-
[1]
Zhang, M.; Nie, S.; Cheng, T.; Feng, Y.; Zhang, C.; Zheng, L.; Wu, L.; Hao, W.; Ding, Y. Enhancing the macroscopic polarization of CdS for piezo-photocatalytic water splitting. Nano Energy 2021, 90, 106635.
doi: 10.1016/j.nanoen.2021.106635
-
[2]
Bai, Y.; Hippalgaonkar, K.; Sprick, R. S. Organic materials as photocatalysts for water splitting. J. Mater. Chem. A 2021, 9, 16222-16232.
doi: 10.1039/D1TA03710B
-
[3]
Dai, C.; Pan, Y.; Liu, B. Conjugated polymer nanomaterials for solar water splitting. Adv. Energy Mater. 2020, 10, 2002474.
doi: 10.1002/aenm.202002474
-
[4]
Chen, S.; Takata, T.; Domen, K. Particulate photocatalysts for overall water splitting. Nat. Rev. Mater. 2017, 2, 17050.
doi: 10.1038/natrevmats.2017.50
-
[5]
Xu, J.; Zhong, W.; Gao, D.; Wang, X.; Wang, P.; Yu, H. Phosphorus-enriched platinum diphosphide nanodots as a highly efficient cocatalyst for photocatalytic H2 evolution of CdS. Chem. Eng. J. 2022, 439, 135758.
doi: 10.1016/j.cej.2022.135758
-
[6]
He, J.; Hu, L.; Shao, C.; Jiang, S.; Sun, C.; Song, S. Photocatalytic H2O overall splitting into H2 bubbles by single atomic sulfur vacancy CdS with spin polarization electric field. ACS Nano 2021, 15, 18006-18013.
doi: 10.1021/acsnano.1c06524
-
[7]
Tian, L.; Min, S.; Wang, F. Integrating noble-metal-free metallic vanadium carbide cocatalyst with CdS for efficient visible-light-driven photocatalytic H2 evolution. Appl. Catal. B 2019, 259, 118029.
doi: 10.1016/j.apcatb.2019.118029
-
[8]
Han, G.; Jin, Y. -H.; Burgess, R. A.; Dickenson, N. E.; Cao, X. -M.; Sun, Y. Visible-light-driven valorization of biomass intermediates integrated with H2 production catalyzed by ultrathin Ni/CdS nanosheets. J. Am. Chem. Soc. 2017, 139, 15584-15587.
doi: 10.1021/jacs.7b08657
-
[9]
Li, K.; Han, M.; Chen, R.; Li, S. -L.; Xie, S. -L.; Mao, C.; Bu, X.; Cao, X. -L.; Dong, L. -Z.; Feng, P.; Lan, Y. -Q. Hexagonal@cubic CdS core@shell nanorod photocatalyst for highly active production of H2 with unprecedented stability. Adv. Mater. 2016, 28, 8906-8911.
doi: 10.1002/adma.201601047
-
[10]
Li, C. -Q.; Du, X.; Jiang, S.; Liu, Y.; Niu, Z. -L.; Liu, Z. -Y.; Yi, S. -S.; Yue, X. -Z. Constructing direct Z-Scheme heterostructure by enwrapping ZnIn2S4 on CdS hollow cube for efficient photocatalytic H2 generation. Adv. Sci. 2022, n/a, 2201773.
-
[11]
Xiang, X.; Zhu, B.; Cheng, B.; Yu, J.; Lv, H. Enhanced photocatalytic H2-production activity of CdS quantum dots using Sn2+ as cocatalyst under visible light irradiation. Small 2020, 16, 2001024.
doi: 10.1002/smll.202001024
-
[12]
Feng, R.; Wan, K.; Sui, X.; Zhao, N.; Li, H.; Lei, W.; Yu, J.; Liu, X.; Shi, X.; Zhai, M.; Liu, G.; Wang, H.; Zheng, L.; Liu, M. Anchoring single Pt atoms and black phosphorene dual co-catalysts on CdS nanospheres to boost visible-light photocatalytic H2 evolution. Nano Today 2021, 37, 101080.
doi: 10.1016/j.nantod.2021.101080
-
[13]
Shao, M.; Shao, Y.; Ding, S.; Tong, R.; Zhong, X.; Yao, L.; Ip, W. F.; Xu, B.; Shi, X. -Q.; Sun, Y. -Y.; Wang, X.; Pan, H. Carbonized MoS2: superactive co-catalyst for highly efficient water splitting on CdS. ACS Sustain. Chem. Eng. 2019, 7, 4220-4229.
doi: 10.1021/acssuschemeng.8b05917
-
[14]
Sun, Q.; Wang, N.; Yu, J.; Yu, J. C. A hollow porous CdS photocatalyst. Adv. Mater. 2018, 30, 1804368.
doi: 10.1002/adma.201804368
-
[15]
Yin, M.; Zhang, W.; Qiao, F.; Sun, J.; Fan, Y.; Li, Z. Hydrothermal synthesis of MoS2-NiS/CdS with enhanced photocatalytic hydrogen production activity and stability. J. Solid State Chem. 2019, 270, 531-538.
doi: 10.1016/j.jssc.2018.12.022
-
[16]
He, B.; Bie, C.; Fei, X.; Cheng, B.; Yu, J.; Ho, W.; Al-Ghamdi, A. A.; Wageh, S. Enhancement in the photocatalytic H2 production activity of CdS NRs by Ag2S and NiS dual cocatalysts. Appl. Catal. B 2021, 288, 119994.
doi: 10.1016/j.apcatb.2021.119994
-
[17]
Di, T.; Deng, Q.; Wang, G.; Wang, S.; Wang, L.; Ma, Y. Photodeposition of CoOx and MoS2 on CdS as dual cocatalysts for photocatalytic H2 production. J. Mater. Sci. Technol. 2022, 124, 209-216.
doi: 10.1016/j.jmst.2021.12.071
-
[18]
Yang, H.; Jin, Z.; Wang, G.; Liu, D.; Fan, K. Light-assisted synthesis MoSx as a noble metal free cocatalyst formed heterojunction CdS/Co3O4 photocatalyst for visible light harvesting and spatial charge separation. Dalton Trans. 2018, 47, 6973-6985.
doi: 10.1039/C8DT01142G
-
[19]
Hu, X.; Jin, J.; Wang, Y.; Lin, C.; Wan, S.; Zhang, K.; Wang, L.; Park, J. H. Au/MoS2 tips as auxiliary rate aligners for the photocatalytic generation of syngas with a tunable composition. Appl. Catal. B 2022, 308, 121219.
doi: 10.1016/j.apcatb.2022.121219
-
[20]
Lin, K.; Feng, L.; Li, D.; Zhang, J.; Wang, W.; Ma, B. Improved photocatalytic hydrogen evolution on (Ru/WC)/CdS via modulating the transferring paths of photo-excited electrons. Appl. Catal. B 2021, 286, 119880.
doi: 10.1016/j.apcatb.2021.119880
-
[21]
Lu, K. -Q.; Qi, M. -Y.; Tang, Z. -R.; Xu, Y. -J. Earth-abundant MoS2 and cobalt phosphate dual cocatalysts on 1D CdS nanowires for boosting photocatalytic hydrogen production. Langmuir 2019, 35, 11056-11065.
doi: 10.1021/acs.langmuir.9b01409
-
[22]
Qiu, B.; Cai, L.; Zhang, N.; Tao, X.; Chai, Y. A ternary dumbbell structure with spatially separated catalytic sites for photocatalytic overall water splitting. Adv. Sci. 2020, 7, 1903568.
doi: 10.1002/advs.201903568
-
[23]
Zhang, K.; Qian, S.; Kim, W.; Kim, J. K.; Sheng, X.; Lee, J. Y.; Park, J. H. Double 2-dimensional H2-evoluting catalyst tipped photocatalyst nano-wires: a new avenue for high-efficiency solar to H2 generation. Nano Energy 2017, 34, 481-490.
doi: 10.1016/j.nanoen.2017.03.005
-
[24]
Khan, K.; Tao, X.; Zhao, Y.; Zeng, B.; Shi, M.; Ta, N.; Li, J.; Jin, X.; Li, R.; Li, C. Spatial separation of dual-cocatalysts on one-dimensional semiconductors for photocatalytic hydrogen production. J. Mater. Chem. A 2019, 7, 15607-15614.
doi: 10.1039/C9TA03090E
-
[25]
Kwon, G.; Jang, H.; Lee, J. -S.; Mane, A.; Mandia, D. J.; Soltau, S. R.; Utschig, L. M.; Martinson, A. B. F.; Tiede, D. M.; Kim, H.; Kim, J. Resolution of electronic and structural factors underlying oxygen-evolving perfor-mance in amorphous cobalt oxide catalysts. J. Am. Chem. Soc. 2018, 140, 10710-10720.
doi: 10.1021/jacs.8b02719
-
[26]
Yue, Q.; Wan, Y.; Sun, Z.; Wu, X.; Yuan, Y.; Du, P. MoP is a novel, noble-metal-free cocatalyst for enhanced photocatalytic hydrogen production from water under visible light. J. Mater. Chem. A 2015, 3, 16941-16947.
doi: 10.1039/C5TA03949E
-
[27]
Jiang, D.; Sun, Z.; Jia, H.; Lu, D.; Du, P. A cocatalyst-free CdS nanorod/ZnS nanoparticle composite for high-performance visible-light-driven hydrogen production from water. J. Mater. Chem. A 2016, 4, 675-683.
doi: 10.1039/C5TA07420G
-
[28]
Cao, H.; Wang, T.; Li, J.; Wu, J.; Du, P. A molecular cobaloxime cocatalyst and ultrathin FeOOH nanolayers co-modified BiVO4 photoanode for efficient photoelectrochemical water oxidation. J. Energy Chem. 2022, 69, 497-505.
doi: 10.1016/j.jechem.2022.01.028
-
[29]
Zhu, M.; Zhai, C.; Kim, S.; Fujitsuka, M.; Majima, T. Monitoring transport behavior of charge carriers in a single CdS@CuS nanowire via in situ single-particle photoluminescence spectroscopy. J. Phys. Chem. Lett. 2019, 10, 4017-4024.
doi: 10.1021/acs.jpclett.9b01517