Citation: Xinlong Yao, Zhenchao Zhao, Guangjin Hou. Development of In Situ MAS NMR and Its Applications in Material Synthesis and Heterogeneous Catalysis[J]. Chinese Journal of Structural Chemistry, ;2022, 41(10): 221004. doi: 10.14102/j.cnki.0254-5861.2022-0166 shu

Development of In Situ MAS NMR and Its Applications in Material Synthesis and Heterogeneous Catalysis



  • Author Bio: Xinlong Yao received his B.S. degree in chemistry from Jilin University in 2018, and he is currently a Ph.D. candidate under the supervision of Prof. Guangjin Hou at Dalian Institute of Chemical Physics (DICP), Chinese Academy of Sciences (CAS). His current research interest focuses on the in situ NMR spectroscopy and its applications in material science and heterogeneous catalysis

    Guangjin Hou received his Ph.D. from National Centre for Magnetic Resonance in Wuhan, Chinese Academy of Sciences (CAS), in 2007. After two postdoctoral research experiences respectively at Max-Planck Institute for Polymer Research and University of Delaware, he began his independent research career as a senior NMR scientist at the University of Delaware in 2012. Currently, he is a professor at Dalian Institute of Chemical Physics (DICP), CAS, and heading the solid-state NMR research group. Prof. Hou's research focuses on the methodology development of solid-state NMR spectroscopy and its applications in catalysis, energy storage, macromolecules, and biology systems
  • Corresponding author: Zhenchao Zhao, zhaoenc@zjnu.edu.cn Guangjin Hou, ghou@dicp.ac.cn
  • Received Date: 8 July 2022
    Accepted Date: 5 August 2022
    Available Online: 12 August 2022

Figures(9)

  • High-resolution magic angle spinning (MAS) NMR can afford both qualitative and quantitative information of the solid, liquid and gas phase at atomic level, and such information obtained at in situ/operando conditions is of vital importance for understanding the crystallization process of material as well as the reaction mechanism of catalysis. To meet the requirement of experimental conditions for material synthesis and catalytic reactions, in situ MAS NMR techniques have been continuously developed for using at higher temperatures and pressures with high sensitivity. Herein, we will briefly outline the development of this technology and discuss its detailed applications in understanding material synthesis and heterogeneous catalysis.
  • 加载中
    1. [1]

      Weckhuysen, B. M. Preface: recent advances in the in-situ characterization of heterogeneous catalysts. Chem. Soc. Rev. 2010, 39, 4557-4559.  doi: 10.1039/c0cs90031a

    2. [2]

      Fan, F. T.; Feng, Z. C.; Li, C. UV Raman spectroscopic study on the synthesis mechanism and assembly of molecular sieves. Chem. Soc. Rev. 2010, 39, 4794-4801.  doi: 10.1039/c0cs00012d

    3. [3]

      Lamberti, C.; Zecchina, A.; Groppo, E.; Bordiga, S. Probing the surfaces of heterogeneous catalysts by in situ IR spectroscopy. Chem. Soc. Rev. 2010, 39, 4951-5001.  doi: 10.1039/c0cs00117a

    4. [4]

      Yao, S.; Zhang, X.; Zhou, W.; Gao, R.; Xu, W.; Ye, Y.; Lin, L.; Wen, X.; Liu, P.; Chen, B.; Crumlin, E.; Guo, J.; Zuo, Z.; Li, W.; Xie, J.; Lu, L.; Kiely, C. J.; Gu, L.; Shi, C.; Rodriguez, J. A.; Ma, D. Atomic-layered Au clusters on α-MoC as catalysts for the low-temperature water-gas shift reaction. Science 2017, 357, 389.  doi: 10.1126/science.aah4321

    5. [5]

      O'Brien, M. G.; Beale, A. M.; Weckhuysen, B. M. The role of synchrotron radiation in examining the self-assembly of crystalline nanoporous framework materials: from zeolites and aluminophosphates to metal organic hybrids. Chem. Soc. Rev. 2010, 39, 4767-4782.  doi: 10.1039/c0cs00088d

    6. [6]

      Su, D. S.; Zhang, B.; Schlögl, R. Electron microscopy of solid catalyststransforming from a challenge to a toolbox. Chem. Rev. 2015, 115, 2818-2882.

    7. [7]

      Prodinger, S.; Vjunov, A.; Hu, J. Z.; Fulton, J. L.; Camaioni, D. M.; Derewinski, M. A.; Lercher, J. A. Elementary steps of faujasite formation followed by in situ spectroscopy. Chem. Mater. 2018, 30, 888-897.

    8. [8]

      Zhang, W.; Xu, S.; Han, X.; Bao, X. In situ solid-state NMR for heterogeneous catalysis: a joint experimental and theoretical approach. Chem. Soc. Rev. 2012, 41, 192-210.  doi: 10.1039/C1CS15009J

    9. [9]

      Liang, L.; Ji, Y.; Chen, K.; Gao, P.; Zhao, Z.; Hou, G. Solid-state NMR dipolar and chemical shift anisotropy recoupling techniques for structural and dynamical studies in biological systems. Chem. Rev. 2022, 122, 9880-9942.

    10. [10]

      Du, J. -H.; Chen, L.; Zhang, B.; Chen, K.; Wang, M.; Wang, Y.; Hung, I.; Gan, Z.; Wu, X. -P.; Gong, X. -Q.; Peng, L. Identification of CO2 adsorption sites on MgO nanosheets by solid-state nuclear magnetic resonance spectroscopy. Nat. Commun. 2022, 13, 707.

    11. [11]

      Madsen, R. S. K.; Qiao, A.; Sen, J.; Hung, I.; Chen, K.; Gan, Z.; Sen, S.; Yue, Y. Ultrahigh-field 67Zn NMR reveals short-range disorder in zeolitic imidazolate framework glasses. Science 2020, 367, 1473.  doi: 10.1126/science.aaz0251

    12. [12]

      Reif, B.; Ashbrook, S. E.; Emsley, L.; Hong, M. Solid-state NMR spectroscopy. Nat. Rev. Methods Primers 2021, 1, 2.
       

    13. [13]

      Marchetti, A.; Chen, J.; Pang, Z.; Li, S.; Ling, D.; Deng, F.; Kong, X. Understanding surface and interfacial chemistry in functional nanomaterials via solid-state NMR. Adv. Mater. 2017, 29, 1605895.
       

    14. [14]

      Zheng, A.; Li, S.; Liu, S. -B.; Deng, F. Acidic properties and structureactivity correlations of solid acid catalysts revealed by solid-state NMR spectroscopy. Acc. Chem. Res. 2016, 49, 655-663.
       

    15. [15]

      Jaegers, N. R.; Mueller, K. T.; Wang, Y.; Hu, J. Z. Variable temperature and pressure operando MAS NMR for catalysis science and related materials. Acc. Chem. Res. 2020, 53, 611-619.
       

    16. [16]

      Peng, Y. -K.; Tsang, S. -C. E. Probe-assisted NMR: recent progress on the surface study of crystalline metal oxides with various terminated facets. Magn. Reson. Lett. 2022, 2, 9-16.

    17. [17]

      Xia, Y.; Xia, C.; Yi, X.; Liu, F.; Liu, S.; Zheng, A. Progress in the studies on Sn-zeolites by solid state nuclear magnetic resonance. Chin. J. Magn. Reson. 2021, 38, 571-584.
       

    18. [18]

      Hu, H.; Wang, W.; Xu, J.; Deng, F. 1, 3-Butadienen hydrogenation on supported Pd-Sn bimetallic catalysts investigated by parahydrogen induced polarization. Chin. J. Magn. Reson. 2022, 39, 133-143.

    19. [19]

      Ji, Y.; Gao, P.; Zhao, Z.; Xiao, D.; Han, Q.; Chen, H.; Gong, K.; Chen, K.; Han, X.; Bao, X.; Hou, G. Oxygenate-based routes regulate syngas conversion over oxide-zeolite bifunctional catalysts. Nat. Catal. 2022, 5, 594-604.

    20. [20]

      Chen, Y.; Gong, K.; Jiao, F.; Pan, X.; Hou, G.; Si, R.; Bao, X. C-C bond formation in syngas conversion over zinc sites grafted on ZSM-5 zeolite. Angew. Chem. Int. Ed. 2020, 59, 6529-6534.

    21. [21]

      Chen, X.; Fu, Y.; Yue, B.; He, H. Acidity and basicity of solid acid catalysts studied by solid-state NMR. Chin. J. Magn. Reson. 2021, 38, 491-502.

    22. [22]

      Zhao, Z.; Xiao, D.; Chen, K.; Wang, R.; Liang, L.; Liu, Z.; Hung, I.; Gan, Z.; Hou, G. Nature of five-coordinated Al in γ-Al2O3 revealed by ultra-high-field solid-state NMR. ACS Cent. Sci. 2022, 8, 795-803.

    23. [23]

      Xu, S.; Zhang, W.; Liu, X.; Han, X.; Bao, X. Enhanced in situ continuous-flow MAS NMR for reaction kinetics in the nanocages. J. Am. Chem. Soc. 2009, 131, 13722-13727.

    24. [24]

      Ivanova, II; Kolyagin, Y. G. Impact of in situ MAS NMR techniques to the understanding of the mechanisms of zeolite catalyzed reactions. Chem. Soc. Rev. 2010, 39, 5018-5050.

    25. [25]

      Vjunov, A.; Hu, M. Y.; Feng, J.; Camaioni, D. M.; Mei, D.; Hu, J. Z.; Zhao, C.; Lercher, J. A. Following solid-acid-catalyzed reactions by MAS NMR spectroscopy in liquid phase—zeolite-catalyzed conversion of cyclohexanol in water. Angew. Chem. Int. Ed. 2014, 53, 479-482.
       

    26. [26]

      Liu, Y.; Baráth, E.; Shi, H.; Hu, J.; Camaioni, D. M.; Lercher, J. A. Solvent-determined mechanistic pathways in zeolite-H-BEA-catalysed phenol alkylation. Nat. Catal. 2018, 1, 141-147.
       

    27. [27]

      Gao, S.; Xu, S.; Wei, Y.; Liu, Z. Applications of solid-state nuclear magnetic resonancespectroscopy in methanol-to-olefins reaction. Chin. J. Magn. Reson. 2021, 38, 433-447.

    28. [28]

      Zeng, S.; Xu, S.; Wei, Y.; Liu, Z. Investigation of the ethanol dehydration to ethene reaction on H-SSZ-13 Molecular Sieve by in situ solid-state NMR spectroscopy. Chin. J. Magn. Reson. 2022, 39, 123-132.

    29. [29]

      Andrew, E. R.; Bradbury, A.; Eades, R. G. Nuclear magnetic resonance spectra from a crystal rotated at high speed. Nature 1958, 182, 1659.
       

    30. [30]

      Jaegers, N. R.; Hu, M. Y.; Hoyt, D. W.; Wang, Y.; Hu, J. Z. Development and application of in situ high-temperature, high-pressure magic angle spinning NMR. In Modern Magnetic Resonance. Webb, G. A., Ed. Springer International Publishing: Cham 2017, pp 1-19.

    31. [31]

      Zhang, L.; Ren, Y. H.; Yue, B.; He, H. Y. Recent development in in situ NMR study on heterogeneous catalysis: mechanisms of light alkane functionalisation. Chem. Commun. 2012, 48, 2370-2384.

    32. [32]

      Blasco, T. Insights into reaction mechanisms in heterogeneous catalysis revealed by in situ NMR spectroscopy. Chem. Soc. Rev. 2010, 39, 4685-4702.
       

    33. [33]

      Hunger, M.; Seiler, M.; Horvath, T. A technique for simultaneous in situ MAS NMR and on-line gas chromatographic studies of hydrocarbon conversions on solid catalysts under flow conditions. Catal. Lett. 1999, 57, 199-204.
       

    34. [34]

      Hunger, M.; Horvath, T. A new MAS NMR probe for in situ investigations of hydrocarbon conversion on solid catalysts under continuous-flow conditions. J. Chem. Soc., Chem. Commun. 1995, 1423-1424.
       

    35. [35]

      Hunger, M.; Wang, W. Formation of cyclic compounds and carbenium ions by conversion of methanol on weakly dealuminated zeolite H-ZSM-5 investigated via a novel in situ CF MAS NMR/UV-Vis technique. Chem. Commun. 2004, 584-585.
       

    36. [36]

      Wang, W.; Jiang, Y.; Hunger, M. Mechanistic investigations of the methanol-to-olefin (MTO) process on acidic zeolite catalysts by in situ solid-state NMR spectroscopy. Catal. Today 2006, 113, 102-114.
       

    37. [37]

      Hunger, M. In situ NMR spectroscopy in heterogeneous catalysis. Catal. Today 2004, 97, 3-12.
       

    38. [38]

      Hunger, M. In situ flow MAS NMR spectroscopy: state of the art and applications in heterogeneous catalysis. Prog. Nucl. Magn. Reson. Spectrosc. 2008, 53, 105-127.

    39. [39]

      Xu, J.; Wang, Q.; Li, S.; Deng, F. In situ solid-state NMR investigation of catalytic reactions on zeolites. In Solid-State NMR in Zeolite Catalysis. Xu, J.; Wang, Q.; Li, S.; Deng, F., Eds. Springer Singapore: Singapore 2019, pp 199-254.

    40. [40]

      He, T.; Ren, P.; Liu, X.; Xu, S.; Han, X.; Bao, X. Direct observation of DME carbonylation in the different channels of H-MOR zeolite by continuous-flow solid-state NMR spectroscopy. Chem. Commun. 2015, 51, 16868-16870.
       

    41. [41]

      Hu, J. Z.; Sears, J. A.; Mehta, H. S.; Ford, J. J.; Kwak, J. H.; Zhu, K.; Wang, Y.; Liu, J.; Hoyt, D. W.; Peden, C. H. A large sample volume magic angle spinning nuclear magnetic resonance probe for in situ investigations with constant flow of reactants. Phys. Chem. Chem. Phys. 2012, 14, 2137-2143.
       

    42. [42]

      Adrian Carpenter, T.; Klinowski, J.; Tilak, D.; Tennakoon, B.; Smith, C. J.; Edwards, D. C. Sealed capsules for convenient acquisition of variabletemperature controlled-atmosphere magic-angle-spinning NMR spectra of solids. J. Magn. Reson. 1986, 68, 561-563.
       

    43. [43]

      Anderson, M. W.; Klinowski, J. Direct observation of shape selectivity in zeolite ZSM-5 by magic-angle-spinning NMR. Nature 1989, 339, 200-203.

    44. [44]

      Deuchande, T.; Breton, O.; Haedelt, J.; Hughes, E. Design and performance of a high pressure insert for use in a standard magic angle spinning NMR probe. J. Magn. Reson. 2006, 183, 178-182.
       

    45. [45]

      Yonker, C. R.; Linehan, J. C. The use of supercritical fluids as solvents for NMR spectroscopy. Prog. Nucl. Mag. Res. Sp. 2005, 47, 95-109.
       

    46. [46]

      Ivanova, I. I.; Kolyagin, Y. G.; Kasyanov, I. A.; Yakimov, A. V.; Bok, T. O.; Zarubin, D. N. Time-resolved in situ MAS NMR monitoring of the nucleation and growth of zeolite BEA catalysts under hydrothermal conditions. Angew. Chem. Int. Ed. 2017, 56, 15344-15347.
       

    47. [47]

      Hoyt, D. W.; Turcu, R. V.; Sears, J. A.; Rosso, K. M.; Burton, S. D.; Felmy, A. R.; Hu, J. Z. High-pressure magic angle spinning nuclear magnetic resonance. J. Magn. Reson. 2011, 212, 378-385.
       

    48. [48]

      Turcu, R. V.; Hoyt, D. W.; Rosso, K. M.; Sears, J. A.; Loring, J. S.; Felmy, A. R.; Hu, J. Z. Rotor design for high pressure magic angle spinning nuclear magnetic resonance. J. Magn. Reson. 2013, 226, 64-69.
       

    49. [49]

      Hu, J. Z.; Hu, M. Y.; Zhao, Z.; Xu, S.; Vjunov, A.; Shi, H.; Camaioni, D. M.; Peden, C. H.; Lercher, J. A. Sealed rotors for in situ high temperature high pressure MAS NMR. Chem. Commun. 2015, 51, 13458-13461.

    50. [50]

      Walter, E. D.; Qi, L.; Chamas, A.; Mehta, H. S.; Sears, J. A.; Scott, S. L.; Hoyt, D. W. Operando MAS NMR reaction studies at high temperatures and pressures. J. Phys. Chem. C 2018, 122, 8209-8215.
       

    51. [51]

      Zhao, Z.; Hou, G.; Liu, X.; Yao, X.; Bao, X. Sealed sample cell for high-temperature high-pressure magic angle spinning nuclear magnetic resonance. CN114235876A, 2022-03-25, 2022.

    52. [52]

      Mehta, H. S.; Chen, Y.; Sears, J. A.; Walter, E. D.; Campos, M.; Kothandaraman, J.; Heldebrant, D. J.; Hoyt, D. W.; Mueller, K. T.; Washton, N. M. A novel high-temperature MAS probe with optimized temperature gradient across sample rotor for in-situ monitoring of high-temperature high-pressure chemical reactions. Solid State Nucl. Magn. Reson. 2019, 102, 31-35.

    53. [53]

      Zhao, Z.; Xu, S.; Hu, M. Y.; Bao, X.; Hu, J. Z. In situ high temperature high pressure MAS NMR study on the crystallization of AlPO4-5. J. Phys. Chem. C 2016, 120, 1701-1708.

    54. [54]

      Xu, S.; Zhao, Z.; Hu, M. Y.; Han, X.; Hu, J. Z.; Bao, X. Investigation of water assisted phase transformation process from AlPO4-5 to AlPO4-tridymite. Microporous Mesoporous Mater. 2016, 223, 241-246.

    55. [55]

      Camblor, M. A.; Mifsud, A.; Pérez-Pariente, J. Influence of the synthesis conditions on the crystallization of zeolite Beta. Zeolites 1991, 11, 792-797.
       

    56. [56]

      Nicolle, M. A.; Di Renzo, F.; Fajula, F.; Espiau, P.; Courieres, T. D. A microporous tetraethylammonium permutite as synthesis intermediate of the zeolite beta. In Proceedings from the Ninth International Zeolite Conference. von Ballmoos, R.; Higgins, J. B.; Treacy, M. M. J., Eds. Butterworth-Heinemann: 1993, pp 313-320.

    57. [57]

      Ikuno, T.; Chaikittisilp, W.; Liu, Z.; Iida, T.; Yanaba, Y.; Yoshikawa, T.; Kohara, S.; Wakihara, T.; Okubo, T. Structure-directing behaviors of tetraethylammonium cations toward zeolite beta revealed by the evolution of aluminosilicate species formed during the crystallization process. J. Am. Chem. Soc. 2015, 137, 14533-14544.
       

    58. [58]

      Hu, J. Z.; Zhang, X.; Jaegers, N. R.; Wan, C.; Graham, T. R.; Hu, M.; Pearce, C. I.; Felmy, A. R.; Clark, S. B.; Rosso, K. M. Transitions in Al coordination during gibbsite crystallization using high-field 27Al and 23Na MAS NMR spectroscopy. J. Phys. Chem. C 2017, 121, 27555-27562.

    59. [59]

      Wang, Z.; Chu, W.; Zhao, Z.; Liu, Z.; Chen, H.; Xiao, D.; Gong, K.; Li, F.; Li, X.; Hou, G. The role of organic and inorganic structure-directing agents in selective Al substitution of zeolite. J. Phys. Chem. Lett. 2021, 12, 9398-9406.

    60. [60]

      Feuerstein, M.; Hunger, M.; Engelhardt, G.; Amoureux, J. P. Characterisation of sodium cations in dehydrated zeolite NaX by 23Na NMR spectroscopy. Solid State Nucl. Magn. Reson. 1996, 7, 95-103.

    61. [61]

      Ivanova, I. I.; Kolyagin, Y. G. Application of multinuclear MAS NMR for the in situ monitoring of hydrothermal synthesis of zeolites. Chem. Eur. J. 2021, 27, 14143-14167.

    62. [62]

      Jones, C. L.; Hughes, C. E.; Yeung, H. H. M.; Paul, A.; Harris, K. D. M.; Easun, T. L. Exploiting in situ NMR to monitor the formation of a metal-organic framework. Chem. Sci. 2021, 12, 1486-1494.

    63. [63]

      Qi, L.; Alamillo, R.; Elliott, W. A.; Andersen, A.; Hoyt, D. W.; Walter, E. D.; Han, K. S.; Washton, N. M.; Rioux, R. M.; Dumesic, J. A.; Scott, S. L. Operando solid-state NMR observation of solvent-mediated adsorption-reaction of carbohydrates in zeolites. ACS Catal. 2017, 7, 3489-3500.
       

    64. [64]

      Zhao, Z.; Shi, H.; Wan, C.; Hu, M. Y.; Liu, Y.; Mei, D.; Camaioni, D. M.; Hu, J. Z.; Lercher, J. A. Mechanism of phenol alkylation in zeolite H-BEA using in situ solid-state NMR spectroscopy. J. Am. Chem. Soc. 2017, 139, 9178-9185.

    65. [65]

      Wang, M.; Jaegers, N. R.; Lee, M. -S.; Wan, C.; Hu, J. Z.; Shi, H.; Mei, D.; Burton, S. D.; Camaioni, D. M.; Gutierrez, O. Y.; Glezakou, V. -A.; Rousseau, R.; Wang, Y.; Lercher, J. A. Genesis and stability of hydronium ions in zeolite channels. J. Am. Chem. Soc. 2019, 141, 3444-3455.

    66. [66]

      Zhao, C.; Kasakov, S.; He, J.; Lercher, J. A. Comparison of kinetics, activity and stability of Ni/HZSM-5 and Ni/Al2O3-HZSM-5 for phenol hydrodeoxygenation. J. Catal. 2012, 296, 12-23.

    67. [67]

      Zhao, C.; Lercher, J. A. Selective hydrodeoxygenation of lignin-derived phenolic monomers and dimers to cycloalkanes on Pd/C and HZSM-5 catalysts. ChemCatChem 2012, 4, 64-68.

    68. [68]

      Zakzeski, J.; Bruijnincx, P. C. A.; Jongerius, A. L.; Weckhuysen, B. M. The catalytic valorization of lignin for the production of renewable chemicals. Chem. Rev. 2010, 110, 3552-3599.
       

    69. [69]

      Besson, M.; Gallezot, P.; Pinel, C. Conversion of biomass into chemicals over metal catalysts. Chem. Rev. 2014, 114, 1827-1870.
       

    70. [70]

      Nie, L.; Resasco, D. E. Improving carbon retention in biomass conversion by alkylation of phenolics with small oxygenates. Appl. Catal. A: Gen. 2012, 447-448, 14-21.
       

    71. [71]

      Zhao, C.; Camaioni, D. M.; Lercher, J. A. Selective catalytic hydroalkylation and deoxygenation of substituted phenols to bicycloalkanes. J. Catal. 2012, 288, 92-103.
       

    72. [72]

      Zhao, C.; Song, W.; Lercher, J. A. Aqueous phase hydroalkylation and hydrodeoxygenation of phenol by dual functional catalysts comprised of Pd/C and H/La-BEA. ACS Catal. 2012, 2, 2714-2723.

  • 加载中
    1. [1]

      Keke HanWenjun RaoXiuli YouHaina ZhangXing YeZhenhong WeiHu Cai . Two new high-temperature molecular ferroelectrics [1,5-3.2.2-Hdabcni]X (X = ClO4, ReO4). Chinese Chemical Letters, 2024, 35(6): 108809-. doi: 10.1016/j.cclet.2023.108809

    2. [2]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    3. [3]

      Caihong MaoYanfeng HeXiaohan WangYan CaiXiaobo Hu . Synthesis and molecular recognition characteristics of a tetrapodal benzene cage. Chinese Chemical Letters, 2024, 35(8): 109362-. doi: 10.1016/j.cclet.2023.109362

    4. [4]

      Yunfa DongShijie ZhongYuhui HeZhezhi LiuShengyu ZhouQun LiYashuai PangHaodong XieYuanpeng JiYuanpeng LiuJiecai HanWeidong He . Modification strategies for non-aqueous, highly proton-conductive benzimidazole-based high-temperature proton exchange membranes. Chinese Chemical Letters, 2024, 35(4): 109261-. doi: 10.1016/j.cclet.2023.109261

    5. [5]

      Ruonan GuoHeng ZhangChangsheng GuoNingqing LvBeidou XiJian Xu . Degradation of neonicotinoids with different molecular structures in heterogeneous peroxymonosulfate activation system through different oxidation pathways. Chinese Chemical Letters, 2024, 35(9): 109413-. doi: 10.1016/j.cclet.2023.109413

    6. [6]

      Uttam Pandurang Patil . Porous carbon catalysis in sustainable synthesis of functional heterocycles: An overview. Chinese Chemical Letters, 2024, 35(8): 109472-. doi: 10.1016/j.cclet.2023.109472

    7. [7]

      Liliang ChuXiaoyan ZhangJianing LiXuelei DengMiao WuYa ChengWeiping ZhuXuhong QianYunpeng Bai . Continuous-flow synthesis of polysubstituted γ-butyrolactones via enzymatic cascade catalysis. Chinese Chemical Letters, 2024, 35(4): 108896-. doi: 10.1016/j.cclet.2023.108896

    8. [8]

      Yu ZHANGFangfang ZHAOCong PANPeng WANGLiangming WEI . Application of double-side modified separator with hollow carbon material in high-performance Li-S battery. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1218-1232. doi: 10.11862/CJIC.20230412

    9. [9]

      Yan ChengHua-Peng RuanYan PengLonghe LiZhenqiang XieLang LiuShiyong ZhangHengyun YeZhao-Bo Hu . Magnetic, dielectric and luminescence synergetic switchable effects in molecular material [Et3NCH2Cl]2[MnBr4]. Chinese Chemical Letters, 2024, 35(4): 108554-. doi: 10.1016/j.cclet.2023.108554

    10. [10]

      Hualei XuManman HanHaiqiang LiuLiang QinLulu ChenHao HuRan WuChenyu YangHua GuoJinrong LiJinxiang FuQichen HaoYijun ZhouJinchao FengXiaodong Wang . 4-Nitrocatechol as a novel matrix for low-molecular-weight compounds in situ detection and imaging in biological tissues by MALDI-MSI. Chinese Chemical Letters, 2024, 35(6): 109095-. doi: 10.1016/j.cclet.2023.109095

    11. [11]

      Jieqiong XuWenbin ChenShengkai LiQian ChenTao WangYadong ShiShengyong DengMingde LiPeifa WeiZhuo Chen . Organic stoichiometric cocrystals with a subtle balance of charge-transfer degree and molecular stacking towards high-efficiency NIR photothermal conversion. Chinese Chemical Letters, 2024, 35(10): 109808-. doi: 10.1016/j.cclet.2024.109808

    12. [12]

      Rui ChengTingting ZhangXin HuangJian Yu . Facile synthesis of high-brightness green-emitting carbon dots with narrow bandwidth towards backlight display. Chinese Chemical Letters, 2024, 35(5): 108763-. doi: 10.1016/j.cclet.2023.108763

    13. [13]

      Conghui WangLei XuZhenhua JiaTeck-Peng Loh . Recent applications of macrocycles in supramolecular catalysis. Chinese Chemical Letters, 2024, 35(4): 109075-. doi: 10.1016/j.cclet.2023.109075

    14. [14]

      Wei Chen Pieter Cnudde . A minireview to ketene chemistry in zeolite catalysis. Chinese Journal of Structural Chemistry, 2024, 43(11): 100412-100412. doi: 10.1016/j.cjsc.2024.100412

    15. [15]

      Xinzhi Ding Chong Liu Jing Niu Nan Chen Shutao Xu Yingxu Wei Zhongmin Liu . Solid-state NMR study of the stability of MOR framework aluminum. Chinese Journal of Structural Chemistry, 2024, 43(4): 100247-100247. doi: 10.1016/j.cjsc.2024.100247

    16. [16]

      Fang-Yuan ChenWen-Chao GengKang CaiDong-Sheng Guo . Molecular recognition of cyclophanes in water. Chinese Chemical Letters, 2024, 35(5): 109161-. doi: 10.1016/j.cclet.2023.109161

    17. [17]

      Huan Hu Ying Zhang Shi-Shuang Huang Zhi-Gang Li Yungui Liu Rui Feng Wei Li . Temperature- and pressure-responsive photoluminescence in a 1D hybrid lead halide. Chinese Journal of Structural Chemistry, 2024, 43(10): 100395-100395. doi: 10.1016/j.cjsc.2024.100395

    18. [18]

      Yu MaoYilin LiuXiaochen WangShengyang NiYi PanYi Wang . Acylfluorination of enynes via phosphine and silver catalysis. Chinese Chemical Letters, 2024, 35(8): 109443-. doi: 10.1016/j.cclet.2023.109443

    19. [19]

      Heng YangZhijie ZhouConghui TangFeng Chen . Recent advances in heterogeneous hydrosilylation of unsaturated carbon-carbon bonds. Chinese Chemical Letters, 2024, 35(6): 109257-. doi: 10.1016/j.cclet.2023.109257

    20. [20]

      Ling-Hao ZhaoHai-Wei YanJian-Shuang JiangXu ZhangXiang YuanYa-Nan YangPei-Cheng Zhang . Effective assignment of positional isomers in dimeric shikonin and its analogs by 1H NMR spectroscopy. Chinese Chemical Letters, 2024, 35(5): 108863-. doi: 10.1016/j.cclet.2023.108863

Metrics
  • PDF Downloads(2)
  • Abstract views(358)
  • HTML views(28)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return