Citation: Xiaomeng Zhang, Gege Zhao, Zhongfei Li, Liang Zhu, Yingpeng Cheng, Haiwei Du, Chuhong Zhu, Ya Dang, Daochuan Jiang, Yupeng Yuan. Spatially Isolated Noble-Metal-Free Redox Cocatalysts on CdS Nanorods for Increased Photocatalytic Hydrogen Generation[J]. Chinese Journal of Structural Chemistry, ;2022, 41(9): 220910. doi: 10.14102/j.cnki.0254-5861.2022-0168 shu

Spatially Isolated Noble-Metal-Free Redox Cocatalysts on CdS Nanorods for Increased Photocatalytic Hydrogen Generation

  • Corresponding author: Daochuan Jiang, jdczlx@ahu.edu.cn Yupeng Yuan, yupengyuan@ahu.edu.cn
  • X. Zhang and G. Zhao contributed equally to this work.
  • Received Date: 10 July 2022
    Accepted Date: 16 August 2022
    Available Online: 18 August 2022

Figures(6)

  • Spatially isolated oxidation and reduction cocatalysts on a semiconductor can realize efficient charge separation and thereby lead to increased photocatalytic hydrogen generation. However, the effective preparation of such photocatalysts has proven challenging. Herein, we report the facile synthesis of a novel noble-metal-free CdS/MoS2/CoPi ternary photocatalyst via a visible light-induced synthesis route, in which MoS2 reduction cocatalysts were precisely grown on the two terminals of CdS nanorods, while CoPi oxidation cocatalysts were preferentially anchored onto the sidewalls of CdS nanorods. Such spatially isolated MoS2 and CoPi redox cocatalysts endow CdS nanorods with a rapid charge separation, which enhances their hydrogen generation activity. The CdS/MoS2/CoPi photocatalyst with optimized CoPi amount achieves the highest H2 generation rate of 206 μmol/h, which is 21 and 2 times higher than that achieved by using CdS alone (9.7 μmol/h) and CdS/MoS2 (105 μmol/h), respectively. The present work highlights the effectiveness of the spatial isolation of reduction and oxidation sites for efficient charge separation and thereby provides a promising strategy for the preparation of highly active photocatalysts.
  • 加载中
    1. [1]

      Zhang, M.; Nie, S.; Cheng, T.; Feng, Y.; Zhang, C.; Zheng, L.; Wu, L.; Hao, W.; Ding, Y. Enhancing the macroscopic polarization of CdS for piezo-photocatalytic water splitting. Nano Energy 2021, 90, 106635.  doi: 10.1016/j.nanoen.2021.106635

    2. [2]

      Bai, Y.; Hippalgaonkar, K.; Sprick, R. S. Organic materials as photocatalysts for water splitting. J. Mater. Chem. A 2021, 9, 16222-16232.  doi: 10.1039/D1TA03710B

    3. [3]

      Dai, C.; Pan, Y.; Liu, B. Conjugated polymer nanomaterials for solar water splitting. Adv. Energy Mater. 2020, 10, 2002474.  doi: 10.1002/aenm.202002474

    4. [4]

      Chen, S.; Takata, T.; Domen, K. Particulate photocatalysts for overall water splitting. Nat. Rev. Mater. 2017, 2, 17050.  doi: 10.1038/natrevmats.2017.50

    5. [5]

      Xu, J.; Zhong, W.; Gao, D.; Wang, X.; Wang, P.; Yu, H. Phosphorus-enriched platinum diphosphide nanodots as a highly efficient cocatalyst for photocatalytic H2 evolution of CdS. Chem. Eng. J. 2022, 439, 135758.  doi: 10.1016/j.cej.2022.135758

    6. [6]

      He, J.; Hu, L.; Shao, C.; Jiang, S.; Sun, C.; Song, S. Photocatalytic H2O overall splitting into H2 bubbles by single atomic sulfur vacancy CdS with spin polarization electric field. ACS Nano 2021, 15, 18006-18013.  doi: 10.1021/acsnano.1c06524

    7. [7]

      Tian, L.; Min, S.; Wang, F. Integrating noble-metal-free metallic vanadium carbide cocatalyst with CdS for efficient visible-light-driven photocatalytic H2 evolution. Appl. Catal. B 2019, 259, 118029.  doi: 10.1016/j.apcatb.2019.118029

    8. [8]

      Han, G.; Jin, Y. -H.; Burgess, R. A.; Dickenson, N. E.; Cao, X. -M.; Sun, Y. Visible-light-driven valorization of biomass intermediates integrated with H2 production catalyzed by ultrathin Ni/CdS nanosheets. J. Am. Chem. Soc. 2017, 139, 15584-15587.  doi: 10.1021/jacs.7b08657

    9. [9]

      Li, K.; Han, M.; Chen, R.; Li, S. -L.; Xie, S. -L.; Mao, C.; Bu, X.; Cao, X. -L.; Dong, L. -Z.; Feng, P.; Lan, Y. -Q. Hexagonal@cubic CdS core@shell nanorod photocatalyst for highly active production of H2 with unprecedented stability. Adv. Mater. 2016, 28, 8906-8911.  doi: 10.1002/adma.201601047

    10. [10]

      Li, C. -Q.; Du, X.; Jiang, S.; Liu, Y.; Niu, Z. -L.; Liu, Z. -Y.; Yi, S. -S.; Yue, X. -Z. Constructing direct Z-Scheme heterostructure by enwrapping ZnIn2S4 on CdS hollow cube for efficient photocatalytic H2 generation. Adv. Sci. 2022, n/a, 2201773.

    11. [11]

      Xiang, X.; Zhu, B.; Cheng, B.; Yu, J.; Lv, H. Enhanced photocatalytic H2-production activity of CdS quantum dots using Sn2+ as cocatalyst under visible light irradiation. Small 2020, 16, 2001024.  doi: 10.1002/smll.202001024

    12. [12]

      Feng, R.; Wan, K.; Sui, X.; Zhao, N.; Li, H.; Lei, W.; Yu, J.; Liu, X.; Shi, X.; Zhai, M.; Liu, G.; Wang, H.; Zheng, L.; Liu, M. Anchoring single Pt atoms and black phosphorene dual co-catalysts on CdS nanospheres to boost visible-light photocatalytic H2 evolution. Nano Today 2021, 37, 101080.  doi: 10.1016/j.nantod.2021.101080

    13. [13]

      Shao, M.; Shao, Y.; Ding, S.; Tong, R.; Zhong, X.; Yao, L.; Ip, W. F.; Xu, B.; Shi, X. -Q.; Sun, Y. -Y.; Wang, X.; Pan, H. Carbonized MoS2: superactive co-catalyst for highly efficient water splitting on CdS. ACS Sustain. Chem. Eng. 2019, 7, 4220-4229.  doi: 10.1021/acssuschemeng.8b05917

    14. [14]

      Sun, Q.; Wang, N.; Yu, J.; Yu, J. C. A hollow porous CdS photocatalyst. Adv. Mater. 2018, 30, 1804368.  doi: 10.1002/adma.201804368

    15. [15]

      Yin, M.; Zhang, W.; Qiao, F.; Sun, J.; Fan, Y.; Li, Z. Hydrothermal synthesis of MoS2-NiS/CdS with enhanced photocatalytic hydrogen production activity and stability. J. Solid State Chem. 2019, 270, 531-538.  doi: 10.1016/j.jssc.2018.12.022

    16. [16]

      He, B.; Bie, C.; Fei, X.; Cheng, B.; Yu, J.; Ho, W.; Al-Ghamdi, A. A.; Wageh, S. Enhancement in the photocatalytic H2 production activity of CdS NRs by Ag2S and NiS dual cocatalysts. Appl. Catal. B 2021, 288, 119994.  doi: 10.1016/j.apcatb.2021.119994

    17. [17]

      Di, T.; Deng, Q.; Wang, G.; Wang, S.; Wang, L.; Ma, Y. Photodeposition of CoOx and MoS2 on CdS as dual cocatalysts for photocatalytic H2 production. J. Mater. Sci. Technol. 2022, 124, 209-216.  doi: 10.1016/j.jmst.2021.12.071

    18. [18]

      Yang, H.; Jin, Z.; Wang, G.; Liu, D.; Fan, K. Light-assisted synthesis MoSx as a noble metal free cocatalyst formed heterojunction CdS/Co3O4 photocatalyst for visible light harvesting and spatial charge separation. Dalton Trans. 2018, 47, 6973-6985.  doi: 10.1039/C8DT01142G

    19. [19]

      Hu, X.; Jin, J.; Wang, Y.; Lin, C.; Wan, S.; Zhang, K.; Wang, L.; Park, J. H. Au/MoS2 tips as auxiliary rate aligners for the photocatalytic generation of syngas with a tunable composition. Appl. Catal. B 2022, 308, 121219.  doi: 10.1016/j.apcatb.2022.121219

    20. [20]

      Lin, K.; Feng, L.; Li, D.; Zhang, J.; Wang, W.; Ma, B. Improved photocatalytic hydrogen evolution on (Ru/WC)/CdS via modulating the transferring paths of photo-excited electrons. Appl. Catal. B 2021, 286, 119880.  doi: 10.1016/j.apcatb.2021.119880

    21. [21]

      Lu, K. -Q.; Qi, M. -Y.; Tang, Z. -R.; Xu, Y. -J. Earth-abundant MoS2 and cobalt phosphate dual cocatalysts on 1D CdS nanowires for boosting photocatalytic hydrogen production. Langmuir 2019, 35, 11056-11065.  doi: 10.1021/acs.langmuir.9b01409

    22. [22]

      Qiu, B.; Cai, L.; Zhang, N.; Tao, X.; Chai, Y. A ternary dumbbell structure with spatially separated catalytic sites for photocatalytic overall water splitting. Adv. Sci. 2020, 7, 1903568.  doi: 10.1002/advs.201903568

    23. [23]

      Zhang, K.; Qian, S.; Kim, W.; Kim, J. K.; Sheng, X.; Lee, J. Y.; Park, J. H. Double 2-dimensional H2-evoluting catalyst tipped photocatalyst nano-wires: a new avenue for high-efficiency solar to H2 generation. Nano Energy 2017, 34, 481-490.  doi: 10.1016/j.nanoen.2017.03.005

    24. [24]

      Khan, K.; Tao, X.; Zhao, Y.; Zeng, B.; Shi, M.; Ta, N.; Li, J.; Jin, X.; Li, R.; Li, C. Spatial separation of dual-cocatalysts on one-dimensional semiconductors for photocatalytic hydrogen production. J. Mater. Chem. A 2019, 7, 15607-15614.  doi: 10.1039/C9TA03090E

    25. [25]

      Kwon, G.; Jang, H.; Lee, J. -S.; Mane, A.; Mandia, D. J.; Soltau, S. R.; Utschig, L. M.; Martinson, A. B. F.; Tiede, D. M.; Kim, H.; Kim, J. Resolution of electronic and structural factors underlying oxygen-evolving perfor-mance in amorphous cobalt oxide catalysts. J. Am. Chem. Soc. 2018, 140, 10710-10720.  doi: 10.1021/jacs.8b02719

    26. [26]

      Yue, Q.; Wan, Y.; Sun, Z.; Wu, X.; Yuan, Y.; Du, P. MoP is a novel, noble-metal-free cocatalyst for enhanced photocatalytic hydrogen production from water under visible light. J. Mater. Chem. A 2015, 3, 16941-16947.  doi: 10.1039/C5TA03949E

    27. [27]

      Jiang, D.; Sun, Z.; Jia, H.; Lu, D.; Du, P. A cocatalyst-free CdS nanorod/ZnS nanoparticle composite for high-performance visible-light-driven hydrogen production from water. J. Mater. Chem. A 2016, 4, 675-683.  doi: 10.1039/C5TA07420G

    28. [28]

      Cao, H.; Wang, T.; Li, J.; Wu, J.; Du, P. A molecular cobaloxime cocatalyst and ultrathin FeOOH nanolayers co-modified BiVO4 photoanode for efficient photoelectrochemical water oxidation. J. Energy Chem. 2022, 69, 497-505.  doi: 10.1016/j.jechem.2022.01.028

    29. [29]

      Zhu, M.; Zhai, C.; Kim, S.; Fujitsuka, M.; Majima, T. Monitoring transport behavior of charge carriers in a single CdS@CuS nanowire via in situ single-particle photoluminescence spectroscopy. J. Phys. Chem. Lett. 2019, 10, 4017-4024.  doi: 10.1021/acs.jpclett.9b01517

  • 加载中
    1. [1]

      Hualin JiangWenxi YeHuitao ZhenXubiao LuoVyacheslav FominskiLong YePinghua Chen . Novel 3D-on-2D g-C3N4/AgI.x.y heterojunction photocatalyst for simultaneous and stoichiometric production of H2 and H2O2 from water splitting under visible light. Chinese Chemical Letters, 2025, 36(2): 109984-. doi: 10.1016/j.cclet.2024.109984

    2. [2]

      Yi LiuZhe-Hao WangGuan-Hua XueLin ChenLi-Hua YuanYi-Wen LiDa-Gang YuJian-Heng Ye . Photocatalytic dicarboxylation of strained C–C bonds with CO2 via consecutive visible-light-induced electron transfer. Chinese Chemical Letters, 2024, 35(6): 109138-. doi: 10.1016/j.cclet.2023.109138

    3. [3]

      Xiao-Ming ChenLianhui SongJun PanFei ZengYi XieWei WeiDong Yi . Visible-light-induced four-component difunctionalization of alkenes to construct phosphorodithioate-containing quinoxalin-2(1H)-ones. Chinese Chemical Letters, 2024, 35(11): 110112-. doi: 10.1016/j.cclet.2024.110112

    4. [4]

      Weixu Li Yuexin Wang Lin Li Xinyi Huang Mengdi Liu Bo Gui Xianjun Lang Cheng Wang . Promoting energy transfer pathway in porphyrin-based sp2 carbon-conjugated covalent organic frameworks for selective photocatalytic oxidation of sulfide. Chinese Journal of Structural Chemistry, 2024, 43(7): 100299-100299. doi: 10.1016/j.cjsc.2024.100299

    5. [5]

      Jing RENRuikui YANXiaoli CHENHuali CUIHua YANGJijiang WANG . Synthesis and fluorescence sensing of a highly sensitive and multi-response cadmium coordination polymer. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 574-586. doi: 10.11862/CJIC.20240287

    6. [6]

      Yubang Li Xixi Hu Daiqian Xie . The microscopic formation mechanism of O + H2 products from photodissociation of H2O. Chinese Journal of Structural Chemistry, 2024, 43(5): 100274-100274. doi: 10.1016/j.cjsc.2024.100274

    7. [7]

      Abiduweili Sikandaier Yukun Zhu Dongjiang Yang . In-situ decorated cobalt phosphide cocatalyst on Hittorf's phosphorus triggering efficient photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(2): 100242-100242. doi: 10.1016/j.cjsc.2024.100242

    8. [8]

      Liang DongJingkuo QuTuo ZhangGuanghui ZhuNingning MaChang ZhaoYi YuanXiangjiu GuanLiejin Guo . MOF-derived NiCo bimetallic cocatalyst for enhanced photocatalytic overall water splitting. Chinese Chemical Letters, 2025, 36(3): 110397-. doi: 10.1016/j.cclet.2024.110397

    9. [9]

      Bicheng Zhu Jingsan Xu . S-scheme heterojunction photocatalyst for H2 evolution coupled with organic oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100327-100327. doi: 10.1016/j.cjsc.2024.100327

    10. [10]

      Peipei Sun Jinyuan Zhang Yanhua Song Zhao Mo Zhigang Chen Hui Xu . 引入内建电场增强光载流子分离以促进H2的生产. Acta Physico-Chimica Sinica, 2024, 40(11): 2311001-. doi: 10.3866/PKU.WHXB202311001

    11. [11]

      Sanmei WangDengxin YanWenhua ZhangLiangbing Wang . Graphene-supported isolated platinum atoms and platinum dimers for CO2 hydrogenation: Catalytic activity and selectivity variations. Chinese Chemical Letters, 2025, 36(4): 110611-. doi: 10.1016/j.cclet.2024.110611

    12. [12]

      Yi Herng ChanZhe Phak ChanSerene Sow Mun LockChung Loong YiinShin Ying FoongMee Kee WongMuhammad Anwar IshakVen Chian QuekShengbo GeSu Shiung Lam . Thermal pyrolysis conversion of methane to hydrogen (H2): A review on process parameters, reaction kinetics and techno-economic analysis. Chinese Chemical Letters, 2024, 35(8): 109329-. doi: 10.1016/j.cclet.2023.109329

    13. [13]

      Yong Shu Xing Chen Sai Duan Rongzhen Liao . How to Determine the Equilibrium Bond Distance of Homonuclear Diatomic Molecules: A Case Study of H2. University Chemistry, 2024, 39(7): 386-393. doi: 10.3866/PKU.DXHX202310102

    14. [14]

      Linfang ZHANGWenzhu YINGui YIN . A 2-dicyanomethylene-3-cyano-4,5,5-trimethyl-2,5-dihydrofuran-based near-infrared fluorescence probe for the detection of hydrogen sulfide and imaging of living cells. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 540-548. doi: 10.11862/CJIC.20240405

    15. [15]

      Shangqian ZhangJiaxuan LiXuan HuZelong ChenJunliang DongChenhao HuShuang ChaoYinghua LvYuxin PeiZhichao Pei . H2S and NIR light-driven nanomotors induce disulfidptosis for targeted anticancer therapy by enhancing disruption of tumor metabolic symbiosis. Chinese Chemical Letters, 2025, 36(1): 110314-. doi: 10.1016/j.cclet.2024.110314

    16. [16]

      Jiaqi Ma Lan Li Yiming Zhang Jinjie Qian Xusheng Wang . Covalent organic frameworks: Synthesis, structures, characterizations and progress of photocatalytic reduction of CO2. Chinese Journal of Structural Chemistry, 2024, 43(12): 100466-100466. doi: 10.1016/j.cjsc.2024.100466

    17. [17]

      Wen-Tao OuyangJun JiangYan-Fang JiangTing LiYuan-Yuan LiuHong-Tao JiLi-Juan OuWei-Min He . Sono-photocatalytic amination of quinoxalin-2(1H)-ones with aliphatic amines. Chinese Chemical Letters, 2024, 35(10): 110038-. doi: 10.1016/j.cclet.2024.110038

    18. [18]

      Yaping WangPengcheng YuanZeyuan XuXiong-Xiong LiuShengfa FengMufan CaoChen CaoXiaoqiang WangLong PanZheng-Ming Sun . Ti3C2Tx MXene in-situ transformed Li2TiO3 interface layer enabling 4.5 V-LiCoO2/sulfide all-solid-state lithium batteries with superior rate capability and cyclability. Chinese Chemical Letters, 2024, 35(6): 108776-. doi: 10.1016/j.cclet.2023.108776

    19. [19]

      Ping Lu Baoyin Du Ke Liu Ze Luo Abiduweili Sikandaier Lipeng Diao Jin Sun Luhua Jiang Yukun Zhu . Heterostructured In2O3/In2S3 hollow fibers enable efficient visible-light driven photocatalytic hydrogen production and 5-hydroxymethylfurfural oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100361-100361. doi: 10.1016/j.cjsc.2024.100361

    20. [20]

      Xiumei LILinlin LIBo LIUYaru PAN . Syntheses, crystal structures, and characterizations of two cadmium(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 613-623. doi: 10.11862/CJIC.20240273

Metrics
  • PDF Downloads(7)
  • Abstract views(431)
  • HTML views(34)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return