Development of In Situ MAS NMR and Its Applications in Material Synthesis and Heterogeneous Catalysis
- Corresponding author: Zhenchao Zhao, zhaoenc@zjnu.edu.cn Guangjin Hou, ghou@dicp.ac.cn
Citation: Xinlong Yao, Zhenchao Zhao, Guangjin Hou. Development of In Situ MAS NMR and Its Applications in Material Synthesis and Heterogeneous Catalysis[J]. Chinese Journal of Structural Chemistry, ;2022, 41(10): 221004. doi: 10.14102/j.cnki.0254-5861.2022-0166
Weckhuysen, B. M. Preface: recent advances in the in-situ characterization of heterogeneous catalysts. Chem. Soc. Rev. 2010, 39, 4557-4559.
doi: 10.1039/c0cs90031a
Fan, F. T.; Feng, Z. C.; Li, C. UV Raman spectroscopic study on the synthesis mechanism and assembly of molecular sieves. Chem. Soc. Rev. 2010, 39, 4794-4801.
doi: 10.1039/c0cs00012d
Lamberti, C.; Zecchina, A.; Groppo, E.; Bordiga, S. Probing the surfaces of heterogeneous catalysts by in situ IR spectroscopy. Chem. Soc. Rev. 2010, 39, 4951-5001.
doi: 10.1039/c0cs00117a
Yao, S.; Zhang, X.; Zhou, W.; Gao, R.; Xu, W.; Ye, Y.; Lin, L.; Wen, X.; Liu, P.; Chen, B.; Crumlin, E.; Guo, J.; Zuo, Z.; Li, W.; Xie, J.; Lu, L.; Kiely, C. J.; Gu, L.; Shi, C.; Rodriguez, J. A.; Ma, D. Atomic-layered Au clusters on α-MoC as catalysts for the low-temperature water-gas shift reaction. Science 2017, 357, 389.
doi: 10.1126/science.aah4321
O'Brien, M. G.; Beale, A. M.; Weckhuysen, B. M. The role of synchrotron radiation in examining the self-assembly of crystalline nanoporous framework materials: from zeolites and aluminophosphates to metal organic hybrids. Chem. Soc. Rev. 2010, 39, 4767-4782.
doi: 10.1039/c0cs00088d
Su, D. S.; Zhang, B.; Schlögl, R. Electron microscopy of solid catalyststransforming from a challenge to a toolbox. Chem. Rev. 2015, 115, 2818-2882.
Prodinger, S.; Vjunov, A.; Hu, J. Z.; Fulton, J. L.; Camaioni, D. M.; Derewinski, M. A.; Lercher, J. A. Elementary steps of faujasite formation followed by in situ spectroscopy. Chem. Mater. 2018, 30, 888-897.
Zhang, W.; Xu, S.; Han, X.; Bao, X. In situ solid-state NMR for heterogeneous catalysis: a joint experimental and theoretical approach. Chem. Soc. Rev. 2012, 41, 192-210.
doi: 10.1039/C1CS15009J
Liang, L.; Ji, Y.; Chen, K.; Gao, P.; Zhao, Z.; Hou, G. Solid-state NMR dipolar and chemical shift anisotropy recoupling techniques for structural and dynamical studies in biological systems. Chem. Rev. 2022, 122, 9880-9942.
Du, J. -H.; Chen, L.; Zhang, B.; Chen, K.; Wang, M.; Wang, Y.; Hung, I.; Gan, Z.; Wu, X. -P.; Gong, X. -Q.; Peng, L. Identification of CO2 adsorption sites on MgO nanosheets by solid-state nuclear magnetic resonance spectroscopy. Nat. Commun. 2022, 13, 707.
Madsen, R. S. K.; Qiao, A.; Sen, J.; Hung, I.; Chen, K.; Gan, Z.; Sen, S.; Yue, Y. Ultrahigh-field 67Zn NMR reveals short-range disorder in zeolitic imidazolate framework glasses. Science 2020, 367, 1473.
doi: 10.1126/science.aaz0251
Reif, B.; Ashbrook, S. E.; Emsley, L.; Hong, M. Solid-state NMR spectroscopy. Nat. Rev. Methods Primers 2021, 1, 2.
Marchetti, A.; Chen, J.; Pang, Z.; Li, S.; Ling, D.; Deng, F.; Kong, X. Understanding surface and interfacial chemistry in functional nanomaterials via solid-state NMR. Adv. Mater. 2017, 29, 1605895.
Zheng, A.; Li, S.; Liu, S. -B.; Deng, F. Acidic properties and structureactivity correlations of solid acid catalysts revealed by solid-state NMR spectroscopy. Acc. Chem. Res. 2016, 49, 655-663.
Jaegers, N. R.; Mueller, K. T.; Wang, Y.; Hu, J. Z. Variable temperature and pressure operando MAS NMR for catalysis science and related materials. Acc. Chem. Res. 2020, 53, 611-619.
Peng, Y. -K.; Tsang, S. -C. E. Probe-assisted NMR: recent progress on the surface study of crystalline metal oxides with various terminated facets. Magn. Reson. Lett. 2022, 2, 9-16.
Xia, Y.; Xia, C.; Yi, X.; Liu, F.; Liu, S.; Zheng, A. Progress in the studies on Sn-zeolites by solid state nuclear magnetic resonance. Chin. J. Magn. Reson. 2021, 38, 571-584.
Hu, H.; Wang, W.; Xu, J.; Deng, F. 1, 3-Butadienen hydrogenation on supported Pd-Sn bimetallic catalysts investigated by parahydrogen induced polarization. Chin. J. Magn. Reson. 2022, 39, 133-143.
Ji, Y.; Gao, P.; Zhao, Z.; Xiao, D.; Han, Q.; Chen, H.; Gong, K.; Chen, K.; Han, X.; Bao, X.; Hou, G. Oxygenate-based routes regulate syngas conversion over oxide-zeolite bifunctional catalysts. Nat. Catal. 2022, 5, 594-604.
Chen, Y.; Gong, K.; Jiao, F.; Pan, X.; Hou, G.; Si, R.; Bao, X. C-C bond formation in syngas conversion over zinc sites grafted on ZSM-5 zeolite. Angew. Chem. Int. Ed. 2020, 59, 6529-6534.
Chen, X.; Fu, Y.; Yue, B.; He, H. Acidity and basicity of solid acid catalysts studied by solid-state NMR. Chin. J. Magn. Reson. 2021, 38, 491-502.
Zhao, Z.; Xiao, D.; Chen, K.; Wang, R.; Liang, L.; Liu, Z.; Hung, I.; Gan, Z.; Hou, G. Nature of five-coordinated Al in γ-Al2O3 revealed by ultra-high-field solid-state NMR. ACS Cent. Sci. 2022, 8, 795-803.
Xu, S.; Zhang, W.; Liu, X.; Han, X.; Bao, X. Enhanced in situ continuous-flow MAS NMR for reaction kinetics in the nanocages. J. Am. Chem. Soc. 2009, 131, 13722-13727.
Ivanova, II; Kolyagin, Y. G. Impact of in situ MAS NMR techniques to the understanding of the mechanisms of zeolite catalyzed reactions. Chem. Soc. Rev. 2010, 39, 5018-5050.
Vjunov, A.; Hu, M. Y.; Feng, J.; Camaioni, D. M.; Mei, D.; Hu, J. Z.; Zhao, C.; Lercher, J. A. Following solid-acid-catalyzed reactions by MAS NMR spectroscopy in liquid phase—zeolite-catalyzed conversion of cyclohexanol in water. Angew. Chem. Int. Ed. 2014, 53, 479-482.
Liu, Y.; Baráth, E.; Shi, H.; Hu, J.; Camaioni, D. M.; Lercher, J. A. Solvent-determined mechanistic pathways in zeolite-H-BEA-catalysed phenol alkylation. Nat. Catal. 2018, 1, 141-147.
Gao, S.; Xu, S.; Wei, Y.; Liu, Z. Applications of solid-state nuclear magnetic resonancespectroscopy in methanol-to-olefins reaction. Chin. J. Magn. Reson. 2021, 38, 433-447.
Zeng, S.; Xu, S.; Wei, Y.; Liu, Z. Investigation of the ethanol dehydration to ethene reaction on H-SSZ-13 Molecular Sieve by in situ solid-state NMR spectroscopy. Chin. J. Magn. Reson. 2022, 39, 123-132.
Andrew, E. R.; Bradbury, A.; Eades, R. G. Nuclear magnetic resonance spectra from a crystal rotated at high speed. Nature 1958, 182, 1659.
Jaegers, N. R.; Hu, M. Y.; Hoyt, D. W.; Wang, Y.; Hu, J. Z. Development and application of in situ high-temperature, high-pressure magic angle spinning NMR. In Modern Magnetic Resonance. Webb, G. A., Ed. Springer International Publishing: Cham 2017, pp 1-19.
Zhang, L.; Ren, Y. H.; Yue, B.; He, H. Y. Recent development in in situ NMR study on heterogeneous catalysis: mechanisms of light alkane functionalisation. Chem. Commun. 2012, 48, 2370-2384.
Blasco, T. Insights into reaction mechanisms in heterogeneous catalysis revealed by in situ NMR spectroscopy. Chem. Soc. Rev. 2010, 39, 4685-4702.
Hunger, M.; Seiler, M.; Horvath, T. A technique for simultaneous in situ MAS NMR and on-line gas chromatographic studies of hydrocarbon conversions on solid catalysts under flow conditions. Catal. Lett. 1999, 57, 199-204.
Hunger, M.; Horvath, T. A new MAS NMR probe for in situ investigations of hydrocarbon conversion on solid catalysts under continuous-flow conditions. J. Chem. Soc., Chem. Commun. 1995, 1423-1424.
Hunger, M.; Wang, W. Formation of cyclic compounds and carbenium ions by conversion of methanol on weakly dealuminated zeolite H-ZSM-5 investigated via a novel in situ CF MAS NMR/UV-Vis technique. Chem. Commun. 2004, 584-585.
Wang, W.; Jiang, Y.; Hunger, M. Mechanistic investigations of the methanol-to-olefin (MTO) process on acidic zeolite catalysts by in situ solid-state NMR spectroscopy. Catal. Today 2006, 113, 102-114.
Hunger, M. In situ NMR spectroscopy in heterogeneous catalysis. Catal. Today 2004, 97, 3-12.
Hunger, M. In situ flow MAS NMR spectroscopy: state of the art and applications in heterogeneous catalysis. Prog. Nucl. Magn. Reson. Spectrosc. 2008, 53, 105-127.
Xu, J.; Wang, Q.; Li, S.; Deng, F. In situ solid-state NMR investigation of catalytic reactions on zeolites. In Solid-State NMR in Zeolite Catalysis. Xu, J.; Wang, Q.; Li, S.; Deng, F., Eds. Springer Singapore: Singapore 2019, pp 199-254.
He, T.; Ren, P.; Liu, X.; Xu, S.; Han, X.; Bao, X. Direct observation of DME carbonylation in the different channels of H-MOR zeolite by continuous-flow solid-state NMR spectroscopy. Chem. Commun. 2015, 51, 16868-16870.
Hu, J. Z.; Sears, J. A.; Mehta, H. S.; Ford, J. J.; Kwak, J. H.; Zhu, K.; Wang, Y.; Liu, J.; Hoyt, D. W.; Peden, C. H. A large sample volume magic angle spinning nuclear magnetic resonance probe for in situ investigations with constant flow of reactants. Phys. Chem. Chem. Phys. 2012, 14, 2137-2143.
Adrian Carpenter, T.; Klinowski, J.; Tilak, D.; Tennakoon, B.; Smith, C. J.; Edwards, D. C. Sealed capsules for convenient acquisition of variabletemperature controlled-atmosphere magic-angle-spinning NMR spectra of solids. J. Magn. Reson. 1986, 68, 561-563.
Anderson, M. W.; Klinowski, J. Direct observation of shape selectivity in zeolite ZSM-5 by magic-angle-spinning NMR. Nature 1989, 339, 200-203.
Deuchande, T.; Breton, O.; Haedelt, J.; Hughes, E. Design and performance of a high pressure insert for use in a standard magic angle spinning NMR probe. J. Magn. Reson. 2006, 183, 178-182.
Yonker, C. R.; Linehan, J. C. The use of supercritical fluids as solvents for NMR spectroscopy. Prog. Nucl. Mag. Res. Sp. 2005, 47, 95-109.
Ivanova, I. I.; Kolyagin, Y. G.; Kasyanov, I. A.; Yakimov, A. V.; Bok, T. O.; Zarubin, D. N. Time-resolved in situ MAS NMR monitoring of the nucleation and growth of zeolite BEA catalysts under hydrothermal conditions. Angew. Chem. Int. Ed. 2017, 56, 15344-15347.
Hoyt, D. W.; Turcu, R. V.; Sears, J. A.; Rosso, K. M.; Burton, S. D.; Felmy, A. R.; Hu, J. Z. High-pressure magic angle spinning nuclear magnetic resonance. J. Magn. Reson. 2011, 212, 378-385.
Turcu, R. V.; Hoyt, D. W.; Rosso, K. M.; Sears, J. A.; Loring, J. S.; Felmy, A. R.; Hu, J. Z. Rotor design for high pressure magic angle spinning nuclear magnetic resonance. J. Magn. Reson. 2013, 226, 64-69.
Hu, J. Z.; Hu, M. Y.; Zhao, Z.; Xu, S.; Vjunov, A.; Shi, H.; Camaioni, D. M.; Peden, C. H.; Lercher, J. A. Sealed rotors for in situ high temperature high pressure MAS NMR. Chem. Commun. 2015, 51, 13458-13461.
Walter, E. D.; Qi, L.; Chamas, A.; Mehta, H. S.; Sears, J. A.; Scott, S. L.; Hoyt, D. W. Operando MAS NMR reaction studies at high temperatures and pressures. J. Phys. Chem. C 2018, 122, 8209-8215.
Zhao, Z.; Hou, G.; Liu, X.; Yao, X.; Bao, X. Sealed sample cell for high-temperature high-pressure magic angle spinning nuclear magnetic resonance. CN114235876A, 2022-03-25, 2022.
Mehta, H. S.; Chen, Y.; Sears, J. A.; Walter, E. D.; Campos, M.; Kothandaraman, J.; Heldebrant, D. J.; Hoyt, D. W.; Mueller, K. T.; Washton, N. M. A novel high-temperature MAS probe with optimized temperature gradient across sample rotor for in-situ monitoring of high-temperature high-pressure chemical reactions. Solid State Nucl. Magn. Reson. 2019, 102, 31-35.
Zhao, Z.; Xu, S.; Hu, M. Y.; Bao, X.; Hu, J. Z. In situ high temperature high pressure MAS NMR study on the crystallization of AlPO4-5. J. Phys. Chem. C 2016, 120, 1701-1708.
Xu, S.; Zhao, Z.; Hu, M. Y.; Han, X.; Hu, J. Z.; Bao, X. Investigation of water assisted phase transformation process from AlPO4-5 to AlPO4-tridymite. Microporous Mesoporous Mater. 2016, 223, 241-246.
Camblor, M. A.; Mifsud, A.; Pérez-Pariente, J. Influence of the synthesis conditions on the crystallization of zeolite Beta. Zeolites 1991, 11, 792-797.
Nicolle, M. A.; Di Renzo, F.; Fajula, F.; Espiau, P.; Courieres, T. D. A microporous tetraethylammonium permutite as synthesis intermediate of the zeolite beta. In Proceedings from the Ninth International Zeolite Conference. von Ballmoos, R.; Higgins, J. B.; Treacy, M. M. J., Eds. Butterworth-Heinemann: 1993, pp 313-320.
Ikuno, T.; Chaikittisilp, W.; Liu, Z.; Iida, T.; Yanaba, Y.; Yoshikawa, T.; Kohara, S.; Wakihara, T.; Okubo, T. Structure-directing behaviors of tetraethylammonium cations toward zeolite beta revealed by the evolution of aluminosilicate species formed during the crystallization process. J. Am. Chem. Soc. 2015, 137, 14533-14544.
Hu, J. Z.; Zhang, X.; Jaegers, N. R.; Wan, C.; Graham, T. R.; Hu, M.; Pearce, C. I.; Felmy, A. R.; Clark, S. B.; Rosso, K. M. Transitions in Al coordination during gibbsite crystallization using high-field 27Al and 23Na MAS NMR spectroscopy. J. Phys. Chem. C 2017, 121, 27555-27562.
Wang, Z.; Chu, W.; Zhao, Z.; Liu, Z.; Chen, H.; Xiao, D.; Gong, K.; Li, F.; Li, X.; Hou, G. The role of organic and inorganic structure-directing agents in selective Al substitution of zeolite. J. Phys. Chem. Lett. 2021, 12, 9398-9406.
Feuerstein, M.; Hunger, M.; Engelhardt, G.; Amoureux, J. P. Characterisation of sodium cations in dehydrated zeolite NaX by 23Na NMR spectroscopy. Solid State Nucl. Magn. Reson. 1996, 7, 95-103.
Ivanova, I. I.; Kolyagin, Y. G. Application of multinuclear MAS NMR for the in situ monitoring of hydrothermal synthesis of zeolites. Chem. Eur. J. 2021, 27, 14143-14167.
Jones, C. L.; Hughes, C. E.; Yeung, H. H. M.; Paul, A.; Harris, K. D. M.; Easun, T. L. Exploiting in situ NMR to monitor the formation of a metal-organic framework. Chem. Sci. 2021, 12, 1486-1494.
Qi, L.; Alamillo, R.; Elliott, W. A.; Andersen, A.; Hoyt, D. W.; Walter, E. D.; Han, K. S.; Washton, N. M.; Rioux, R. M.; Dumesic, J. A.; Scott, S. L. Operando solid-state NMR observation of solvent-mediated adsorption-reaction of carbohydrates in zeolites. ACS Catal. 2017, 7, 3489-3500.
Zhao, Z.; Shi, H.; Wan, C.; Hu, M. Y.; Liu, Y.; Mei, D.; Camaioni, D. M.; Hu, J. Z.; Lercher, J. A. Mechanism of phenol alkylation in zeolite H-BEA using in situ solid-state NMR spectroscopy. J. Am. Chem. Soc. 2017, 139, 9178-9185.
Wang, M.; Jaegers, N. R.; Lee, M. -S.; Wan, C.; Hu, J. Z.; Shi, H.; Mei, D.; Burton, S. D.; Camaioni, D. M.; Gutierrez, O. Y.; Glezakou, V. -A.; Rousseau, R.; Wang, Y.; Lercher, J. A. Genesis and stability of hydronium ions in zeolite channels. J. Am. Chem. Soc. 2019, 141, 3444-3455.
Zhao, C.; Kasakov, S.; He, J.; Lercher, J. A. Comparison of kinetics, activity and stability of Ni/HZSM-5 and Ni/Al2O3-HZSM-5 for phenol hydrodeoxygenation. J. Catal. 2012, 296, 12-23.
Zhao, C.; Lercher, J. A. Selective hydrodeoxygenation of lignin-derived phenolic monomers and dimers to cycloalkanes on Pd/C and HZSM-5 catalysts. ChemCatChem 2012, 4, 64-68.
Zakzeski, J.; Bruijnincx, P. C. A.; Jongerius, A. L.; Weckhuysen, B. M. The catalytic valorization of lignin for the production of renewable chemicals. Chem. Rev. 2010, 110, 3552-3599.
Besson, M.; Gallezot, P.; Pinel, C. Conversion of biomass into chemicals over metal catalysts. Chem. Rev. 2014, 114, 1827-1870.
Nie, L.; Resasco, D. E. Improving carbon retention in biomass conversion by alkylation of phenolics with small oxygenates. Appl. Catal. A: Gen. 2012, 447-448, 14-21.
Zhao, C.; Camaioni, D. M.; Lercher, J. A. Selective catalytic hydroalkylation and deoxygenation of substituted phenols to bicycloalkanes. J. Catal. 2012, 288, 92-103.
Zhao, C.; Song, W.; Lercher, J. A. Aqueous phase hydroalkylation and hydrodeoxygenation of phenol by dual functional catalysts comprised of Pd/C and H/La-BEA. ACS Catal. 2012, 2, 2714-2723.
Keke Han , Wenjun Rao , Xiuli You , Haina Zhang , Xing Ye , Zhenhong Wei , Hu Cai . Two new high-temperature molecular ferroelectrics [1,5-3.2.2-Hdabcni]X (X = ClO4−, ReO4−). Chinese Chemical Letters, 2024, 35(6): 108809-. doi: 10.1016/j.cclet.2023.108809
Wenjiang LI , Pingli GUAN , Rui YU , Yuansheng CHENG , Xianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289
Caihong Mao , Yanfeng He , Xiaohan Wang , Yan Cai , Xiaobo Hu . Synthesis and molecular recognition characteristics of a tetrapodal benzene cage. Chinese Chemical Letters, 2024, 35(8): 109362-. doi: 10.1016/j.cclet.2023.109362
Yunfa Dong , Shijie Zhong , Yuhui He , Zhezhi Liu , Shengyu Zhou , Qun Li , Yashuai Pang , Haodong Xie , Yuanpeng Ji , Yuanpeng Liu , Jiecai Han , Weidong He . Modification strategies for non-aqueous, highly proton-conductive benzimidazole-based high-temperature proton exchange membranes. Chinese Chemical Letters, 2024, 35(4): 109261-. doi: 10.1016/j.cclet.2023.109261
Ruonan Guo , Heng Zhang , Changsheng Guo , Ningqing Lv , Beidou Xi , Jian Xu . Degradation of neonicotinoids with different molecular structures in heterogeneous peroxymonosulfate activation system through different oxidation pathways. Chinese Chemical Letters, 2024, 35(9): 109413-. doi: 10.1016/j.cclet.2023.109413
Uttam Pandurang Patil . Porous carbon catalysis in sustainable synthesis of functional heterocycles: An overview. Chinese Chemical Letters, 2024, 35(8): 109472-. doi: 10.1016/j.cclet.2023.109472
Liliang Chu , Xiaoyan Zhang , Jianing Li , Xuelei Deng , Miao Wu , Ya Cheng , Weiping Zhu , Xuhong Qian , Yunpeng Bai . Continuous-flow synthesis of polysubstituted γ-butyrolactones via enzymatic cascade catalysis. Chinese Chemical Letters, 2024, 35(4): 108896-. doi: 10.1016/j.cclet.2023.108896
Yu ZHANG , Fangfang ZHAO , Cong PAN , Peng WANG , Liangming WEI . Application of double-side modified separator with hollow carbon material in high-performance Li-S battery. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1218-1232. doi: 10.11862/CJIC.20230412
Yan Cheng , Hua-Peng Ruan , Yan Peng , Longhe Li , Zhenqiang Xie , Lang Liu , Shiyong Zhang , Hengyun Ye , Zhao-Bo Hu . Magnetic, dielectric and luminescence synergetic switchable effects in molecular material [Et3NCH2Cl]2[MnBr4]. Chinese Chemical Letters, 2024, 35(4): 108554-. doi: 10.1016/j.cclet.2023.108554
Hualei Xu , Manman Han , Haiqiang Liu , Liang Qin , Lulu Chen , Hao Hu , Ran Wu , Chenyu Yang , Hua Guo , Jinrong Li , Jinxiang Fu , Qichen Hao , Yijun Zhou , Jinchao Feng , Xiaodong Wang . 4-Nitrocatechol as a novel matrix for low-molecular-weight compounds in situ detection and imaging in biological tissues by MALDI-MSI. Chinese Chemical Letters, 2024, 35(6): 109095-. doi: 10.1016/j.cclet.2023.109095
Jieqiong Xu , Wenbin Chen , Shengkai Li , Qian Chen , Tao Wang , Yadong Shi , Shengyong Deng , Mingde Li , Peifa Wei , Zhuo Chen . Organic stoichiometric cocrystals with a subtle balance of charge-transfer degree and molecular stacking towards high-efficiency NIR photothermal conversion. Chinese Chemical Letters, 2024, 35(10): 109808-. doi: 10.1016/j.cclet.2024.109808
Rui Cheng , Tingting Zhang , Xin Huang , Jian Yu . Facile synthesis of high-brightness green-emitting carbon dots with narrow bandwidth towards backlight display. Chinese Chemical Letters, 2024, 35(5): 108763-. doi: 10.1016/j.cclet.2023.108763
Conghui Wang , Lei Xu , Zhenhua Jia , Teck-Peng Loh . Recent applications of macrocycles in supramolecular catalysis. Chinese Chemical Letters, 2024, 35(4): 109075-. doi: 10.1016/j.cclet.2023.109075
Wei Chen , Pieter Cnudde . A minireview to ketene chemistry in zeolite catalysis. Chinese Journal of Structural Chemistry, 2024, 43(11): 100412-100412. doi: 10.1016/j.cjsc.2024.100412
Xinzhi Ding , Chong Liu , Jing Niu , Nan Chen , Shutao Xu , Yingxu Wei , Zhongmin Liu . Solid-state NMR study of the stability of MOR framework aluminum. Chinese Journal of Structural Chemistry, 2024, 43(4): 100247-100247. doi: 10.1016/j.cjsc.2024.100247
Fang-Yuan Chen , Wen-Chao Geng , Kang Cai , Dong-Sheng Guo . Molecular recognition of cyclophanes in water. Chinese Chemical Letters, 2024, 35(5): 109161-. doi: 10.1016/j.cclet.2023.109161
Huan Hu , Ying Zhang , Shi-Shuang Huang , Zhi-Gang Li , Yungui Liu , Rui Feng , Wei Li . Temperature- and pressure-responsive photoluminescence in a 1D hybrid lead halide. Chinese Journal of Structural Chemistry, 2024, 43(10): 100395-100395. doi: 10.1016/j.cjsc.2024.100395
Yu Mao , Yilin Liu , Xiaochen Wang , Shengyang Ni , Yi Pan , Yi Wang . Acylfluorination of enynes via phosphine and silver catalysis. Chinese Chemical Letters, 2024, 35(8): 109443-. doi: 10.1016/j.cclet.2023.109443
Heng Yang , Zhijie Zhou , Conghui Tang , Feng Chen . Recent advances in heterogeneous hydrosilylation of unsaturated carbon-carbon bonds. Chinese Chemical Letters, 2024, 35(6): 109257-. doi: 10.1016/j.cclet.2023.109257
Ling-Hao Zhao , Hai-Wei Yan , Jian-Shuang Jiang , Xu Zhang , Xiang Yuan , Ya-Nan Yang , Pei-Cheng Zhang . Effective assignment of positional isomers in dimeric shikonin and its analogs by 1H NMR spectroscopy. Chinese Chemical Letters, 2024, 35(5): 108863-. doi: 10.1016/j.cclet.2023.108863