGO/Fe2O3: all solid state Z-scheme system for photocatalytic overall water splitting. Angew. Chem. Int. Ed. 2019, 58, 7102-7106.

    61. [61]

      Jiang, Z.; Sun, H.; Wang, T.; Wang, B.; Wei, W.; Li, H.; Yuan, S.; An, T.; Zhao, H.; Yu, J.; Wong, P. Nature-based catalyst for visible-light-driven photocatalytic CO2 reduction. Energy Environ. Sci. 2018, 11, 2382-2389.

    62. [62]

      Ran, J.; Jaroniec, M.; Qiao, S. Cocatalysts in semiconductor-based photocatalytic CO2 reduction: achievements, challenges, and opportunities. Adv. Mater 2018, 30, 1704649.

    63. [63]

      Habisreutinger, S.; Schmidt-Mende, L.; Stolarczyk, J. Photocatalytic reduction of CO2 on TiO2 and other semiconductors. Angew. Chem. Int. Ed. 2013, 52, 7372.

    64. [64]

      Chang, X.; Wang, T.; Gong, J. CO2 photo-reduction: insights into CO2 activation and reaction on surfaces of photocatalysts. Energy Environ. Sci. 2016, 9, 2177.

    65. [65]

      Izumi, Y. Recent advances in the photocatalytic conversion of carbon dioxide to fuels with water and/or hydrogen using solar energy and beyond. Coord. Chem. Rev. 2013, 257, 171.

    66. [66]

      Wang, Y.; Zhao, Z.; Sun, R.; Bian, J.; Zhang, Z.; Jing, L. TiO2-modulated tetra(4-carboxyphenyl)porphyrin/perylene diimide organic Z-scheme nano-heterojunctions for efficiently visible-light catalytic CO2 reduction. Nanoscale 2022, 14, 8041-8049.

    67. [67]

      Guo, H.; Chen, M.; Zhong, Q.; Wang, Y.; Ma, W.; Ding, J. Synthesis of Z-scheme α-Fe2O3/g-C3N4 composite with enhanced visible-light photocatalytic reduction of CO2 to CH3OH. J. CO2 Util. 2019, 33, 233-241.

    68. [68]

      Jiang, Z.; Wan, W.; Li, H.; Yuan, S.; Zhao, H.; Wong, P. A hierarchical Z-scheme α-Fe2O3/g-C3N4 hybrid for enhanced photocatalytic CO2 reduction. Adv. Mater. 2018, 30, 1706108.

    69. [69]

      Zhang, L.; Wang, W.; Wang, H.; Ma, X.; Bian, Z. Design of inorganic-organic hybrid photocatalytic systems for enhanced CO2 reduction under visible light. Chem. Eng. Sci. 2019, 207, 1246-1255.

    70. [70]

      Dong, W.; Jia, J.; Wang, Y.; An, J.; Yang, O.; Gao, X.; Liu, Y.; Zhao, J.; Li, D. Visible-light-driven solvent-free photocatalytic CO2 reduction to CO by Co-MOF/Cu2O heterojunction with superior selectivity. Chem. Eng. J. 2022, 438, 135622.

    71. [71]

      Di, T.; Zhu, B.; Cheng, B.; Yu, J.; Xu, J. A direct Z-scheme g-C3N4/SnS2 photocatalyst with superior visible-light CO2 reduction performance. J. Catal. 2017, 352, 532-541.

    72. [72]

      Ohno, T.; Murakami, N.; Koyanagi, T.; Yang, Y. Photocatalytic reduction of CO2 over a hybrid photocatalyst composed of WO3 and graphitic carbon nitride (g-C3N4) under visible light. J. CO2 Util. 2014, 6, 17-25.

    73. [73]

      Yu, W.; Xu, D.; Peng, T. Enhanced photocatalytic activity of g-C3N4 for selective CO2 reduction to CH3OH via facile coupling of ZnO: a direct Z-scheme mechanism. J. Mater. Chem. A 2015, 3, 19936-19947.

    74. [74]

      Murugesan, P.; Narayanan, S.; Manickam, M.; Murugesan, P.; Subbiah, R. A direct Z-scheme plasmonic AgCl@g-C3N4 heterojunction photocatalyst with superior visible light CO2 reduction in aqueous medium. Appl. Surf. Sci. 2018, 450, 516-526.

    75. [75]

      Guo, H.; Wan, S.; Wang, Y.; Ma, W.; Zhong, Q.; Ding, J. Enhanced photocatalytic CO2 reduction over direct Z-scheme NiTiO3/g-C3N4 nanocomposite promoted by efficient interfacial charge transfer. Chem. Eng. J. 2021, 412, 128646.

    76. [76]

      Liang, M.; Borjigin, T.; Zhang, Y.; Liu, H.; Liu, B.; Guo, H. Z-scheme Au@void@g-C3N4/SnS yolk-shell heterostructures for superior photocatalytic CO2 reduction under visible light. ACS Appl. Mater. Interfaces 2018, 10, 34123-34131.

    77. [77]

      Wang, Y.; Hu, G.; Feng, Y.; Zhang, X.; Song, C.; Lin, J.; Huang, Y.; Zhang, Y.; Liu, Z.; Tang, C.; Yu, C. Formation of p-BN@Zn/Co-ZIF hybrid materials for improved photocatalytic CO2 reduction by H2O. Mater. Res. Bull. 2022, 152, 11186.

    78. [78]

      Wang, B.; Zhao, J.; Chen, H.; Weng, Y.; Tang, H.; Chen, Z.; Zhu, W.; She, Y.; Xia, J.; Li, H. Unique Z-scheme carbonized polymer dots/ Bi4O5Br2 hybrids for efficiently boosting photocatalytic CO2 reduction. Appl. Catal. B Environ. 2021, 293, 120182.

    79. [79]

      He, Y.; Zhang, L.; Fan, M.; Wang, X.; Walbridge, M.; Nong, Q.; Wu, Y.; Zhao, L. Z-scheme SnO2-x/g-C3N4 composite as an efficient photocatalyst for dye degradation and photocatalytic CO2 reduction. Sol. Energy Mater. Sol. Cells 2015, 137, 175-184.

    80. [80]

      Truong, Q.; Liu, J.; Chung, C.; Ling, Y. Photocatalytic reduction of CO2 on FeTiO3/TiO2 photocatalyst. Catal. Commun. 2012, 19, 85-89.

    81. [81]

      He, Y.; Zhang, L.; Teng, B.; Fan, M. New application of Z-scheme Ag3PO4/g-C3N4 composite in converting CO2 to fuel. Environ. Sci. Technol. 2015, 49, 649-656.

    82. [82]

      Li, M.; Zhang, L.; Wu, M.; Du, Y.; Fan, X.; Wang, M.; Zhang, L.; Kong, Q.; Shi, J. Mesostructured CeO2/g-C3N4 nanocomposites: remarkably enhanced photocatalytic activity for CO2 reduction by mutual component activations. Nano Energy 2016, 19, 145-155.

    83. [83]

      Chen, X.; Xu, Y.; Ma, X.; Zhu, Y. Large dipole moment induced efficient bismuth chromate photocatalysts for wide-spectrum driven water oxidation and complete mineralization of pollutants. Natl. Sci. Rev. 2020, 7, 652-659.

    84. [84]

      Zhang, Y.; Qin, H.; Hong, N.; Bao, L.; Wu, B. Syntheses, structures and photocatalytic degradation properties of two copper(II) coordination polymers with flexible bis(imidazole) ligand. Chin. J. Struct. Chem. 2021, 40, 595-602.

    85. [85]

      Gómez-Pacheco, C.; Sánchez-Polo, M.; Rivera-Utrilla, J.; López-Peñalver, J. Tetracycline removal from waters by integrated technologies based on ozonation and biodegradation. Chem. Eng. J. 2011, 178, 115- 121.

    86. [86]

      Zhu, B.; Xia, P.; Li, Y.; Ho, W.; Yu, J. Fabrication and photocatalytic activity enhanced mechanism of direct Z-scheme g-C3N4/Ag2WO4 photocatalyst. Appl. Surf. Sci. 2017, 391, 175-183.

    87. [87]

      Xiong, J.; Li, X.; Huang, J.; Gao, X.; Chen, Z.; Liu, J.; Li, H.; Kang, B.; Yao, W.; Zhu, Y. CN/rGO@BPQDs high-low junctions with stretching spatial charge separation ability for photocatalytic degradation and H2O2 production. Appl. Catal. B Environ. 2020, 5, 118602.

    88. [88]

      Guo, F.; Shi, W.; Wang, H.; Han, M.; Li, H.; Huang, H.; Liu, Y.; Kang, Z. Facile fabrication of a CoO/g-C3N4 p-n heterojunction with enhanced photocatalytic activity and stability for tetracycline degradation under visible light. Catal. Sci. & Tech. 2017, 7, 3325-3331.

    89. [89]

      Geng, Y.; Chen, D.; Li, N.; Xu, Q.; Li, H.; He, J.; Lu, J. Z-Scheme 2D/2D α-Fe2O3/g-C3N4 heterojunction for photocatalytic oxidation of nitric oxide. Appl. Catal. B Environ. 2021, 280, 119409.

    90. [90]

      Hong, Y.; Li, C.; Zhang, G.; Meng, Y.; Yin, B.; Zhao, Y.; Shi, W. Efficient and stable Nb2O5 modified g-C3N4 photocatalyst for removal of antibiotic pollutant. Chem. Eng. J. 2016, 299, 74-84.

    91. [91]

      Gao, X.; Gao, K.; Li, X.; Shang, Y.; Fu, F. Hybrid PDI/BiOCl heterojunction with enhanced interfacial charge transfer for a full-spectrum photocatalytic degradation of pollutants. Catal. Sci. Technol. 2020, 10, 372-381.

    92. [92]

      Dai, B.; Zhao, W.; Wei, W.; Cao, J.; Yang, G.; Li, S.; Sun, C.; Leung, D. Photocatalytic reduction of CO2 and degradation of bisphenol-S by g-C3N4/Cu2O@Cu S-scheme heterojunction: study on the photocatalytic performance and mechanism insight. Carbon 2022, 193, 272-284.

    93. [93]

      Chen, M.; Guo, C.; Hou, S.; Lv, J.; Zhang, Y.; Zhang, H.; Xu, J. A novel Z-scheme AgBr/P-g-C3N4 heterojunction photocatalyst: excellent photocatalytic performance and photocatalytic mechanism for ephedrine degradation. Appl. Catal. B Environ. 2020, 266, 118614.

    94. [94]

      Yin, N.; Chen, H.; Yuan, X.; Zhang, Y.; Zhang, M.; Guo, J.; Zhang, Y.; Qiao, L.; Liu, M.; Song, K. Highly efficient photocatalytic degradation of norfloxacin via Bi2Sn2O7/PDIH Z-scheme heterojunction: influence and mechanism. J. Hazard. Mater. 2022, 436, 129317.

    95. [95]

      Huang, W.; Shen, Z.; Cheng, J. -Z.; Liu, L. -L.; Yang, K.; Wen, H. -R.; Liu, S. -Y. C-H activation derived CPPs for photocatalytic hydrogen production excellently accelerated by a DMF cosolvent. J. Mater. Chem. A 2019, 7, 24222-24230.

    96. [96]

      Tan, Z. -R.; Xing, Y. -Q.; Cheng, J. -Z.; Zhang, G.; Shen, Z. -Q.; Zhang, Y. -J.; Liao, G.; Chen, L.; Liu, S. -Y. EDOT-based conjugated polymers accessed via C-H direct arylation for efficient photocatalytic hydrogen production. Chem. Sci. 2022, 13, 1725-1733.

    97. [97]

      Shen, Z. -Q.; Xing, Y. -Q.; Chen, Y.; Zhang, G.; Chen, L.; Liu, S. -Y. Nanoporous and nonporous conjugated donor-acceptor polymer semiconductors for photocatalytic hydrogen production. Beilstein J. Nanotechnol. 2021, 12, 607-623.

  • 加载中
    1. [1]

      Qingwang LIU . MoS2/Ag/g-C3N4 Z-scheme heterojunction: Preparation and photocatalytic performance. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 821-832. doi: 10.11862/CJIC.20240148

    2. [2]

      Liang Ma Zhou Li Zhiqiang Jiang Xiaofeng Wu Shixin Chang Sónia A. C. Carabineiro Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2024.100416

    3. [3]

      Jiaqi Ma Lan Li Yiming Zhang Jinjie Qian Xusheng Wang . Covalent organic frameworks: Synthesis, structures, characterizations and progress of photocatalytic reduction of CO2. Chinese Journal of Structural Chemistry, 2024, 43(12): 100466-100466. doi: 10.1016/j.cjsc.2024.100466

    4. [4]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    5. [5]

      Jingtai BiYupeng ChengMengmeng SunXiaofu GuoShizhao WangYingying Zhao . Efficient and selective photocatalytic nitrite reduction to N2 through CO2 anion radical by eco-friendly tartaric acid activation. Chinese Chemical Letters, 2024, 35(11): 109639-. doi: 10.1016/j.cclet.2024.109639

    6. [6]

      Jiangqi Ning Junhan Huang Yuhang Liu Yanlei Chen Qing Niu Qingqing Lin Yajun He Zheyuan Liu Yan Yu Liuyi Li . Alkyl-linked TiO2@COF heterostructure facilitating photocatalytic CO2 reduction by targeted electron transport. Chinese Journal of Structural Chemistry, 2024, 43(12): 100453-100453. doi: 10.1016/j.cjsc.2024.100453

    7. [7]

      Liang DongJingkuo QuTuo ZhangGuanghui ZhuNingning MaChang ZhaoYi YuanXiangjiu GuanLiejin Guo . MOF-derived NiCo bimetallic cocatalyst for enhanced photocatalytic overall water splitting. Chinese Chemical Letters, 2025, 36(3): 110397-. doi: 10.1016/j.cclet.2024.110397

    8. [8]

      Xiuzheng DengYi KeJiawen DingYingtang ZhouHui HuangQian LiangZhenhui Kang . Construction of ZnO@CDs@Co3O4 sandwich heterostructure with multi-interfacial electron-transfer toward enhanced photocatalytic CO2 reduction. Chinese Chemical Letters, 2024, 35(4): 109064-. doi: 10.1016/j.cclet.2023.109064

    9. [9]

      Xingmin ChenYunyun WuYao TangPeishen LiShuai GaoQiang WangWen LiuSihui Zhan . Construction of Z-scheme Cu-CeO2/BiOBr heterojunction for enhanced photocatalytic degradation of sulfathiazole. Chinese Chemical Letters, 2024, 35(7): 109245-. doi: 10.1016/j.cclet.2023.109245

    10. [10]

      Yuchen Guo Xiangyu Zou Xueling Wei Weiwei Bao Junjun Zhang Jie Han Feihong Jia . Fe regulating Ni3S2/ZrCoFe-LDH@NF heterojunction catalysts for overall water splitting. Chinese Journal of Structural Chemistry, 2024, 43(2): 100206-100206. doi: 10.1016/j.cjsc.2023.100206

    11. [11]

      Zhen Shi Wei Jin Yuhang Sun Xu Li Liang Mao Xiaoyan Cai Zaizhu Lou . Interface charge separation in Cu2CoSnS4/ZnIn2S4 heterojunction for boosting photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100201-100201. doi: 10.1016/j.cjsc.2023.100201

    12. [12]

      Zhinan GUOJunli WANGQiang ZHAOZhifang JIAZuopeng LIKewei WANGYong GUO . Cu2O/Bi2CrO6 Z-scheme heterojunction: Construction and photocatalytic degradation properties for tetracycline. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 741-752. doi: 10.11862/CJIC.20240403

    13. [13]

      Yuan CONGYunhao WANGWanping LIZhicheng ZHANGShuo LIUHuiyuan GUOHongyu YUANZhiping ZHOU . Construction and photocatalytic properties toward rhodamine B of CdS/Fe3O4 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2241-2249. doi: 10.11862/CJIC.20240219

    14. [14]

      Mengjun Zhao Yuhao Guo Na Li Tingjiang Yan . Deciphering the structural evolution and real active ingredients of iron oxides in photocatalytic CO2 hydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100348-100348. doi: 10.1016/j.cjsc.2024.100348

    15. [15]

      Fei Jin Bolin Yang Xuanpu Wang Teng Li Noritatsu Tsubaki Zhiliang Jin . Facilitating efficient photocatalytic hydrogen evolution via enhanced carrier migration at MOF-on-MOF S-scheme heterojunction interfaces through a graphdiyne (CnH2n-2) electron transport layer. Chinese Journal of Structural Chemistry, 2023, 42(12): 100198-100198. doi: 10.1016/j.cjsc.2023.100198

    16. [16]

      Yi LiuZhe-Hao WangGuan-Hua XueLin ChenLi-Hua YuanYi-Wen LiDa-Gang YuJian-Heng Ye . Photocatalytic dicarboxylation of strained C–C bonds with CO2 via consecutive visible-light-induced electron transfer. Chinese Chemical Letters, 2024, 35(6): 109138-. doi: 10.1016/j.cclet.2023.109138

    17. [17]

      Entian CuiYulian LuZhaoxia LiZhilei ChenChengyan GeJizhou Jiang . Interfacial B-O bonding modulated S-scheme B-doped N-deficient C3N4/O-doped-C3N5 for efficient photocatalytic overall water splitting. Chinese Chemical Letters, 2025, 36(1): 110288-. doi: 10.1016/j.cclet.2024.110288

    18. [18]

      Shudi YuJie LiJiongting YinWanyu LiangYangping ZhangTianpeng LiuMengyun HuYong WangZhengying WuYuefan ZhangYukou Du . Built-in electric field and core-shell structure of the reconstructed sulfide heterojunction accelerated water splitting. Chinese Chemical Letters, 2024, 35(12): 110068-. doi: 10.1016/j.cclet.2024.110068

    19. [19]

      Hualin JiangWenxi YeHuitao ZhenXubiao LuoVyacheslav FominskiLong YePinghua Chen . Novel 3D-on-2D g-C3N4/AgI.x.y heterojunction photocatalyst for simultaneous and stoichiometric production of H2 and H2O2 from water splitting under visible light. Chinese Chemical Letters, 2025, 36(2): 109984-. doi: 10.1016/j.cclet.2024.109984

    20. [20]

      Wenhao WangGuangpu ZhangQiufeng WangFancang MengHongbin JiaWei JiangQingmin Ji . Hybrid nanoarchitectonics of TiO2/aramid nanofiber membranes with softness and durability for photocatalytic dye degradation. Chinese Chemical Letters, 2024, 35(7): 109193-. doi: 10.1016/j.cclet.2023.109193

Metrics
  • PDF Downloads(17)
  • Abstract views(574)
  • HTML views(65)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return