Citation: Chen Sun, Kuo Liu, Jian Zhang, Qian Liu, Xijun Liu, Lili Han. In Situ Transmission Electron Microscopy and Three-Dimensional Electron Tomography for Catalyst Studies[J]. Chinese Journal of Structural Chemistry, ;2022, 41(10): 221005. doi: 10.14102/j.cnki.0254-5861.2022-0187 shu

In Situ Transmission Electron Microscopy and Three-Dimensional Electron Tomography for Catalyst Studies







  • Author Bio: Chen Sun received his B.Eng. degree from School of Chemistry and Chemical Engineering, Shandong University of Technology in 2020. He is a master candidate in College of Chemistry of Fuzhou University, and joint cultivation in the Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences. His current research interests include obtaining three-dimensional structural and chemical information of nanocatalytic materials by electron tomography
    Kuo Liu received his B.Eng. degree from College of Materials Science and Engineering, Qingdao University of Science and Technology in 2020. He is candidate in College of Chemistry of Fuzhou University, and joint cultivation in the Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences. His current research interests include thermal catalytic materials observed by in situ transmission electron microscopy
    Jian Zhang received his Ph.D. degree from Northeastern University in 2022. His current research interests include: (1) the synthesis of non-noble metal-based catalysts for electrochemical applications in water splitting; (2) the structural evolution of catalysts under in situ heating
    Qian Liu received her Ph.D. in the Faculty of Materials and Energy, Southwest University in 2018. She is currently a researcher in the Institute for Advanced Study, Chengdu University. Her research interests are in the synthesis of crystalline materials, electrocatalysts for water electrolysis and ammonia production
    Xijun Liu received his Ph.D. degree from College of Science, Beijing University of Chemical Technology in 2014. Then, he joined the School of Materials Science and Engineering of Tianjin University of Technology. Currently, he is a fulltime professor at School of Resource, Environments and Materials of Guangxi University. His current scientific interests focus on nanomaterials, heterogeneous catalysis, and materials design for catalysts and energy conversion/storage
    Lili Han received her Ph.D. degree from Tianjin University in 2016. Then, she was appointed by Tianjin University of Technology. From 2018 to 2019, she is a research associate at Brookhaven National Laboratory, USA. From 2019 to 2021, she is a postdoc at University of California, Irvine, USA. From 2021 to now, she is a professor, PI, and group leader at Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, China. Her research focuses on transmission electron microscopy, electron tomography, nanocatalysis, and single-atom electrocatalysis
  • Corresponding author: Lili Han, llhan@fjirsm.ac.cn
  • Received Date: 16 August 2022
    Accepted Date: 13 September 2022
    Available Online: 20 September 2022

Figures(13)

  • An in-depth understanding of the catalytic reaction mechanism is the key to designing efficient and stable catalysts. In situ transmission electron microscope (TEM) is the most powerful tool to visualize and analyze the microstructures of catalysts during catalysis. In situ TEM combined with three-dimensional (3D) electron tomography (ET) reconstruction technique enables interrogations of catalysts' structural dynamics and chemical changes in high temporal and spatial dimensions. In this review, we discuss and summarize the recent advances in in situ TEM together with 3D ET for catalyst studies. Topics include the latest research progress of in situ TEM imaging as well as 3D visualization and quantitative analysis of catalysts. We also pay particular attention to artificial intelligence (AI)-enhanced smart 3D ET. These include deep learning (DL)-based data compression and storage for the analysis of large TEM data, recovery of wedge-shaped information lost in 3D ET reconstructions, and DL models for reducing residual artifacts in 3D reconstructed images. Finally, the challenges and development prospects of current in situ TEM and 3D ET research are discussed.
  • 加载中
    1. [1]

      Chu, S.; Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 2012, 488, 294-303.  doi: 10.1038/nature11475

    2. [2]

      VijayaVenkataRaman, S.; Iniyan, S.; Goic, R. A review of climate change, mitigation and adaptation. Renew. Sustain. Energy Rev. 2012, 16, 878-897.  doi: 10.1016/j.rser.2011.09.009

    3. [3]

      Zhang, Y.; Pan, W.; Wang, H.; Shen, Z.; Wu, Y.; Dong, J.; Mao, X. Misalignment-tolerant dual-transmitter electric vehicle wireless charging system with reconfigurable topologies. IEEE Trans. Power Electron. 2022, 37, 8816-8819.  doi: 10.1109/TPEL.2022.3160868

    4. [4]

      Su, D. S.; Zhang, B.; Schlögl, R. Electron microscopy of solid catalysts—transforming from a challenge to a toolbox. Chem. Rev. 2015, 115, 2818-2882.  doi: 10.1021/cr500084c

    5. [5]

      Wu, J.; Shan, H.; Chen, W.; Gu, X.; Tao, P.; Song, C.; Shang, W.; Deng, T. In situ environmental TEM in imaging gas and liquid phase chemical reactions for materials research. Adv. Mater. 2016, 28, 9686-9712.  doi: 10.1002/adma.201602519

    6. [6]

      Liu, L.; Corma, A. Metal catalysts for heterogeneous catalysis: from single atoms to nanoclusters and nanoparticles. Chem. Rev. 2018, 118, 4981-5079.  doi: 10.1021/acs.chemrev.7b00776

    7. [7]

      Han, L.; Cheng, H.; Liu, W.; Li, H.; Ou, P.; Lin, R.; Wang, H. T.; Pao, C. -W.; Head, A. R.; Wang, C. H.; Tong, X.; Sun, C. J.; Pong, W. F.; Luo, J.; Zheng, J. C.; Xin, H. L. A single-atom library for guided monometallic and concentration-complex multimetallic designs. Nat. Mater. 2022, 21, 681-688.  doi: 10.1038/s41563-022-01252-y

    8. [8]

      Williams, D. B.; Carter, C. B. The transmission electron microscope. Transm. Electron Microsc. 1996, 3-17.

    9. [9]

      Kim, M. J.; McNally, B.; Murata, K.; Meller, A. Characteristics of solid-state nanometre pores fabricated using a transmission electron microscope. Nanotechnology 2007, 18, 205302.  doi: 10.1088/0957-4484/18/20/205302

    10. [10]

      Jonge, N.; Ross, F. M. Electron microscopy of specimens in liquid. Nat. Nanotechnol. 2011, 6, 695-704.  doi: 10.1038/nnano.2011.161

    11. [11]

      Xu, J.; He, J.; Ding, Y.; Luo, J. X-ray imaging of atomic nuclei. Sci. China Mater. 2020, 63, 1788-1796.  doi: 10.1007/s40843-020-1320-1

    12. [12]

      Morishita, S.; Ishikawa, R.; Kohno, Y.; Sawada, H.; Shibata, N.; Ikuhara, Y. Attainment of 40.5 pm spatial resolution using 300 kV scanning transmission electron microscope equipped with fifth-order aberration corrector. Microscopy 2018, 67, 46-50.  doi: 10.1093/jmicro/dfx122

    13. [13]

      Jiang, Y.; Chen, Z.; Han, Y.; Deb, P.; Gao, H.; Xie, S.; Purohit, P.; Tate, M. W.; Park, J.; Gruner, S. M.; Elser, V.; Muller, D. A. Electron ptychography of 2D materials to deep sub-ångström resolution. Nature 2018, 559, 343-349.  doi: 10.1038/s41586-018-0298-5

    14. [14]

      Krivanek, O. L.; Dellby, N.; Hachtel, J. A.; Idrobo, J. -C.; Hotz, M. T.; Plotkin-Swing, B.; Bacon, N. J.; Bleloch, A. L.; Corbin, G. J.; Hoffman, M. V.; Meyer, C. E.; Lovejoy, T. C. Progress in ultrahigh energy resolution EELS. Ultramicroscopy 2019, 203, 60-67.  doi: 10.1016/j.ultramic.2018.12.006

    15. [15]

      Ramachandramoorthy, R.; Bernal, R.; Espinosa, H. D. Pushing the envelope of in situ transmission electron microscopy. ACS Nano 2015, 9, 4675-4685.  doi: 10.1021/acsnano.5b01391

    16. [16]

      Zheng, H.; Meng, Y. S.; Zhu, Y. Frontiers of in situ electron microscopy. Mrs Bull. 2015, 40, 12-18.  doi: 10.1557/mrs.2014.305

    17. [17]

      van der Wal, L. I.; Turner, S. J.; Zečević, J. Developments and advances in in situ transmission electron microscopy for catalysis research. Catal. Sci. Technol. 2021, 11, 3634-3658.  doi: 10.1039/D1CY00258A

    18. [18]

      He, B.; Zhang, Y.; Liu, X.; Chen, L. In-situ transmission electron microscope techniques for heterogeneous catalysis. ChemCatChem 2020, 12, 1853-1872.  doi: 10.1002/cctc.201902285

    19. [19]

      Zheng, H.; Lu, X.; He, K. In situ transmission electron microscopy and artificial intelligence enabled data analytics for energy materials. J. Energy Chem. 2022, 68, 454-493.  doi: 10.1016/j.jechem.2021.12.001

    20. [20]

      Sudheeshkumar, V.; Soong, C.; Dogel, S.; Scott, R. W. J. Probing the thermal stability of (3-mercaptopropyl)-trimethoxysilane-protected Au25 clusters by in situ transmission electron microscopy. Small 2021, 17, 2004539.  doi: 10.1002/smll.202004539

    21. [21]

      Taheri, M. L.; Stach, E. A.; Arslan, I.; Crozier, P. A.; Kabius, B. C.; LaGrange, T.; Minor, A. M.; Takeda, S.; Tanase, M.; Wagner, J. B.; Sharma, R. Current status and future directions for in situ transmission electron microscopy. Ultramicroscopy 2016, 170, 86-95.  doi: 10.1016/j.ultramic.2016.08.007

    22. [22]

      Yuan, W.; Zhu, B.; Li, X. Y.; Hansen, T. W.; Ou, Y.; Fang, K.; Yang, H.; Zhang, Z.; Wagner, J. B.; Gao, Y.; Wang, Y. Visualizing H2O molecules reacting at TiO2 active sites with transmission electron microscopy. Science 2020, 367, 428-430.  doi: 10.1126/science.aay2474

    23. [23]

      Lyu, Y.; Wang, P.; Liu, D.; Zhang, F.; Senftle, T. P.; Zhang, G.; Zhang, Z.; Wang, J.; Liu, W. Tracing the active phase and dynamics for carbon nanofiber growth on nickel catalyst using environmental transmission electron microscopy. Small Methods 2022, 6, 2200235.  doi: 10.1002/smtd.202200235

    24. [24]

      Yu, S.; Jiang, Y.; Sun, Y.; Gao, F.; Zou, W.; Liao, H.; Dong, L. Real time imaging of photocatalytic active site formation during H2 evolution by in-situ TEM. Appl. Catal. B Environ. 2021, 284, 119743.  doi: 10.1016/j.apcatb.2020.119743

    25. [25]

      Espinosa, H. D.; Bernal, R. A.; Filleter, T. In situ TEM electromechanical testing of nanowires and nanotubes. Small 2012, 8, 3233-3252.  doi: 10.1002/smll.201200342

    26. [26]

      Park, J.; Koo, K.; Noh, N.; Chang, J. H.; Cheong, J. Y.; Dae, K. S.; Park, J. S.; Ji, S.; Kim, I. -D.; Yuk, J. M. Graphene liquid cell electron microscopy: progress, applications, and perspectives. ACS Nano 2021, 15, 288-308.  doi: 10.1021/acsnano.0c10229

    27. [27]

      Martin, D. C.; Thomas, E. L. Experimental high-resolution electron microscopy of polymers. Polymer 1995, 36, 1743-1759.  doi: 10.1016/0032-3861(95)90922-O

    28. [28]

      Midgley, P. A.; Weyland, M. 3D electron microscopy in the physical sciences: the development of Z-contrast and EFTEM tomography. Ultramicroscopy 2003, 96, 413-431.  doi: 10.1016/S0304-3991(03)00105-0

    29. [29]

      Weyland, M.; Midgley, P. A. Electron tomography. Mater. Today 2004, 7, 32-40.

    30. [30]

      Miao, J.; Ercius, P.; Billinge, S. J. L. Atomic electron tomography: 3D structures without crystals. Science 2016, 353, aaf2157.  doi: 10.1126/science.aaf2157

    31. [31]

      Scott, M. C.; Chen, C. C.; Mecklenburg, M.; Zhu, C.; Xu, R.; Ercius, P.; Dahmen, U.; Regan, B. C.; Miao, J. Electron tomography at 2.4-ångström resolution. Nature 2012, 483, 444-447.  doi: 10.1038/nature10934

    32. [32]

      McIntosh, R.; Nicastro, D.; Mastronarde, D. New views of cells in 3D: an introduction to electron tomography. Trends Cell Biol. 2005, 15, 43-51.  doi: 10.1016/j.tcb.2004.11.009

    33. [33]

      Xia, W.; Yang, Y.; Meng, Q.; Deng, Z.; Gong, M.; Wang, J.; Wang, D.; Zhu, Y.; Sun, L.; Xu, F.; Li, J.; Xin, H. L. Bimetallic nanoparticle oxidation in three dimensions by chemically sensitive electron tomography and in situ transmission electron microscopy. ACS Nano 2018, 12, 7866-7874.  doi: 10.1021/acsnano.8b02170

    34. [34]

      Han, L.; Meng, Q.; Wang, D.; Zhu, Y.; Wang, J.; Du, X.; Stach, E. A.; Xin, H. L. Interrogation of bimetallic particle oxidation in three dimensions at the nanoscale. Nat. Commun. 2016, 7, 13335.  doi: 10.1038/ncomms13335

    35. [35]

      Park, J.; Elmlund, H.; Ercius, P.; Yuk, J. M.; Limmer, D. T.; Chen, Q.; Kim, K.; Han, S. H.; Weitz, D. A.; Zettl, A.; Alivisatos, A. P. 3D structure of individual nanocrystals in solution by electron microscopy. Science 2015, 349, 290-295.  doi: 10.1126/science.aab1343

    36. [36]

      Fu, X.; Chen, B.; Tang, J.; Hassan, M. Th.; Zewail, A. H. Imaging rotational dynamics of nanoparticles in liquid by 4D electron microscopy. Science 2017, 355, 494-498.  doi: 10.1126/science.aah3582

    37. [37]

      Chen, Q.; Smith, J. M.; Park, J.; Kim, K.; Ho, D.; Rasool, H. I.; Zettl, A.; Alivisatos, A. P. 3D motion of DNA-Au nanoconjugates in graphene liquid cell electron microscopy. Nano Lett. 2013, 13, 4556-4561.  doi: 10.1021/nl402694n

    38. [38]

      Wang, Z.; Ke, X.; Sui, M. Recent progress on revealing 3D structure of electrocatalysts using advanced 3D electron tomography: a mini review. Front. Chem. 2022, 10, 872117.  doi: 10.3389/fchem.2022.872117

    39. [39]

      Arslan, I.; Tong, J. R.; Midgley, P. A. Reducing the missing wedge: high-resolution dual axis tomography of inorganic materials. Proc. Int. Workshop Enhanc. Data Gener. Electrons 2006, 106, 994-1000.

    40. [40]

      Kawase, N.; Kato, M.; Nishioka, H.; Jinnai, H. Transmission electron microtomography without the "missing wedge" for quantitative structural analysis. Ultramicroscopy 2007, 107, 8-15.  doi: 10.1016/j.ultramic.2006.04.007

    41. [41]

      Radermacher, M. Weighted back-projection methods. Electron Tomogr. 2007, 245-273.

    42. [42]

      Man, B. D.; Basu, S. Distance-driven projection and backprojection in three dimensions. Phys. Med. Biol. 2004, 49, 2463-2475.  doi: 10.1088/0031-9155/49/11/024

    43. [43]

      Wan, X.; Zhang, F.; Chu, Q.; Zhang, K.; Sun, F.; Yuan, B.; Liu, Z. Three-dimensional reconstruction using an adaptive simultaneous algebraic reconstruction technique in electron tomography. J. Struct. Biol. 2011, 175, 277-287.  doi: 10.1016/j.jsb.2011.06.002

    44. [44]

      Jiang, M.; Wang, G. Convergence of the simultaneous algebraic reconstruction technique (SART). IEEE Trans. Image Process. 2003, 12, 957-961.  doi: 10.1109/TIP.2003.815295

    45. [45]

      Chen, B.; Bian, Z.; Zhou, X.; Chen, W.; Ma, J.; Liang, Z. A new Mumford-Shah total variation minimization based model for sparse-view X-ray computed tomography image reconstruction. Neurocomputing 2018, 285, 74-81.  doi: 10.1016/j.neucom.2018.01.037

    46. [46]

      Wei, W.; Zhou, B.; Połap, D.; Woźniak, M. A regional adaptive variational PDE model for computed tomography image reconstruction. Pattern Recognit. 2019, 92, 64-81.  doi: 10.1016/j.patcog.2019.03.009

    47. [47]

      Hagita, K.; Higuchi, T.; Jinnai, H. Super-resolution for asymmetric resolution of FIB-SEM 3D imaging using AI with deep learning. Sci. Rep. 2018, 8, 1-8.

    48. [48]

      Wang, H.; Rivenson, Y.; Jin, Y.; Wei, Z.; Gao, R.; Günaydın, H.; Bentolila, L. A.; Kural, C.; Ozcan, A. Deep learning enables crossmodality super-resolution in fluorescence microscopy. Nat. Methods 2019, 16, 103-110.  doi: 10.1038/s41592-018-0239-0

    49. [49]

      Nehme, E.; Weiss, L. E.; Michaeli, T.; Shechtman, Y. Deep-STORM: super-resolution single-molecule microscopy by deep learning. Optica 2018, 5, 458-464.  doi: 10.1364/OPTICA.5.000458

    50. [50]

      Ding, G.; Liu, Y.; Zhang, R.; Xin, H. L. A joint deep learning model to recover information and reduce artifacts in missing-wedge sinograms for electron tomography and beyond. Sci. Rep. 2019, 9, 12803.  doi: 10.1038/s41598-019-49267-x

    51. [51]

      Wang, C.; Ding, G.; Liu, Y.; Xin, H. L. 0.7 Å resolution electron tomography enabled by deep-learning-aided information recovery. Adv. Intell. Syst. 2020, 2, 2000152.  doi: 10.1002/aisy.202000152

    52. [52]

      Lee, J.; Jeong, C.; Yang, Y. Single-atom level determination of 3-dimensional surface atomic structure via neural network-assisted atomic electron tomography. Nat. Commun. 2021, 12, 1962.
       

    53. [53]

      Lee, J.; Jeong, C.; Lee, T.; Ryu, S.; Yang, Y. Direct observation of three-dimensional atomic structure of twinned metallic nanoparticles and their catalytic properties. Nano Lett. 2022, 22, 665-672.  doi: 10.1021/acs.nanolett.1c03773

    54. [54]

      Gontard, L. C.; Dunin-Borkowski, R. E.; Fernández, A.; Ozkaya, D.; Kasama, T. Tomographic heating holder for in situ TEM: study of Pt/C and PtPd/Al2O3 catalysts as a function of temperature. Microsc. Microanal. 2014, 20, 982-990.

    55. [55]

      Wu, F.; Yao, N. Advances in windowed gas cells for in-situ TEM studies. Nano Energy 2015, 13, 735-756.
       

    56. [56]

      Kamino, T.; Yaguchi, T.; Konno, M.; Watabe, A.; Marukawa, T.; Mima, T.; Kuroda, K.; Saka, H.; Arai, S.; Makino, H.; Suzuki, Y.; Kishita, K. Development of a gas injection/specimen heating holder for use with transmission electron microscope. J. Electron Microsc. (Tokyo) 2005, 54, 497-503.
       

    57. [57]

      Mehraeen, S.; McKeown, J. T.; Deshmukh, P. V.; Evans, J. E.; Abellan, P.; Xu, P.; Reed, B. W.; Taheri, M. L.; Fischione, P. E.; Browning, N. D. A (S)TEM gas cell holder with localized laser heating for in situ experiments. Microsc. Microanal. 2013, 19, 470-478.

    58. [58]

      Cavalca, F.; Laursen, A. B.; Kardynal, B. E.; Dunin-Borkowski, R. E.; Dahl, S.; Wagner, J. B.; Hansen, T. W. In situ transmission electron microscopy of light-induced photocatalytic reactions. Nanotechnology 2012, 23, 075705.

    59. [59]

      Liu, Z.; Che, R.; Elzatahry, A. A.; Zhao, D. Direct imaging Au nanoparticle migration inside mesoporous silica channels. ACS Nano 2014, 8, 10455-10460.

    60. [60]

      Asoro, M. A.; Ferreira, P. J.; Kovar, D. In situ transmission electron microscopy and scanning transmission electron microscopy studies of sintering of Ag and Pt nanoparticles. Acta Mater. 2014, 81, 173-183.
       

    61. [61]

      Hobbs, C.; Jaskaniec, S.; McCarthy, E. K.; Downing, C.; Opelt, K.; Güth, K.; Shmeliov, A.; Mourad, M. C. D.; Mandel, K.; Nicolosi, V. Structural transformation of layered double hydroxides: an in situ TEM analysis. Npj 2D Mater. Appl. 2018, 2, 1-10.
       

    62. [62]

      Xiong, Y.; Yang, Y.; Joress, H.; Padgett, E.; Gupta, U.; Yarlagadda, V.; Agyeman-Budu, D. N.; Huang, X.; Moylan, T. E.; Zeng, R.; Kongkanand, A.; Escobedo, F. A.; Brock, J. D.; DiSalvo, F. J.; Muller, D. A.; Abruña, H. D. Revealing the atomic ordering of binary intermetallics using in situ heating techniques at multilength scales. Proc. Natl. Acad. Sci. 2019, 116, 1974-1983.

    63. [63]

      Cao, P.; Tang, P.; Bekheet, M. F.; Du, H.; Yang, L.; Haug, L.; Gili, A.; Bischoff, B.; Gurlo, A.; Kunz, M.; Dunin-Borkowski, R. E.; Penner, S.; Heggen, M. Atomic-scale insights into nickel exsolution on LaNiO3 catalysts via in situ electron microscopy. J. Phys. Chem. C 2022, 126, 786-796.

    64. [64]

      Xin, H. L.; Niu, K.; Alsem, D. H.; Zheng, H. In situ TEM study of catalytic nanoparticle reactions in atmospheric pressure gas environment. Microsc. Microanal. 2013, 19, 1558-1568.

    65. [65]

      Xin, H. L.; Alayoglu, S.; Tao, R.; Genc, A.; Wang, C. M.; Kovarik, L.; Stach, E. A.; Wang, L. W.; Salmeron, M.; Somorjai, G. A.; Zheng, H. Revealing the atomic restructuring of Pt-Co nanoparticles. Nano Lett. 2014, 14, 3203-3207.

    66. [66]

      Kamatani, K.; Higuchi, K.; Yamamoto, Y.; Arai, S.; Tanaka, N.; Ogura, M. Direct observation of catalytic oxidation of particulate matter using in situ TEM. Sci. Rep. 2015, 5, 10161.
       

    67. [67]

      Zhang, X.; Meng, J.; Zhu, B.; Yu, J.; Zou, S.; Zhang, Z.; Gao, Y.; Wang, Y. In situ TEM studies of the shape evolution of Pd nanocrystals under oxygen and hydrogen environments at atmospheric pressure. Chem. Commun. 2017, 53, 13213-13216.
       

    68. [68]

      Niu, Y.; Liu, X.; Wang, Y.; Zhou, S.; Lv, Z.; Zhang, L.; Shi, W.; Li, Y.; Zhang, W.; Su, D. S.; Zhang, B. Visualizing formation of intermetallic PdZn in a palladium/zinc oxide catalyst: interfacial fertilization by PdHx. Angew. Chem. Int. Ed. 2019, 58, 4232-4237.

    69. [69]

      Fan, H.; Qiu, L.; Fedorov, A.; Willinger, M. -G.; Ding, F.; Huang, X. Dynamic state and active structure of Ni-Co catalyst in carbon nanofiber growth revealed by in situ transmission electron microscopy. ACS Nano 2021, 15, 17895-17906.

    70. [70]

      Sun, H.; Liu, Q.; Gao, Z.; Geng, L.; Li, Y.; Zhang, F.; Yan, J.; Gao, Y.; Suenaga, K.; Zhang, L.; Tang, Y.; Huang, J. In situ TEM visualization of single atom catalysis in solid-state Na-O2 nanobatteries. J. Mater. Chem. A 2022, 10, 6096-6106.
       

    71. [71]

      Fujita, T.; Guan, P.; McKenna, K.; Lang, X.; Hirata, A.; Zhang, L.; Tokunaga, T.; Arai, S.; Yamamoto, Y.; Tanaka, N.; Ishikawa, Y.; Asao, N.; Yamamoto, Y.; Erlebacher, J.; Chen, M. Atomic origins of the high catalytic activity of nanoporous gold. Nat. Mater. 2012, 11, 775-780.
       

    72. [72]

      Liao, H. G.; Shao, Y.; Wang, C.; Lin, Y.; Jiang, Y. X.; Sun, S. G. TEM study of fivefold twined gold nanocrystal formation mechanism. Mater. Lett. 2014, 116, 299-303.
       

    73. [73]

      Yang, J.; Choi, M. K.; Sheng, Y.; Jung, J.; Bustillo, K.; Chen, T.; Lee, S. W.; Ercius, P.; Kim, J. H.; Warner, J. H.; Chan, E. M.; Zheng, H. MoS2 liquid cell electron microscopy through clean and fast polymer-free MoS2 transfer. Nano Lett. 2019, 19, 1788-1795.

    74. [74]

      Liao, H. G.; Zherebetskyy, D.; Xin, H.; Czarnik, C.; Ercius, P.; Elmlund, H.; Pan, M.; Wang, L. W.; Zheng, H. Facet development during platinum nanocube growth. Science 2014, 345, 916-919.
       

    75. [75]

      Wei, W.; Zhang, H.; Wang, W.; Dong, M.; Nie, M.; Sun, L.; Xu, F. Observing the growth of Pb3O4 nanocrystals by in situ liquid cell transmission electron microscopy. ACS Appl. Mater. Interfaces 2019, 11, 24478-24484.

    76. [76]

      Zhu, G. Z.; Prabhudev, S.; Yang, J.; Gabardo, C. M.; Botton, G. A.; Soleymani, L. In situ liquid cell TEM study of morphological evolution and degradation of Pt-Fe nanocatalysts during potential cycling. J. Phys. Chem. C 2014, 118, 22111-22119.

    77. [77]

      Beermann, V.; Holtz, M. E.; Padgett, E.; Araujo, J. F. de; Muller, D. A.; Strasser, P. Real-time imaging of activation and degradation of carbon supported octahedral Pt-Ni alloy fuel cell catalysts at the nanoscale using in situ electrochemical liquid cell STEM. Energy Environ. Sci. 2019, 12, 2476-2485.

    78. [78]

      Vavra, J.; Shen, T. H.; Stoian, D.; Tileli, V.; Buonsanti, R. Real-time monitoring reveals dissolution/redeposition mechanism in copper nanocatalysts during the initial stages of the CO2 reduction reaction. Angew. Chem. 2021, 133, 1367-1374.

    79. [79]

      Lu, Y.; Yin, W. J.; Peng, K. L.; Wang, K.; Hu, Q.; Selloni, A.; Chen, F. R.; Liu, L. M.; Sui, M. L. Self-hydrogenated shell promoting photocatalytic H2 evolution on anatase TiO2. Nat. Commun. 2018, 9, 1-9.
       

    80. [80]

      Campbell, C. T.; Ertl, G.; Kuipers, H.; Segner, J. A molecular beam study of the catalytic oxidation of CO on a Pt (111) surface. J. Chem. Phys. 1980, 73, 5862-5873.
       

    81. [81]

      Ciuparu, D.; Lyubovsky, M. R.; Altman, E.; Pfefferle, L. D.; Datye, A. Catalytic combustion of methane over palladium-based catalysts. Catal. Rev. 2002, 44, 593-649.
       

    82. [82]

      Zaera, F. The surface chemistry of hydrocarbon partial oxidation catalysis. Catal. Today 2003, 81, 149-157.
       

    83. [83]

      Kamino, T.; Saka, H. A newly developed high resolution hot stage and its application to materials characterization. Microsc. Microanal. Microstruct. 1993, 4, 127-135.
       

    84. [84]

      Canavan, M.; Daly, D.; Rummel, A.; McCarthy, E. K.; McAuley, C.; Nicolosi, V. Novel in-situ lamella fabrication technique for in-situ TEM. Ultramicroscopy 2018, 190, 21-29.
       

    85. [85]

      Hansen, T. W.; DeLaRiva, A. T.; Challa, S. R.; Datye, A. K. Sintering of catalytic nanoparticles: particle migration or Ostwald ripening? Acc. Chem. Res. 2013, 46, 1720-1730.

    86. [86]

      Yoshida, K.; Bright, A.; Tanaka, N. Direct observation of the initial process of Ostwald ripening using spherical aberration-corrected transmission electron microscopy. J. Electron Microsc. (Tokyo) 2012, 61, 99-103.
       

    87. [87]

      Yoshida, K.; Xudong, Z.; Bright, A. N.; Saitoh, K.; Tanaka, N. Dynamic environmental transmission electron microscopy observation of platinum electrode catalyst deactivation in a proton-exchange-membrane fuel cell. Nanotechnology 2013, 24, 065705.
       

    88. [88]

      Coleman, J. N.; Lotya, M.; O'Neill, A.; Bergin, S. D.; Paul J King, P. J.; Khan, U.; Young, K.; Gaucher, A.; De, S.; Smith, R. J.; Shvets, I. V.; Arora, S. K.; Stanton, G.; Kim, H. Y.; Lee, K.; Kim, G. T.; Duesberg, G. S.; Hallam, T.; Boland, J. J.; Wang, J. J.; Donegan, J. F.; Grunlan, J. C.; Moriarty, G.; Shmeliov, A.; Nicholls, R. J.; Perkins, J. M.; Grieveson, E. M.; Theuwissen, K.; McComb, D. W.; Nellist, P. D.; Nicolosi, V. Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 2011, 331, 568-571.
       

    89. [89]

      Asoro, M. A.; Ferreira, P. J.; Kovar, D. In situ transmission electron microscopy and scanning transmission electron microscopy studies of sintering of Ag and Pt nanoparticles. Acta Mater. 2014, 81, 173-183.
       

    90. [90]

      Yokosawa, T.; Alan, T.; Pandraud, G.; Dam, B.; Zandbergen, H. In-situ TEM on (de)hydrogenation of Pd at 0.5-4.5 bar hydrogen pressure and 20-400℃. Ultramicroscopy 2012, 112, 47-52.
       

    91. [91]

      Jinschek, J. R.; Helveg, S. Image resolution and sensitivity in an environmental transmission electron microscope. Micron 2012, 43, 1156-1168.
       

    92. [92]

      Creemer, J. F.; Helveg, S.; Hoveling, G. H.; Ullmann, S.; Molenbroek, A. M.; Sarro, P. M.; Zandbergen, H. W. Atomic-scale electron microscopy at ambient pressure. Ultramicroscopy 2008, 108, 993-998.
       

    93. [93]

      Allard, L. F.; Overbury, S. H.; Bigelow, W. C.; Katz, M. B.; Nackashi, D. P.; Damiano, J. Novel MEMS-based gas-cell/heating specimen holder provides advanced imaging capabilities for in situ reaction studies. Microsc. Microanal. 2012, 18, 656-666.
       

    94. [94]

      Mele, L.; Konings, S.; Dona, P.; Evertz, F.; Mitterbauer, C.; Faber, P.; Schampers, R.; Jinschek, J. R. A MEMS-based heating holder for the direct imaging of simultaneous in-situ heating and biasing experiments in scanning/transmission electron microscopes. Microsc. Res. Tech. 2016, 79, 239-250.
       

    95. [95]

      Wang, W.; Dahl, M.; Yin, Y. Hollow nanocrystals through the nanoscale Kirkendall effect. Chem. Mater. 2013, 25, 1179-1189.

    96. [96]

      Li, S.; Gong, J. Strategies for improving the performance and stability of Ni-based catalysts for reforming reactions. Chem. Soc. Rev. 2014, 43, 7245-7256.
       

    97. [97]

      Akri, M.; Zhao, S.; Li, X.; Zang, K.; Lee, A. F.; Isaacs, M. A.; Xi, W.; Gangarajula, Y.; Luo, J.; Ren, Y.; Cui, Y. T.; Li, L.; Su, Y.; Pan, X.; Wen, W.; Pan, Y.; Wilson, K.; Li, L.; Qiao, B.; Ishii, H.; Liao, Y. F.; Wang, A.; Wang, X.; Zhang, T. Atomically dispersed nickel as coke-resistant active sites for methane dry reforming. Nat. Commun. 2019, 10, 1-10.

    98. [98]

      Wang, Y.; Qiu, L.; Zhang, L.; Tang, D. M.; Ma, R.; Wang, Y.; Zhang, B.; Ding, F.; Liu, C.; Cheng, H. M. Precise identification of the active phase of cobalt catalyst for carbon nanotube growth by in situ transmission electron microscopy. ACS Nano 2020, 14, 16823-16831.  doi: 10.1021/acsnano.0c05542

    99. [99]

      Grogan, J. M.; Schneider, N. M.; Ross, F. M.; Bau, H. H. Bubble and pattern formation in liquid induced by an electron beam. Nano Lett. 2014, 14, 359-364.  doi: 10.1021/nl404169a

    100. [100]

      Yoshida, K.; Yamasaki, J.; Tanaka, N. In situ high-resolution transmission electron microscopy observation of photodecomposition process of poly-hydrocarbons on catalytic TiO2 films. Appl. Phys. Lett. 2004, 84, 2542-2544.  doi: 10.1063/1.1689747

    101. [101]

      Zheng, H.; Lu, X.; He, K. In situ transmission electron microscopy and artificial intelligence enabled data analytics for energy materials. J. Energy Chem. 2022, 68, 454-493.  doi: 10.1016/j.jechem.2021.12.001

    102. [102]

      Zeng, Z.; Liang, W. I.; Liao, H. G.; Xin, H. L.; Chu, Y. H.; Zheng, H. Visualization of electrode-electrolyte interfaces in LiPF6/EC/DEC electrolyte for lithium ion batteries via in situ TEM. Nano Lett. 2014, 14, 1745-1750.  doi: 10.1021/nl403922u

    103. [103]

      Park, J. H.; Schneider, N. M.; Grogan, J. M.; Reuter, M. C.; Bau, H. H.; Kodambaka, S.; Ross, F. M. Control of electron beam-induced Au nanocrystal growth kinetics through solution chemistry. Nano Lett. 2015, 15, 5314-5320.  doi: 10.1021/acs.nanolett.5b01677

    104. [104]

      Wang, F.; Richards, V. N.; Shields, S. P.; Buhro, W. E. Kinetics and mechanisms of aggregative nanocrystal growth. Chem. Mater. 2014, 26, 5-21.  doi: 10.1021/cm402139r

    105. [105]

      Zheng, H.; Smith, R. K.; Jun, Y.; Kisielowski, C.; Dahmen, U.; Alivisatos, A. P. Observation of single colloidal platinum nanocrystal growth trajectories. Science 2009, 324, 1309-1312.  doi: 10.1126/science.1172104

    106. [106]

      Liao, H. G.; Cui, L.; Whitelam, S.; Zheng, H. Real-time imaging of Pt3Fe nanorod growth in solution. Science 2012, 336, 1011-1014.  doi: 10.1126/science.1219185

    107. [107]

      Zhang, H.; Nai, J.; Yu, L.; Lou, X. W. Metal-organic-frameworkbased materials as platforms for renewable energy and environmental applications. Joule 2017, 1, 77-107.  doi: 10.1016/j.joule.2017.08.008

    108. [108]

      Kuang, P.; Sayed, M.; Fan, J.; Cheng, B.; Yu, J. 3D graphenebased H2-production photocatalyst and electrocatalyst. Adv. Energy Mater. 2020, 10, 1903802.  doi: 10.1002/aenm.201903802

    109. [109]

      Yuan, Y. J.; Chen, D.; Yu, Z. T.; Zou, Z. G. Cadmium sulfide-based nanomaterials for photocatalytic hydrogen production. J. Mater. Chem. A 2018, 6, 11606-11630.  doi: 10.1039/C8TA00671G

    110. [110]

      Chen, R.; Pang, S.; An, H.; Zhu, J.; Ye, S.; Gao, Y.; Fan, F.; Li, C. Charge separation via asymmetric illumination in photocatalytic Cu2O particles. Nat. Energy 2018, 3, 655-663.  doi: 10.1038/s41560-018-0194-0

    111. [111]

      Wang, C.; Du, K.; Song, K.; Ye, X.; Qi, L.; He, S.; Tang, D.; Lu, N.; Jin, H.; Li, F.; Ye, H. Size-dependent grain-boundary structure with improved conductive and mechanical stabilities in sub-10-nm gold crystals. Phys. Rev. Lett. 2018, 120, 186102  doi: 10.1103/PhysRevLett.120.186102

    112. [112]

      Midgley, P. A.; Dunin-Borkowski, R. E. Electron tomography and holography in materials science. Nat. Mater. 2009, 8, 271-280.  doi: 10.1038/nmat2406

    113. [113]

      Midgley, P. A.; Weyland, M.; Yates, T. J. V.; Arslan, I.; Dunin-Borkowski, R. E.; Thomas, J. M. Nanoscale scanning transmission electron tomography. J. Microsc. 2006, 223, 185-190.  doi: 10.1111/j.1365-2818.2006.01616.x

    114. [114]

      Saghi, Z.; Midgley, P. A. Electron tomography in the (S)TEM: from nanoscale morphological analysis to 3D atomic imaging. Annu. Rev. Mater. Res. 2012, 42, 59-79.  doi: 10.1146/annurev-matsci-070511-155019

    115. [115]

      Zhou, J.; Yang, Y.; Yang, Y.; Kim, D. S.; Yuan, A.; Tian, X.; Ophus, C.; Sun, F.; Schmid, A. K.; Nathanson, M.; Heinz, H.; An, Q.; Zeng, H.; Ercius, P.; Miao, J. Observing crystal nucleation in four dimensions using atomic electron tomography. Nature 2019, 570, 500-503.  doi: 10.1038/s41586-019-1317-x

    116. [116]

      Bals, S.; Goris, B.; Liz-Marzán, L. M.; Van Tendeloo, G. Three-dimensional characterization of noble-metal nanoparticles and their assemblies by electron tomography. Angew. Chem. Int. Ed. 2014, 53, 10600-10610.  doi: 10.1002/anie.201401059

    117. [117]

      Liu, P.; Irmak, E. A.; Backer, A. D.; Wael, A. D.; Lobato, I.; Béché, A.; Aert, S. V.; Bals, S. Three-dimensional atomic structure of supported Au nanoparticles at high temperature. Nanoscale 2021, 13, 1770-1776.  doi: 10.1039/D0NR08664A

    118. [118]

      Albrecht, W.; Bladt, E.; Vanrompay, H.; Smith, J. D.; Skrabalak, S. E.; Bals, S. Thermal stability of gold/palladium octopods studied in situ in 3D: understanding design rules for thermally stable metal nanoparticles. ACS Nano 2019, 13, 6522-6530.  doi: 10.1021/acsnano.9b00108

    119. [119]

      Vanrompay, H.; Bladt, E.; Albrecht, W.; Béché, A.; Zakhozheva, M.; Sánchez-Iglesias, A.; Liz-Marzán, L. M.; Bals, S. 3D characterization of heat-induced morphological changes of Au nanostars by fast in situ electron tomography. Nanoscale 2018, 10, 22792-22801.  doi: 10.1039/C8NR08376B

    120. [120]

      Vanrompay, H.; Buurlage, J. W.; Pelt, D. M.; Kumar, V.; Zhuo, X.; Liz-Marzán, L. M.; Bals, S.; Batenburg, K. J. Real-time reconstruction of arbitrary slices for quantitative and in situ 3D characterization of nanoparticles. Part. Part. Syst. Charact. 2020, 37, 2000073.  doi: 10.1002/ppsc.202000073

    121. [121]

      Wang, Z.; Ke, X.; Zhou, K.; Xu, X.; Jin, Y.; Wang, H.; Sui, M. Engineering the structure of ZIF-derived catalysts by revealing the critical role of temperature for enhanced oxygen reduction reaction. J. Mater. Chem. A 2021, 9, 18515-18525.  doi: 10.1039/D1TA03036A

    122. [122]

      Song, M.; Du, K.; Wang, C.; Wen, S.; Huang, H.; Nie, Z.; Ye, H. Geometric and chemical composition effects on healing kinetics of voids in Mg-bearing Al alloys. Metall. Mater. Trans. A 2016, 47, 2410-2420.  doi: 10.1007/s11661-016-3380-3

    123. [123]

      Roiban, L.; Li, S.; Aouine, M.; Tuel, A.; Farrusseng, D.; Epicier, T. Fast 'Operando' electron nanotomography. J. Microsc. 2018, 269, 117-126.  doi: 10.1111/jmi.12557

    124. [124]

      Koneti, S.; Roiban, L.; Dalmas, F.; Langlois, C.; Gay, A. S.; Cabiac, A.; Grenier, T.; Banjak, H.; Maxim, V.; Epicier, T. Fast electron tomography: applications to beam sensitive samples and in situ TEM or operando environmental TEM studies. Mater. Charact. 2019, 151, 480-495.  doi: 10.1016/j.matchar.2019.02.009

    125. [125]

      Tan, S. F.; Lin, G.; Bosman, M.; Mirsaidov, U.; Nijhuis, C. A. Realtime dynamics of galvanic replacement reactions of silver nanocubes and Au studied by liquid-cell transmission electron microscopy. ACS Nano 2016, 10, 7689-7695.  doi: 10.1021/acsnano.6b03020

    126. [126]

      Goris, B.; Polavarapu, L.; Bals, S.; Van Tendeloo, G.; Liz-Marzán, L. M. Monitoring galvanic replacement through three-dimensional morphological and chemical mapping. Nano Lett. 2014, 14, 3220-3226.  doi: 10.1021/nl500593j

    127. [127]

      Kwon, O. -H.; Zewail, A. H. 4D electron tomography. Science 2010, 328, 1668-1673.  doi: 10.1126/science.1190470

    128. [128]

      Hata, S.; Miyazaki, S.; Gondo, T.; Kawamoto, K.; Horii, N.; Sato, K.; Furukawa, H.; Kudo, H.; Miyazaki, H.; Murayama, M. In-situ straining and time-resolved electron tomography data acquisition in a transmission electron microscope. Microscopy 2017, 66, 143-153.

    129. [129]

      Hata, S.; Honda, T.; Saito, H.; Mitsuhara, M.; Petersen, T. C.; Murayama, M. Electron tomography: an imaging method for materials deformation dynamics. Curr. Opin. Solid State Mater. Sci. 2020, 24, 100850.  doi: 10.1016/j.cossms.2020.100850

    130. [130]

      Hata, S.; Furukawa, H.; Gondo, T.; Hirakami, D.; Horii, N.; Ikeda, K. I.; Kawamoto, K.; Kimura, K.; Matsumura, S.; Mitsuhara, M.; Miyazaki, H.; Miyazaki, S.; Murayama, M. M.; Nakashima, H.; Saito, H.; Sakamoto, M.; Yamasaki, S. Electron tomography imaging methods with diffraction contrast for materials research. Microscopy 2020, 69, 141-155.  doi: 10.1093/jmicro/dfaa002

    131. [131]

      Wang, Y. G.; Mei, D.; Glezakou, V. A.; Li, J.; Rousseau, R. Dynamic formation of single-atom catalytic active sites on ceria-supported gold nanoparticles. Nat. Commun. 2015, 6, 1-8.

    132. [132]

      Stukowski, A. Structure identification methods for atomistic simulations of crystalline materials. Model. Simul. Mater. Sci. Eng. 2012, 20, 045021.  doi: 10.1088/0965-0393/20/4/045021

    133. [133]

      Liu, P.; Madsen, J.; Schiøtz, J.; Wagner, J. B.; Hansen, T. W. Reversible and concerted atom diffusion on supported gold nanoparticles. J. Phys. Mater. 2020, 3, 024009.  doi: 10.1088/2515-7639/ab82b4

    134. [134]

      Buurlage, J. W.; Kohr, H.; Palenstijn, W. J.; Batenburg, K. J. Real-time quasi-3D tomographic reconstruction. Meas. Sci. Technol. 2018, 29, 064005.  doi: 10.1088/1361-6501/aab754

    135. [135]

      Ma, Y.; Teo, J. H.; Kitsche, D.; Diemant, T.; Strauss, F.; Ma, Y.; Goonetilleke, D.; Janek, J.; Bianchini, M.; Brezesinski, T. Cycling performance and limitations of LiNiO2 in solid-state batteries. ACS Energy Lett. 2021, 6, 3020-3028.  doi: 10.1021/acsenergylett.1c01447

    136. [136]

      Li, W.; Erickson, E. M.; Manthiram, A. High-nickel layered oxide cathodes for lithium-based automotive batteries. Nat. Energy 2020, 5, 26-34.  doi: 10.1038/s41560-019-0513-0

    137. [137]

      Wang, C.; Han, L.; Zhang, R.; Cheng, H.; Mu, L.; Kisslinger, K.; Zou, P.; Ren, Y.; Cao, P.; Lin, F.; Xin, H. L. Resolving atomic-scale phase transformation and oxygen loss mechanism in ultrahigh-nickel layered cathodes for cobalt-free lithium-ion batteries. Matter 2021, 4, 2013-2026.  doi: 10.1016/j.matt.2021.03.012

    138. [138]

      Kwon, S. G.; Krylova, G.; Phillips, P. J.; Klie, R. F.; Chattopadhyay, S.; Shibata, T.; Bunel, E. E.; Liu, Y.; Prakapenka, V. B.; Lee, B.; Shevchenko, E. V. Heterogeneous nucleation and shape transformation of multicomponent metallic nanostructures. Nat. Mater. 2015, 14, 215-223.  doi: 10.1038/nmat4115

    139. [139]

      Liu, L.; Zhang, S.; Bowden, M. E.; Chaudhuri, J.; De Yoreo, J. J. In situ TEM and AFM investigation of morphological controls during the growth of single crystal BaWO4. Cryst. Growth Des. 2018, 18, 1367-1375.  doi: 10.1021/acs.cgd.7b01216

    140. [140]

      Van Driessche, A. E. S.; Van Gerven, N.; Bomans, P. H. H.; Joosten, R. R. M.; Friedrich, H.; Gil-Carton, D.; Sommerdijk, N. A. J. M.; Sleutel, M. Molecular nucleation mechanisms and control strategies for crystal polymorph selection. Nature 2018, 556, 89-94.  doi: 10.1038/nature25971

    141. [141]

      Chen, J.; Zhu, E.; Liu, J.; Zhang, S.; Lin, Z.; Duan, X.; Heinz, H.; Huang, Y.; De Yoreo, J. J. Building two-dimensional materials one row at a time: avoiding the nucleation barrier. Science 2018, 362, 1135-1139.  doi: 10.1126/science.aau4146

    142. [142]

      Liu, L.; Nakouzi, E.; Sushko, M. L.; Schenter, G. K.; Mundy, C. J.; Chun, J.; De Yoreo, J. J. Connecting energetics to dynamics in particle growth by oriented attachment using real-time observations. Nat. Commun. 2020, 11, 1045.

    143. [143]

      Maliakkal, C. B.; Martensson, E. K.; Tornberg, M. U.; Jacobsson, D.; Persson, A. R.; Johansson, J.; Wallenberg, L. R.; Dick, K. A. Independent control of nucleation and layer growth in nanowires. ACS Nano 2020, 14, 3868-3875.

    144. [144]

      Pryor, A.; Yang, Y.; Rana, A.; Gallagher-Jones, M.; Zhou, J.; Lo, Y. H.; Melinte, G.; Chiu, W.; Rodriguez, J. A.; Miao, J. GENFIRE: a generalized Fourier iterative reconstruction algorithm for high-resolution 3D imaging. Sci. Rep. 2017, 7, 1-12.

    145. [145]

      Yang, Y.; Chen, C. C.; Scott, M. C.; Ophus, C.; Xu, R.; Pryor, A.; Wu, L.; Sun, F.; Theis, W.; Zhou, J.; Eisenbach, M.; Kent, P. R. C.; Sabirianov, R. F.; Zeng, H.; Ercius, P.; Miao, J. Deciphering chemical order/disorder and material properties at the single-atom level. Nature 2017, 542, 75-79.

    146. [146]

      Pelz, P. M.; Groschner, C.; Bruefach, A.; Satariano, A.; Ophus, C.; Scott, M. C. Simultaneous successive twinning captured by atomic electron tomography. ACS Nano 2022, 16, 588-596.

    147. [147]

      Wang, C.; Duan, H.; Chen, C.; Wu, P.; Qi, D.; Ye, H.; Jin, H. J.; Xin, H. L.; Du, K. Three-dimensional atomic structure of grain boundaries resolved by atomic-resolution electron tomography. Matter 2020, 3, 1999-2011.  doi: 10.1016/j.matt.2020.09.003

    148. [148]

      Wang, C.; Liu, H.; Duan, H.; Li, Z.; Zeng, P.; Zou, P.; Wang, X.; Ye, H.; Xin, H. L.; Du, K. 3D atomic imaging of low-coordinated active sites in solid-state dealloyed hierarchical nanoporous gold. J. Mater. Chem. A 2021, 9, 25513-25521.  doi: 10.1039/D1TA05942D

    149. [149]

      Duan, H. C.; Wang, C. Y.; Ye, H. Q.; Du, K. Electron tomography analysis on the structure and chemical composition of nanoporous metal surfaces. Acta Met. Sin 2022, Doi: 10.11900/0412.1961.2022.00133.  doi: 10.11900/0412.1961.2022.00133

    150. [150]

      Thiry, D.; Molina-Luna, L.; Gautron, E.; Stephant, N.; Chauvin, A.; Du, K.; Ding, J.; Choi, C. H.; Tessier, P. Y.; El Mel, A. A. The Kirkendall effect in binary alloys: trapping gold in copper oxide nanoshells. Chem. Mater. 2015, 27, 6374-6384.  doi: 10.1021/acs.chemmater.5b02391

    151. [151]

      Shen, L.; Yu, L.; Yu, X. Y.; Zhang, X.; Lou, X. W. Self-templated formation of uniform NiCo2O4 hollow spheres with complex interior structures for lithium-ion batteries and supercapacitors. Angew. Chem. Int. Ed. 2015, 54, 1868-1872.  doi: 10.1002/anie.201409776

    152. [152]

      Yin, Y.; Rioux, R. M.; Erdonmez, C. K.; Hughes, S.; Somorjai, G. A.; Alivisatos, A. P. Formation of hollow nanocrystals through the nanoscale Kirkendall effect. Science 2004, 304, 711-714.  doi: 10.1126/science.1096566

    153. [153]

      Deliere, L.; Coasne, B.; Topin, S.; Gréau, C.; Moulin, C.; Farrusseng, D. Breakthrough in xenon capture and purification using adsorbent-supported silver nanoparticles. Chem. -Eur. J. 2016, 22, 9660-9666.

    154. [154]

      Cobley, C. M.; Xia, Y. Engineering the properties of metal nanostructures via galvanic replacement reactions. Mater. Sci. Eng. R Rep. 2010, 70, 44-62.
       

    155. [155]

      da Silva, A. G. M.; Rodrigues, T. S.; Haigh, S. J.; Camargo, P. H. C. Galvanic replacement reaction: recent developments for engineering metal nanostructures towards catalytic applications. Chem. Commun. 2017, 53, 7135-7148.
       

    156. [156]

      Crowther, R. A.; DeRosier, D. J.; Klug, A. The reconstruction of a three-dimensional structure from projections and its application to electron microscopy. Proc. R. Soc. Lond. Math. Phys. Sci. 1970, 317, 319-340.

    157. [157]

      Andersen, A. H.; Kak, A. C. Simultaneous algebraic reconstruction technique (SART): a superior implementation of the art algorithm. Ultrason. Imaging 1984, 6, 81-94.
       

    158. [158]

      Boudjelal, A.; Messali, Z.; Elmoataz, A.; Attallah, B. Improved simultaneous algebraic reconstruction technique algorithm for positronemission tomography image reconstruction via minimizing the fast total variation. J. Med. Imaging Radiat. Sci. 2017, 48, 385-393.
       

    159. [159]

      Morgan, D.; Jacobs, R. Opportunities and challenges for machine learning in materials science. Annu. Rev. Mater. Res. 2020, 50, 71-103.
       

    160. [160]

      Wang, G.; Ye, J. C.; Mueller, K.; Fessler, J. A. Image reconstruction is a new frontier of machine learning. IEEE Trans. Med. Imaging 2018, 37, 1289-1296.
       

    161. [161]

      Kan, A. Machine learning applications in cell image analysis. Immunol. Cell Biol. 2017, 95, 525-530.
       

    162. [162]

      Butler, K. T.; Davies, D. W.; Cartwright, H.; Isayev, O.; Walsh, A. Machine learning for molecular and materials science. Nature 2018, 559, 547-555.
       

    163. [163]

      Elaziz, M. A.; Hosny, K. M.; Salah, A.; Darwish, M. M.; Lu, S.; Sahlol, A. T. New machine learning method for image-based diagnosis of COVID-19. Plos One 2020, 15, e0235187.

    164. [164]

      Singh, A.; Thakur, N.; Sharma, A. A review of supervised machine learning algorithms. 2016 3rd Int. Conf. Comput. Sustain. Glob. Dev. INDIACom 2016, 1310-1315.
       

    165. [165]

      Wang, P.; Fan, E.; Wang, P. Comparative analysis of image classification algorithms based on traditional machine learning and deep learning. Pattern Recognit. Lett. 2021, 141, 61-67.

    166. [166]

      Love, B. C. Comparing supervised and unsupervised category learning. Psychon. Bull. Rev. 2002, 9, 829-835.
       

    167. [167]

      LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436-444.
       

    168. [168]

      Tian, C.; Fei, L.; Zheng, W.; Xu, Y.; Zuo, W.; Lin, C. W. Deep learning on image denoising: an overview. Neural Netw. 2020, 131, 251-275.
       

    169. [169]

      Guo, Y.; Liu, Y.; Oerlemans, A.; Lao, S.; Wu, S.; Lew, M. S. Deep learning for visual understanding: a review. Neurocomputing 2016, 187, 27-48.
       

    170. [170]

      Wang, Z.; Chen, J.; Hoi, S. C. H. Deep learning for image superresolution: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 43, 3365-3387.

    171. [171]

      Minaee, S.; Boykov, Y.; Porikli, F.; Plaza, A.; Kehtarnavaz, N.; Terzopoulos, D. Image segmentation using deep learning: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 2022, 44, 3523-3542.

    172. [172]

      Creswell, A.; White, T.; Dumoulin, V.; Arulkumaran, K.; Sengupta, B.; Bharath, A. A. Generative adversarial networks: an overview. IEEE Signal Process. Mag. 2018, 35, 53-65.

    173. [173]

      Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. Medical Image Computing and Computer-Assisted Intervention - MICCAI 2015 2015, 234-241.

    174. [174]

      Zhou, Z.; Siddiquee, M. M. R.; Tajbakhsh, N.; Liang, J. UNet++: redesigning skip connections to exploit multiscale features in image segmentation. IEEE Trans. Med. Imaging 2020, 39, 1856-1867.

    175. [175]

      Iandola, F.; Moskewicz, M.; Karayev, S.; Girshick, R.; Darrell, T.; Keutzer, K. DenseNet: implementing efficient convnet descriptor pyramids. 2014.

    176. [176]

      Han, Y.; Jang, J.; Cha, E.; Lee, J.; Chung, H.; Jeong, M.; Kim, T. G.; Chae, B. G.; Kim, H. G.; Jun, S.; Hwang, S.; Lee, E.; Ye, J. C. Deep learning STEM-EDX tomography of nanocrystals. Nat. Mach. Intell. 2021, 3, 267-274.

    177. [177]

      Cha, E.; Chung, H.; Jang, J.; Lee, J.; Lee, E.; Ye, J. C. Low-dose sparse-view HAADF-STEM-EDX tomography of nanocrystals using unsupervised deep learning. ACS Nano 2022, 16, 10314-10326.

    178. [178]

      Çiçek, Ö.; Abdulkadir, A.; Lienkamp, S. S.; Brox, T.; Ronneberger, O. 3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation. Med. Medical Image Computing and Computer-Assisted Intervention - MICCAI 2016 2016, 424-432.

    179. [179]

      Cressey, D.; Callaway, E. Cryo-electron microscopy wins chemistry Nobel. Nature 2017, 550, 167-167.
       

    180. [180]

      Textor, M.; de Jonge, N. Strategies for preparing graphene liquid cells for transmission electron microscopy. Nano Lett. 2018, 18, 3313-3321.
       

  • 加载中
    1. [1]

      Jun LIHuipeng LIHua ZHAOQinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401

    2. [2]

      Zixing XuRuiying ChenChuanming HaoQionghong XieChunhui DengNianrong Sun . Peptidome data-driven comprehensive individualized monitoring of membranous nephropathy with machine learning. Chinese Chemical Letters, 2024, 35(5): 108975-. doi: 10.1016/j.cclet.2023.108975

    3. [3]

      Yunxin LiJinghui ZhangJisen ChenFeng ZhuZhiqiang LiuPeng BaoWei ShenSheng Tang . Detection of SARS-CoV-2 based on artificial intelligence-assisted smartphone: A review. Chinese Chemical Letters, 2024, 35(7): 109220-. doi: 10.1016/j.cclet.2023.109220

    4. [4]

      Yuexi Guo Zhaoyang Li Jingwei Dai . Charlie and the 3D Printing Chocolate Factory. University Chemistry, 2024, 39(9): 235-242. doi: 10.3866/PKU.DXHX202309067

    5. [5]

      Haodong WangXiaoxu LaiChi ChenPei ShiHouzhao WanHao WangXingguang ChenDan Sun . Novel 2D bifunctional layered rare-earth hydroxides@GO catalyst as a functional interlayer for improved liquid-solid conversion of polysulfides in lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(5): 108473-. doi: 10.1016/j.cclet.2023.108473

    6. [6]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    7. [7]

      Xi Xu Chaokai Zhu Leiqing Cao Zhuozhao Wu Cao Guan . Experiential Education and 3D-Printed Alloys: Innovative Exploration and Student Development. University Chemistry, 2024, 39(2): 347-357. doi: 10.3866/PKU.DXHX202308039

    8. [8]

      Qiang Zhou Pingping Zhu Wei Shao Wanqun Hu Xuan Lei Haiyang Yang . Innovative Experimental Teaching Design for 3D Printing High-Strength Hydrogel Experiments. University Chemistry, 2024, 39(6): 264-270. doi: 10.3866/PKU.DXHX202310064

    9. [9]

      Xiao-Hong YiChong-Chen Wang . Metal-organic frameworks on 3D interconnected macroporous sponge foams for large-scale water decontamination: A mini review. Chinese Chemical Letters, 2024, 35(5): 109094-. doi: 10.1016/j.cclet.2023.109094

    10. [10]

      Yi ZhuJingyan ZhangYuchao ZhangYing ChenGuanghui AnRen Liu . Designing unimolecular photoinitiator by installing NHPI esters along the TX backbone for acrylate photopolymerization and their applications in coatings and 3D printing. Chinese Chemical Letters, 2024, 35(7): 109573-. doi: 10.1016/j.cclet.2024.109573

    11. [11]

      Jie WuXiaoqing YuGuoxing LiSu Chen . Engineering particles towards 3D supraballs-based passive cooling via grafting CDs onto colloidal photonic crystals. Chinese Chemical Letters, 2024, 35(4): 109234-. doi: 10.1016/j.cclet.2023.109234

    12. [12]

      Jiajia Li Xiangyu Zhang Zhihan Yuan Zhengyang Qian Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073

    13. [13]

      Lin Song Dourong Wang Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107

    14. [14]

      Jing-Jing ZhangLujun LouRui LvJiahui ChenYinlong LiGuangwei WuLingchao CaiSteven H. LiangZhen Chen . Recent advances in photochemistry for positron emission tomography imaging. Chinese Chemical Letters, 2024, 35(8): 109342-. doi: 10.1016/j.cclet.2023.109342

    15. [15]

      Qijun Tang Wenguang Tu Yong Zhou Zhigang Zou . High efficiency and selectivity catalyst for photocatalytic oxidative coupling of methane. Chinese Journal of Structural Chemistry, 2023, 42(12): 100170-100170. doi: 10.1016/j.cjsc.2023.100170

    16. [16]

      Zimo Peng Quan Zhang Gaocan Qi Hao Zhang Qian Liu Guangzhi Hu Jun Luo Xijun Liu . Nanostructured Pt@RuOx catalyst for boosting overall acidic seawater splitting. Chinese Journal of Structural Chemistry, 2024, 43(1): 100191-100191. doi: 10.1016/j.cjsc.2023.100191

    17. [17]

      Yue LiMinghao FanConghui WangYanxun LiXiang YuJun DingLei YanLele QiuYongcai ZhangLonglu Wang . 3D layer-by-layer amorphous MoSx assembled from [Mo3S13]2- clusters for efficient removal of tetracycline: Synergy of adsorption and photo-assisted PMS activation. Chinese Chemical Letters, 2024, 35(9): 109764-. doi: 10.1016/j.cclet.2024.109764

    18. [18]

      Hengying XiangNanping DengLu GaoWen YuBowen ChengWeimin Kang . 3D core-shell nanofibers framework and functional ceramic nanoparticles synergistically reinforced composite polymer electrolytes for high-performance all-solid-state lithium metal battery. Chinese Chemical Letters, 2024, 35(8): 109182-. doi: 10.1016/j.cclet.2023.109182

    19. [19]

      Yujia ShiYan QiaoPengfei XieMiaomiao TianXingwei LiJunbiao ChangBingxian Liu . Rhodium-catalyzed enantioselective in situ C(sp3)−H heteroarylation by a desymmetrization approach. Chinese Chemical Letters, 2024, 35(10): 109544-. doi: 10.1016/j.cclet.2024.109544

    20. [20]

      Shuang LiJiayu SunGuocheng LiuShuo ZhangZhong ZhangXiuli Wang . A new Keggin-type polyoxometallate-based bifunctional catalyst for trace detection and pH-universal photodegradation of phenol. Chinese Chemical Letters, 2024, 35(8): 109148-. doi: 10.1016/j.cclet.2023.109148

Metrics
  • PDF Downloads(3)
  • Abstract views(276)
  • HTML views(10)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return