Citation: Xiuting Gao, Nana Chen, Minglei Cao, Yang Shi, Qingfu Zhang. A Water-Stable 3D Eu(Ⅲ)-Organic Framework as a Bi-Functional Ratiometric Luminescent Sensor for Fast, Sensitive and Selective Detection of ODZ and Hg2+ in Aqueous Media[J]. Chinese Journal of Structural Chemistry, ;2022, 41(11): 221111. doi: 10.14102/j.cnki.0254-5861.2022-0171 shu

A Water-Stable 3D Eu(Ⅲ)-Organic Framework as a Bi-Functional Ratiometric Luminescent Sensor for Fast, Sensitive and Selective Detection of ODZ and Hg2+ in Aqueous Media

  • Corresponding author: Qingfu Zhang, zhangqingfu@lcu.edu.cn
  • Received Date: 22 July 2022
    Accepted Date: 22 August 2022
    Available Online: 30 August 2022

Figures(9)

  • The fast, sensitive and selective detection of some antibiotics and heavy metal cations in water is highly desirable for environmental protection and human health, but it is still currently challenging. In this work, a new luminescent Eu(III)-based metal-organic framework (MOF), {[(CH3)2NH2][Eu(L)2(H2O)2]·xDMF}n (1) [H2L = 4, 4'-((naphthalene-1, 4-dicarbonyl)bis(azanediyl))dibenzoic acid], was solvothermally synthesized. Complex 1 exhibits good water stability and luminescent property and could serve as a bi-functional ratiometric luminescent sensor for fast, sensitive and selective detection of ornidazole (ODZ) and Hg2+ in aqueous solution. The corresponding luminescent mechanism has also been discussed. This work indicates that 1 as a promising luminescent material exhibits luminescent quenching behavior for ODZ and luminescent enhancement behavior for Hg2+ in H2O, which will promote the practical application of Ln-MOF-based ratiometric luminescent sensors in monitoring antibiotics and metal ions pollutants in the environmental water matrices.
  • 加载中
    1. [1]

      Liu, X.; Steele, J. C.; Meng, X. Z. Usage, residue, and human health risk of antibiotics in Chinese aquaculture: a review. Environ. Pollut. 2017, 223, 161-169.  doi: 10.1016/j.envpol.2017.01.003

    2. [2]

      Wang, J. L.; Zhuan, R.; Chu, L. B. The occurrence, distribution and degradation of antibiotics by ionizing radiation: an overview. Sci. Total Environ. 2019, 646, 1385-1397.  doi: 10.1016/j.scitotenv.2018.07.415

    3. [3]

      Zhang, Q. Q.; Ying, G. G.; Pan, C. G.; Liu, Y. S.; Zhao, J. L. Comprehensive evaluation of antibiotics emission and fate in the river basins of China: source analysis, multimedia modeling, and linkage to bacterial resistance. Environ. Sci. Technol. 2015, 49, 6772-6782.  doi: 10.1021/acs.est.5b00729

    4. [4]

      Kümmerer, K. Antibiotics in the aquatic environment-a review-part I. Chemosphere 2009, 75, 417-434.  doi: 10.1016/j.chemosphere.2008.11.086

    5. [5]

      Grandjean, P.; Landrigan, P. J. Developmental neurotoxicity of industrial chemicals. Lancet 2006, 368, 2167-2178.  doi: 10.1016/S0140-6736(06)69665-7

    6. [6]

      Toussaint, B.; Chedin, M.; Vincent, U.; Bordin, G.; Rodriguez, A. R. Determination of (fluoro)quinolone antibiotic residues in pig kidney using liquid chromatography-tandem mass spectrometry part II: intercomparison exercise. J. Chromatogr. A 2005, 1088, 40-48.  doi: 10.1016/j.chroma.2005.02.016

    7. [7]

      Tabrizchi, M.; ILbeigi, V. Detection of explosives by positive corona discharge ion mobility spectrometry. J. Hazard. Mater. 2010, 176, 692-696.  doi: 10.1016/j.jhazmat.2009.11.087

    8. [8]

      Pérez-Fernández, V.; Domínguez-Vega, E.; Crego, A. L.; Ángeles García, M.; Marina, M. L. Recent advances in the analysis of antibiotics by CE and CEC. Electrophoresis 2012, 33, 127-146.  doi: 10.1002/elps.201100409

    9. [9]

      Cheng, Y. J.; Huang, S. H.; Singco, B.; Huang, H. Y. Analyses of sulfonamide antibiotics in meat samples by on-line concentration capillary electrochromatography-mass spectrometry. J. Chromatogr. A 2011, 1218, 7640-7647.  doi: 10.1016/j.chroma.2011.06.027

    10. [10]

      Zheng, W.; Zhou, S. Y.; Chen, Z.; Hu, P.; Liu, Y. S.; Tu, D. T.; Zhu, H. M.; Li, R. F.; Huang, M. D.; Chen, X. Y. Sub-10 nm lanthanide-doped CaF2 nanoprobes for time-resolved luminescent biodetection. Angew. Chem. Int. Ed. 2013, 52, 6671-6676.  doi: 10.1002/anie.201302481

    11. [11]

      Zhang, M. R.; Zheng, W.; Liu, Y.; Huang, P.; Gong, Z. L.; Wei, J. J.; Gao, Y.; Zhou, S. Y.; Li, X. J.; Chen, X. Y. A new class of blue-LED-excitable NIR-II luminescent nanoprobes based on lanthanide-doped CaS nanoparticles. Angew. Chem. Int. Ed. 2019, 58, 9556-9560.  doi: 10.1002/anie.201905040

    12. [12]

      Zhang, C. G.; Zhang, M. R.; Zheng, W.; Wei, J. J.; Wang, S. T.; Huang, P.; Cheng, X. W.; Dai, T.; Chen, Z.; Chen, X. Y. A new class of luminescent nanoprobes based on main-group Sb3+ emitters. Nano Res. 2022, 15, 179-185.  doi: 10.1007/s12274-021-3454-4

    13. [13]

      Allendorf, M. D.; Bauer, C. A.; Bhakta, R. K.; Houk, R. J. T. Lumine-scent metal-organic frameworks. Chem. Soc. Rev. 2009, 38, 1330-1352.  doi: 10.1039/b802352m

    14. [14]

      Rasheed, T.; Nabeel, F. Luminescent metal-organic frameworks as potential sensory materials for various environmental toxic agents. Coord. Chem. Rev. 2019, 401, 213065.  doi: 10.1016/j.ccr.2019.213065

    15. [15]

      Lu, Z. Q.; Li, Y. Z.; Hao, C.; Ru, Y.; Yang, S. J.; Zhang, N. D.; Fu, Y. Q.; Wu, W. L.; Zhou, Y. Synthesis, crystal structure and luminescent/magnetic properties of two metal-organic frameworks based on multi-N/O-donor mixed ligands. Chin. J. Struct. Chem. 2021, 40, 1122-1130.

    16. [16]

      Yin, Y. J.; Fang, W. J.; Liu, S. Q.; Chen, J.; Zhang, J. J.; Ni, A. Y. A new bio-metal-organic framework: synthesis, crystal structure and selectively sensing of Fe(III) Ion in aqueous medium. Chin. J. Struct. Chem. 2021, 40, 1456-1460.

    17. [17]

      Wang, N.; Zhou, M. S.; Li, T.; Fu, H. R.; Li, F. F. Synthesis and detection of pesticides of luminescent metal-organic framework based on carboxyl-decorating tetraphenylethylene. Chin. J. Struct. Chem. 2020, 39, 1496-1502.

    18. [18]

      Chen, L.; Liu, D. H.; Peng, J.; Du, Q. Z.; He, H. Ratiometric fluorescence sensing of metal-organic frameworks: tactics and perspectives. Coord. Chem. Rev. 2020, 404, 213113.  doi: 10.1016/j.ccr.2019.213113

    19. [19]

      Yan, B. Lanthanide-functionalized metal-organic framework hybrid systems to create multiple luminescent centers for chemical sensing. Acc. Chem. Res. 2017, 50, 2789-2798.  doi: 10.1021/acs.accounts.7b00387

    20. [20]

      Yang, L.; Song, Y. H.; Wang, L. Multi-emission metal-organic framework composites for multicomponent ratiometric fluorescence sensing: recent developments and future challenges. J. Mater. Chem. B 2020, 8, 3292-3315.  doi: 10.1039/C9TB01931F

    21. [21]

      Yin, H. Q.; Yin, X. B. Metal-organic frameworks with multiple luminescence emissions: designs and applications. Acc. Chem. Res. 2020, 53, 485-495.  doi: 10.1021/acs.accounts.9b00575

    22. [22]

      Wu, S. Y.; Min, H.; Shi, W.; Cheng, P. Multicenter metal-organic framework-based ratiometric fluorescent sensors. Adv. Mater. 2020, 32, 1805871.  doi: 10.1002/adma.201805871

    23. [23]

      (a) Li, Y.; Pang, J. D.; Bu, X. H. Multi-functional metal-organic frameworks for detection and removal of water pollutions. Chem. Commun. 2022, 58, 7890-7908; (b) Yang, Y.; Pang, J. D.; Li, Y. W.; Sun, L.; Zhang, H.; Zhang, L. Y.; Xu, S. T.; Jiang, T. W. Fabrication of a stable europium-based luminescent sensor for fast detection of urinary 1‑hydroxypyrene constructed from a tetracarboxylate ligand. Inorg. Chem. 2021, 60, 19189-19196.

    24. [24]

      Yang, Y.; Chen, L.; Jiang, F. L.; Wu, M. Y.; Pang, J. D.; Wan, X. Y.; Hong, M. C. A water-stable 3D Eu-MOF based on a metallacyclodimeric secondary building unit for sensitive fluorescent detection of acetone molecules. CrystEngComm 2019, 21, 321-328.  doi: 10.1039/C8CE01875H

    25. [25]

      Shu, Y.; Ye, Q. Y.; Dai, T.; Xu, Q.; Hu, X. Y. Encapsulation of luminescent guests to construct luminescent metal-organic frameworks for chemical sensing. ACS Sens. 2021, 6, 641-658.  doi: 10.1021/acssensors.0c02562

    26. [26]

      Zhang, X.; Hu, Q.; Xia, T. F.; Zhang, J.; Yang, Y.; Cui, Y. J.; Chen, B. L.; Qian, G. D. Turn-on and ratiometric luminescent sensing of hydrogen sulfide based on metal-organic frameworks. ACS Appl. Mater. Interfaces 2016, 8, 32259-32265.  doi: 10.1021/acsami.6b12118

    27. [27]

      Zeng, X. L.; Hu, J.; Zhang, M.; Wang, F. L.; Wu, L.; Hou, X. D. Visual detection of fluoride anions using mixed lanthanide metal-organic frameworks with a smartphone. Anal. Chem. 2020, 92, 2097-2102.  doi: 10.1021/acs.analchem.9b04598

    28. [28]

      Yu, L.; Zheng, Q. T.; Wang, H.; Liu, C. X.; Huang, X. Q.; Xiao, Y. X. Double-color lanthanide metal-organic framework based logic device and visual ratiometric fluorescence water microsensor for solid pharmaceuticals. Anal. Chem. 2020, 92, 1402-1408.  doi: 10.1021/acs.analchem.9b04575

    29. [29]

      (a) Alvarez, S.; Alemany, P.; Casanova, D.; Cirera, J.; Llunell, M.; Avnir, D. Shape maps and polyhedral interconversion paths in transition metal chemistry. Coord. Chem. Rev. 2005, 249, 1693-1708; (b) Cirera, J.; Ruiz, E.; Alvarez, S. Shape and spin state in four-coordinate transition-metal complexes: the case of the d6 configuration. Chem. Eur. J. 2006, 12, 3162-3167.

    30. [30]

      Lin, Z. J.; Yang, Z.; Liu, T. F.; Huang, Y. B.; Cao, R. Microwaveassisted synthesis of a series of lanthanide metal-organic frameworks and gas sorption properties. Inorg. Chem. 2012, 51, 1813-1820.  doi: 10.1021/ic202082w

    31. [31]

      Burrows, A. D.; Cassar, K.; Düren, T.; Friend, R. M. W.; Mahon, M. F.; Rigby, S. P.; Savarese, T. L. Syntheses, structures and properties of cadmium benzenedicarboxylate metal-organic frameworks. Dalton Trans. 2008, 2465-2474.

    32. [32]

      Spek, A. L. Structure validation in chemical crystallography. Acta Cryst. 2009, D65, 148-155.

    33. [33]

      Wang, X. H.; Lei, M. Y.; Zhang, T. J.; Zhang, Q. F.; Zhang, R. F.; Yang, M. A water-stable multi-responsive luminescent Zn-MOF sensor for detecting TNP, NZF and Cr2O72- in aqueous media. Dalton Trans. 2021, 50, 3816-3824.  doi: 10.1039/D0DT03049J

    34. [34]

      Zhang, Q. F.; Lei, M. Y.; Kong, F.; Yang, Y. A water-stable homochiral luminescent MOF constructed from an achiral acylamide-containing dicarboxylate ligand for enantioselective sensing of penicillamine. Chem. Commun. 2018, 54, 10901-10904.  doi: 10.1039/C8CC06274A

    35. [35]

      Hao, J. N.; Yan, B. Highly sensitive and selective fluorescent probe for Ag+ based on a Eu3+ post-functionalized metal-organic framework in aqueous media. J. Mater. Chem. A 2014, 2, 18018-18025.  doi: 10.1039/C4TA03990D

    36. [36]

      Zhang, X.; Luo, X.; Zhang, N. X.; Wu, J.; Huang, Y. Q. A highly selective and sensitive Zn(II) coordination polymer luminescent sensor for Al3+ and NACs in the aqueous phase. Inorg. Chem. Front. 2017, 4, 1888-1894.  doi: 10.1039/C7QI00549K

    37. [37]

      Cho, W.; Lee, H. J.; Choi, G.; Choi, S.; Oh, M. Dual changes in conformation and optical properties of fluorophores within a metal-organic framework during framework construction and associated sensing event. J. Am. Chem. Soc. 2014, 136, 12201-12204.  doi: 10.1021/ja504204d

    38. [38]

      Zhang, Q. F.; Lei, M. Y.; Yan, H.; Wang, J. Y.; Shi, Y. A water stable 3D luminescent metal-organic framework based on heterometallic [Eu6IIIZnII] clusters showing highly sensitive, selective, and reversible detection of ronidazole. Inorg. Chem. 2017, 56, 7610-7614.  doi: 10.1021/acs.inorgchem.7b01156

    39. [39]

      Arnaud, N.; Vaquer, E.; Georges, J. Comparative study of the luminescent properties of europium and terbium coordinated with thenoyltrifluoroacetone or pyridine-2, 6-dicarboxylic acid in aqueous solutions. Analyst 1998, 123, 261-265.  doi: 10.1039/a706522a

    40. [40]

      Tan, H. L.; Chen, Y. Ag+-enhanced fluorescence of lanthanide/nucleotide coordination polymers and Ag+ sensing. Chem. Commun. 2011, 47, 12373-12375.  doi: 10.1039/c1cc16003f

    41. [41]

      Tang, Q.; Liu, S. X.; Liu, Y. W.; Miao, J.; Li, S. J.; Zhang, L; Shi, Z.; Zheng, Z. P. Cation sensing by a luminescent metal-organic framework with multiple Lewis basic sites. Inorg. Chem. 2013, 52, 2799-2801.  doi: 10.1021/ic400029p

    42. [42]

      Zhao, B.; Chen, X. Y.; Cheng, P.; Liao, D. Z.; Yan, S. P.; Jiang, Z. H. Coordination polymers containing 1D channels as selective luminescent probes. J. Am. Chem. Soc. 2004, 126, 15394-15395.  doi: 10.1021/ja047141b

    43. [43]

      Hanaoka, K.; Kikuchi, K.; Kojima, H.; Urano, Y.; Nagano, T. Development of a zinc ion-selective luminescent lanthanide chemosensor for biological applications. J. Am. Chem. Soc. 2004, 126, 12470-12476.  doi: 10.1021/ja0469333

    44. [44]

      Razavi, S. A. A.; Masoomi, M. Y.; Morsali, A. Double solvent sensing method for improving sensitivity and accuracy of Hg(II) detection based on different signal transduction of a tetrazine-functionalized pillared metalorganic framework. Inorg. Chem. 2017, 56, 9646-9652.  doi: 10.1021/acs.inorgchem.7b01155

    45. [45]

      Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Cryst. 2015, C71, 3-8.

    46. [46]

      Sluis, P. V. D.; Spek, A. L. BYPASS: an effective method for the refinement of crystal structures containing disordered solvent regions. Acta Cryst. 1990, A46, 194-201.

  • 加载中
    1. [1]

      Ying ChenLi LiJunyao ZhangTongrui SunXuan ZhangShiqi ZhangJia HuangYidong Zou . Tailored ionically conductive graphene oxide-encased metal ions for ultrasensitive cadaverine sensor. Chinese Chemical Letters, 2024, 35(8): 109102-. doi: 10.1016/j.cclet.2023.109102

    2. [2]

      Shuangying LiQingxiang ZhouZhi LiMenghua LiuYanhui Li . Sensitive measurement of silver ions in environmental water samples integrating magnetic ion-imprinted solid phase extraction and carbon dot fluorescent sensor. Chinese Chemical Letters, 2024, 35(5): 108693-. doi: 10.1016/j.cclet.2023.108693

    3. [3]

      Zhiqiang LiuQiang GaoWei ShenMeifeng XuYunxin LiWeilin HouHai-Wei ShiYaozuo YuanErwin AdamsHian Kee LeeSheng Tang . Removal and fluorescence detection of antibiotics from wastewater by layered double oxides/metal-organic frameworks with different topological configurations. Chinese Chemical Letters, 2024, 35(8): 109338-. doi: 10.1016/j.cclet.2023.109338

    4. [4]

      Hongdao LIShengjian ZHANGHongmei DONG . Magnetic relaxation and luminescent behavior in nitronyl nitroxide-based annuluses of rare-earth ions. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 972-978. doi: 10.11862/CJIC.20230411

    5. [5]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    6. [6]

      Jing JINZhuming GUOZhiyin XIAOXiujuan JIANGYi HEXiaoming LIU . Tuning the stability and cytotoxicity of fac-[Fe(CO)3I3]- anion by its counter ions: From aminiums to inorganic cations. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 991-1004. doi: 10.11862/CJIC.20230458

    7. [7]

      Yuxin LiChengbin LiuQiuju LiShun Mao . Fluorescence analysis of antibiotics and antibiotic-resistance genes in the environment: A mini review. Chinese Chemical Letters, 2024, 35(10): 109541-. doi: 10.1016/j.cclet.2024.109541

    8. [8]

      Jian PengYue JiangShuangyu WuYanran ChengJingyu LiangYixin WangZhuo LiSijie Lin . A nonradical oxidation process initiated by Ti-peroxo complex showed high specificity toward the degradation of tetracycline antibiotics. Chinese Chemical Letters, 2024, 35(5): 108903-. doi: 10.1016/j.cclet.2023.108903

    9. [9]

      Xiaotao JinYanlan WangYingping HuangDi HuangXiang Liu . Percarbonate activation catalyzed by nanoblocks of basic copper molybdate for antibiotics degradation: High performance, degradation pathways and mechanism. Chinese Chemical Letters, 2024, 35(10): 109499-. doi: 10.1016/j.cclet.2024.109499

    10. [10]

      Xiangshuai LiJian ZhaoLi LuoZhuohao JiaoYing ShiShengli HouBin Zhao . Visual and portable detection of metronidazole realized by metal-organic framework flexible sensor and smartphone scanning. Chinese Chemical Letters, 2024, 35(10): 109407-. doi: 10.1016/j.cclet.2023.109407

    11. [11]

      Zengchao GuoWeiwei LiuTengfei LiuJinpeng WangHui JiangXiaohui LiuYossi WeizmannXuemei Wang . Engineered exosome hybrid copper nanoscale antibiotics facilitate simultaneous self-assembly imaging and elimination of intracellular multidrug-resistant superbugs. Chinese Chemical Letters, 2024, 35(7): 109060-. doi: 10.1016/j.cclet.2023.109060

    12. [12]

      Lixian Cai Yingxiang Ye . A flexible-robust MOF for efficient purification of perfluoropropane. Chinese Journal of Structural Chemistry, 2024, 43(11): 100368-100368. doi: 10.1016/j.cjsc.2024.100368

    13. [13]

      Hai-Ling Wang Zhong-Hong Zhu Hua-Hong Zou . Structure and assembly mechanism of high-nuclear lanthanide-oxo clusters. Chinese Journal of Structural Chemistry, 2024, 43(9): 100372-100372. doi: 10.1016/j.cjsc.2024.100372

    14. [14]

      Xiao-Hong YiChong-Chen Wang . Metal-organic frameworks on 3D interconnected macroporous sponge foams for large-scale water decontamination: A mini review. Chinese Chemical Letters, 2024, 35(5): 109094-. doi: 10.1016/j.cclet.2023.109094

    15. [15]

      Jiayao Li Xinru Peng Shiwei Yin Changwei Wang Yirong Mo . Metastability of π-π stacking between the closed-shell ions of like charges. Chinese Journal of Structural Chemistry, 2024, 43(5): 100213-100213. doi: 10.1016/j.cjsc.2023.100213

    16. [16]

      Fei Jin Bolin Yang Xuanpu Wang Teng Li Noritatsu Tsubaki Zhiliang Jin . Facilitating efficient photocatalytic hydrogen evolution via enhanced carrier migration at MOF-on-MOF S-scheme heterojunction interfaces through a graphdiyne (CnH2n-2) electron transport layer. Chinese Journal of Structural Chemistry, 2023, 42(12): 100198-100198. doi: 10.1016/j.cjsc.2023.100198

    17. [17]

      Hongye Bai Lihao Yu Jinfu Xu Xuliang Pang Yajie Bai Jianguo Cui Weiqiang Fan . Controllable Decoration of Ni-MOF on TiO2: Understanding the Role of Coordination State on Photoelectrochemical Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100096-100096. doi: 10.1016/j.cjsc.2023.100096

    18. [18]

      Hao Jiang Yuan-Yuan He Hai-Chao Liang Meng-Jia Shang Han-Han Lu Chun-Hua Liu Yin-Shan Meng Tao Liu Yuan-Yuan Zhu . Tuning lanthanide luminescence from bipyridine-bis(oxazoline/thiazoline) tetradentate ligands. Chinese Journal of Structural Chemistry, 2024, 43(9): 100354-100354. doi: 10.1016/j.cjsc.2024.100354

    19. [19]

      Tiantian Gong Yanan Chen Shuo Wang Miao Wang Junwei Zhao . Rigid-flexible-ligand-ornamented lanthanide-incorporated selenotungstates and photoluminescence properties. Chinese Journal of Structural Chemistry, 2024, 43(9): 100370-100370. doi: 10.1016/j.cjsc.2024.100370

    20. [20]

      Jiakun Bai Junhui Jia Aisen Li . An elastic organic crystal with piezochromic luminescent behavior. Chinese Journal of Structural Chemistry, 2024, 43(6): 100323-100323. doi: 10.1016/j.cjsc.2024.100323

Metrics
  • PDF Downloads(5)
  • Abstract views(423)
  • HTML views(31)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return